This is a long chapter concerned with surface and volume calculations of the ellipse and spheroid, and sections of the spheroid, according to the formulae of Archimedes; finally, the methods developed are applied to cask gauging, a popular mathematical pursuit at the time.
§1. For a given ellipse with major diameter $\mathrm{AC}, 8[=2 a]$, and minor diameter $\mathrm{BD}, 5[=2 b]$: the area A is found initially from the relation: $\log \mathrm{A}=\log 8+\log 5+$ Difference B. Note: this is equivalent to $\mathrm{A}=\pi a b=10 \pi$ in modern terms, where Difference $B=\log (\pi / 4)$ is a negative amount.

Or secondly, the area of the ellipse is the mean proportional between the areas of the circles with the major and minor diameters: $2 \log \mathrm{~A}=\left(\log 8^{2}+\right.$ Difference $\left.B\right)+\left(\log 5^{2}+\right.$ Difference $\left.B\right)$; [equivalent to $\left.\pi a^{2} / \pi a b=\pi a b / \pi b^{2}\right]$.

Finally, the minor axis is to the major axis as the area of the ellipse is to the area of the minor circle: $\log \mathrm{A}=\left(\log 5^{2}+\right.$ Difference $\left.B\right)+\log 8-\log 5$; [equivalent to $\left.\mathrm{A}=\pi a b=\pi b^{2} \times a / b\right]$.

Note: in Table 26-3, Briggs prefers to add $\log 2$ rather than subtract $\log 5$ in the last method, thus using complementary arithmetic to avoid dealing with negative logarithms.
§2. Another method is presented for finding the area A of the ellipse. The difference in the areas of two concentric circles A1 and A2 (>A1), is equal to the area of an ellipse which has major and minor axes equal to the sum and difference of the diameters 8 and 5 of the circles, :
$\log \mathrm{A} 1=\left(\log 5^{2}+\right.$ Difference $\left.B\right) ; \log \mathrm{A} 2=\left(\log 8^{2}+\right.$ Difference $\left.B\right) ;$ An ellipse is taken with axes 3 and 13 , for $8^{2}-5^{2}=39$, has area $\mathrm{A}=\mathrm{A} 2-\mathrm{A} 1$, while $\log \mathrm{A}=\log 3+\log 13+$ Difference B.
[This is equivalent to $\left.\pi\left(a^{2}-b^{2}\right)=\pi(a-b)(a+b)\right]$.
§3. The surface area and volume of a right cylinder with height D equal to its diameter are compared in turn with the surface area and volume of the circumscribed cube and inscribed sphere of the same width. The respective reduced ratios for both the areas and volumes of the cube, cylinder, and sphere in this order will be :diameter : (circumference of great circle)/4: (circumference of great circle)/6.
[This is equivalent to $1: \pi / 4: \pi / 6$. The areas are then in the ratio $6 \mathrm{D}^{2} \times(1: \pi / 4: \pi / 6)$, while similarly the volumes are $\left.\mathrm{D}^{3} \times(1: \pi / 4: \pi / 6)\right]$.
The oblate spheroid is generated by rotating the semi-ellipse of the ellipse about the shorter axis, and the prolate spheroid similarly about the longer axis. See Fig.26-1. The volumes of the spheroids are mean proportionals between the volumes of the large and small spheres associated with the major and minor axes
[according to:- $\left.\pi / 6 \cdot(2 a)^{3}>\pi / 6 .(2 a)^{2} .(2 b)>\pi / 6 \cdot(2 a) \cdot(2 b)^{2}>\pi / 6 \cdot(2 b)^{3}\right]$.
Briggs finds the logarithm of the volume of the spheroid by first evaluating the logarithm of the volume of the parallelepiped associated with the three axes; the logarithm of the volume of the circumscribed cylinder follows by taking Difference B [i.e. the logarithm of $\pi / 4 .(2 a)^{2} .(2 b)$ or $\pi / 4 \cdot(2 a) .(2 b)^{2}$ is found]: the logarithm of the volume of the spheroid then follows by taking away the logarithm of $1^{1 / 2}$ [i.e. corresponding to $2 / 3 \times \pi / 4$. (2a) $)^{2}$.(2b) $=\pi / 6 .(2 a)^{2} .(2 b)$, etc].

The volume of the spheroid V_{SD}, taken here as oblate, can also be found by proportion from the volume of the sphere V_{S} that shares a diameter a with the spheroid, according to $\mathrm{V}_{\mathrm{SD}} / \mathrm{V}_{\mathrm{S}}=2 b / 2 a$; or directly from the parallelepiped by taking Difference D [i.e. $\pi / 6 \cdot(2 a) \cdot(2 b)^{2}$
or $\pi / 6$.(2a $)^{2}$.(2b) directly].
§4. The volume of the section of a spheroid. According to Archimedes, for the prolate spheroid with the longer axis $2 a$, if this axis is cut by a perpendicular vertical plane to give a short segment of length d, and a long segment of length f, so that $f+d=2 a$, (see Fig. 26-5 in the Notes), then:
(Volume of smaller spheroid segment $) /(f+a)=($ Volume of smaller cone $) / f$; and similarly
(Volume of larger spheroid segment $) /(d+a)=($ Volume of larger cone $) / d$; where the cones have the same base and height as their respective sections.
Briggs establishes the diameter of the prolate segment from proportions associated with the ellipse and its great circle, for given a, b, d and f. Subsequently, the area of the base circle and the volume of the cone are found; and from the above theorem, the volume of the segment of the spheroid found. The volume of the other segment of the spheroid is calculated in a similar way, and their sum compared with the volume of the spheroid, calculated separately. A similar set of calculations is performed for the oblate spheroid.

