Synopsis: Chapter 20.

In which it is shown how to describe a triangle equal (in area) and isoperimetric to another given triangle, by making use of properties of the ellipse.
§20.2.
Chapter Twenty. [p.55.]
Above a given base, to describe a triangle equal (in area) and isoperimetric to another given triangle.

\squareet the given base, above which the triangle is to be described, be smaller than the largest side of the given triangle, but larger than the least.

Let the sides of the given triangle be $26,251 / 2,12^{1} / 2$. The base of which is 26 , it has altitude 12 , perimeter 64. For this other triangle is to be constructed with equal area and isoperimetric on the given base AB 24 , of
proportions $\left\{\begin{array}{llc}24 & \text { complement. arith. } & \text { Logarithms } \\ 26 & & 141497376 \\ 12 & & 107918125 \\ 13 & & 1 \mid 11394336 \\ \hline\end{array}\right.$
[Table 20-1]
which the altitude is 13 , because with triangles of equal area,

[Figure 20-1]. the altitudes are in reciprocal proportion to the bases, by Prop. 15, Book 6, Euclid.

Then with the perpendicular ND drawn to the base AB , and DO to become equal to the altitude [p.56.] found $13, \&$ through the point O, HOM is drawn parallel with the base AB. Onto this parallel [line] is placed the vertex of the triangle sought. But since this triangle is isoperimetric with the given triangle: by taking away the base AB 24 from the given perimeter 64, there remains 40, the sum of the remaining lines. Let the isosceles triangle ABC be made, of which the leg on either side AC , $B C$ is 20 , and by bisecting the base in D , with centre D , radius DE 20 , the arc of the circle ENF is described, \& the elliptical arc ECF, intersecting the line HOM in the points P \& Q . I assert for the lines AP, BP, or AQ, BQ : the triangle APB or AQB to be equal and isoperimetric with the given triangle. For with the ellipse, if AC, BC, DE, DF, are equal: for two lines from the same point on the periphery of the ellipse, taken together \& drawn to A and B, are equal to the longer diameter EF, by Prop. 52, Book 3, Apollonius of Perga On Conic Sections.

But if we want to know the lengths of the lines $A Q, B Q$ numerically; from the point Q the perpendicular QR is drawn, cutting the arc of the circle in the point $\mathrm{S}, \& \mathrm{DC}, \mathrm{DN}: \mathrm{RQ}, \mathrm{RS}$ are in proportion; \& by taking RS squared, from DS squared, there remains the line DR squared, by Prop.

47, Book 1, Euclid. And AR is the sum of the lines AD, DR; \& BR is the difference of the same.
proportions
Square DC
Square DN
Square RQ
Square RS $\left\{\begin{array}{lc}256 \\ 400 \\ \text { Logarithms } \\ 169 \\ 264^{1} / 16\end{array}\right.$
[Table 20-2]
The sum of the squares RS \& DR is equal to

the square of DS , (or DN); the square of DR is
therefore $135^{15} / 16$ [i.e. $\mathrm{DR}^{2}=\mathrm{DS}^{2}-\mathrm{RS}^{2}$], \& AR is $12+\ell .135^{15} / 16^{2}$, and certainly BR is $12-$ $\ell .135^{11} / 16$. Which if multiplied by themselves, the squares are $279 \underline{9375}+\ell .78300, \& 2799375-$ $\ell .78300$, to each of which if 169 is added, the square of the line RQ , the results are the square of the line $\mathrm{AQ}, 448 \underline{9375}+\ell .78300, \&$ the square of the line $\mathrm{BQ}, 448 \underline{9375}$ - $\ell .78300$. If these square binomials [not in the modern sense] are reduced to absolute numbers, they are the square of $A Q$, 7287588715, and the square of BQ 1691161285 . All of which particulars you see put together here.

The square root of the square 78300 is	$279 \underline{8213715}$	AQ. $26 \underline{\underline{995534}}$
	2799375	
Square of the right line RA	5597588715 total	
Square of the right line RQ	169	
Square of the right line AQ	7287588715	
The square root of the square 78300 is	2798213715	
	$279 \underline{9375}$	
Square of the right line BR	1161285 remainder	
Square of the right line RQ	169	
Square of the right line BQ	$169 \underline{1161285}$	BQ. $13 \underline{\underline{004465}}$
	AB.	24
	BQ.	$13 \underline{004465}$
	AQ.	$26 \underline{995534}$

The perimeter of the triangle ABQ will therefore be $63 \underline{999999}$
[Table 20-3]
\& the area 156 , is equal to the base AB 24 by half of the altitude RQ, 6 . Which were to be shown.

Notes on Chapter 20.

1 A well-known property of the ellipse: for if DR is set equal to the ordinate x in standard form, and RQ the co-ordinate y, then $y^{2}=b^{2}\left(1-x^{2} / a^{2}\right)$; where a is the semi-major axis DF , and b the semi-minor axis DC. The co-ordinate y^{\prime} from the circle, DN , is given by $y^{\prime 2}=a^{2}\left(1-x^{2} / a^{2}\right)$; hence, $\left(y / y^{\prime}\right)^{2}=b^{2} / a^{2}$.

2 As reported elsewhere, ' ℓ ' is short for 'latus', meaning here 'square root', which would now be written $\sqrt{ }$.
§20.4.
Caput XX. [p.55.]
Super datam Basim triangulum describere aequale \& isoperimetrum dato triangulo.
it data basis, super quam describendum est triangulum, minor, maximo latere dati trianguli, maior autem minimo.

Sunto latera dati trianguli $26,251 / 2,12 \frac{1}{2}$.cuius basis sit 26 , erit altitudo 12 , perimeter 64 .
Huic aliud aequale \& isoperimetrum constituendum est super datam basim AB 24, cuius altitudo debet esse 13. quia in triangulis aequalibus, altitudines sunt basibus reciproce proportionales, per 15.p.6.lib.Eucl.

Deinde ducatur ND perpendicularis basi $\mathrm{AB}, \&$ fiat DO aequalis

proport.	$24\left\{\begin{array}{c}\text { cogarithmi. } \\ \text { compl. arith. }\end{array}\right.$	861978876
26	141497335	
12	107918125	
13	$1 \mid 111394336$	

inventae altitudini13, \& per punctum O ducatur HOM parallela basi AB. in hac parallela [p.56.] situs erit vertex trianguli quaesiti. Cum autem hoc triangulum debeat esse isoperimetrum dato triangulo:ablata AB 24 , e data perimetro 64 , restabunt 40 , summa reliquorum laterum. fiat ABC triangulum isosceles, cuius utrumque crus AC, BC sit 20 , \& biseca basi in D, centro D, radio DE 20, describatur peripheria circulis ENF, \& peripheria Elliptica ECF, intersecans rectam $H O M$ in punctis PQ . Aio ductis rectis $A P, B P$, vel $A Q, B Q$: triangula $A P B$ vel AQB esse aequalia \& isoperimetra dato triangulo. Nam in Elleipsi, si $\mathrm{AC}, \mathrm{BC}, \mathrm{DE}, \mathrm{DF}$, aequentur: rectae duae $a b$ oedem peripheriae Elleipticae puncto, ductae ad A \& B, simul sumptae, aequantur diametro longiori EF, per 52.p.3.lib.Apollonij Pergaei de conicis sectionibus.

Quod si in numeris scire velimus longitudines rectarum AQ, BQ; a puncto Q ducatur perpendicularis QR , secans peripheriam circuli in puncto $\mathrm{S}, \& \mathrm{DC}, \mathrm{DN}: \mathrm{RQ}, \mathrm{RS}$ fiant proportionales; \& ablato quadrato RS, e quadrato DS, restabit quadratum, rectae DR, per 47.p.1.lib.Eucl. Eritque AR aggregatum rectarum

$\mathrm{AD}, \mathrm{DR} ;$ \& BR erit differentia earundem.
$\left\{\begin{array}{llr}\text { proportiones } & & \text { Logarithmi. } \\ \text { Quadratum DC } & 256 \\ \text { Quadratum DN } & 400 & 759176003 \\ \text { Quadratum RQ } & 169 & 260205999 \\ \text { Quadratum RS } & 264^{1 / 16} & 222788670 \\ \text { Qurith. } & 1 \mid 242170672\end{array}\right.$

Quadrata RS \& DR, aequantur quadrato DS, (vel DN); est igitur quadratum DR $135^{15} / 16$, \& AR erit $12+\ell .135^{15} / 16^{2}$, BR vero erit $12-\ell .135^{11} / 16$. Quae si seipas multiplicent, earum quadrata erunt $279 \underline{9375}+\ell .78300, \& 279 \underline{9375}-\ell .78300$, quibus si addatur 169 , quadratum rectae $R Q$, erit quadratum rectae $\mathrm{AQ}, 4489375+\ell .78300, \&$ quadratum rectae BQ , erit $4489375-\ell .78300$. \& si haec quadrata Binomia reducantur ad numeros absolutos, erit quadratum $A Q, 7287588715, \&$ quadratum BQ 1691161285. quae omnia particularius hic adiecta vides

Erit igitur perimeter trianguli ABQ $63 \underline{999999}$
\& aream 156, aequabitur facto a basi AB 24 in 6, semissem altitudinis RQ. Quae erant facienda.