Briggs then considers the case of the spheroid with two sections, as an approximation to a wine cask. The volume of the prolate spheroid associated with the cask of given dimensions is found, and the volumes of the end segments calculated and removed. Another method for finding the cask volume involves averaging the area of cross-section: the area of the inner circle is taken with two thirds of the area of the ellipse with axes formed from the sum and difference of the max. and min. width of the cask; this area is multiplied by the height of the cask.

Chapter Twenty Six. [p.69]

Concerning the Ellipse, Spheroid, and Cask.

1.

he ellipse is the common intersection of the surface of a cone $\&$ the surface of a plane, cutting the whole cone. Furthermore, taking this figure for the ellipse itself; a section of this kind may be considered to be an elongated circle or an oval shape; for in the works of Archimedes spheroids are discussed which hold a likeness to the sphere, but with a shape comprised of unequal distances from the centre. For the ellipse ABCD , either the periphery going around is described, or the inside [i.e. the area] of the figure. The longest diameter is AC , the shortest BD , the former intersecting at right angles in the centre E, [See Fig. 26-1].

The ellipse is the mean proportional [area-wise] between the circles with the diameters $A C, B D$; as shown in the work of Archimedes: On Conoids and Spheroid, Prop.5; for the oblong rectangle, with the unequal sides of the squares described, is the mean proportional between the squares: thus the area of the ellipse is the mean proportional between the areas of the circles of the unequal diameters. And the rectangle described by the diameters $A C, B D$, is to the ellipse: as the square of the diameter is to the circle.

[Figure 26-11 Therefore, given the diameters $A C, B D$; we can hence find the area of the ellipse. From the logarithms of the diameters the difference \boldsymbol{B} is taken $[i . e . \log (\pi / 4)]$, (which from the above chapter, taken from the logarithm of the square, leaves the logarithm of the area of the circle) the remainder is the area of the ellipse. Let the diameters be AC, 8: BD, 5 .

Diameters $\left\{\begin{array}{rl}8 & \text { Logarithms } \\ 5 & 090308999 \\ \text { Sum } & \underline{06989700}\end{array}\right\}$

Area of Rectangle 40 formed from the Diameters Area of the ellipse 3141592692.
[Table 26-1].

The same area of which the logarithm is sought may be found, if in place of taking the difference B, its complement is added. As we have shown in Chapter 15, thus

	Logarithms	
Diameters $\{8$	090308999	
$\{5$	06989700	
Sum	160205999	
Complement of difference \boldsymbol{B}	$\underline{989508988}$	
	(1)149714987	Log. of the area

[Table 26-2]
The same area is produced, if the mean proportional is sought as per Ch.17, between the given diameters of the circles, found as by Ch .25.

	Logarithms	
Square of the diameter AC 64	180617997	
Difference \boldsymbol{B} taken in both places	010491012	
Square of the diameter BD 25	139794001	
Remaining log. of area of major circle	170126985	Area of major circle 502654824
Remaining log. of area of minor circle	$\underline{129302989}$	Area of minor circle $19 \underline{6349541}$
Sum of the logs	299429974	
Log. of mean proportional	149714987	Area of ellipse ---3141592692

Proportions
$\left\{\begin{array}{l}\text { or, as the minor diameter } 5 \\ \text { to the major diameter } 8 \\ \text { thus the area of the minor circle } \\ \text { to the ellipse }\end{array}\right.$

Logarithms
Compl. Arith. 930102999
090308999
129302989
1149714987
[Table 26-3]
2. If two circles are concentric, the area lying between the peripheries of these is equal to the area of the ellipse, the diameters of which ellipse are the sum and difference of the given diameters of the circles.

For as with squares, the difference of the squares is equal to the rectangle described by the sum and difference of the sides: thus for circles, the difference of the areas of the circles is equal to the area of the ellipse, of which the diameters are equal to the sum and difference of the given diameters. For the rectangle taken from the diameters is the mean proportional between the squares of

[Figure 26-2]
the diameters: \& the area of the ellipse is the mean proportional between the areas of the circles of these diameters.

Therefore [area-wise], the square will be to the rectangle as the circle to the ellipse, and conversely; as the square to the circle, so the rectangle to the ellipse: And the rectangle, which is equal to the difference of the squares to the ellipse, which is equal to the difference of the area of the squares to the circles.
rectangle 39. The difference.
square 64 square 25 circle $502654824 \quad$ circle 196349541
[Table 26-4]
Let the longer diameter be 8 , the shorter 5 . The squares are as $64: 25$. The circles 502654824 :
196349541. The difference of the squares 39. The difference of the circles 306305284.

Let the sum of the diameters of the ellipse be 13, and 3 the difference of the given diameters. The rectangle is 39 , of which the logarithm is 159106461 . The difference \boldsymbol{B} taken away, leaves 148615448, the logarithm of the area of the ellipse 306305284 .

| Logarithms | |
| :---: | ---: | ---: |
| Diameters | $\left\{\begin{array}{rl}13 & 111394335 \\ 3 & 047712125\end{array}\right.$ |
| Complement of difference \boldsymbol{B} | $\underline{989508988}$ |
| Log. of the diff. of the circles | 1148615448 Area of the ellipse 306305284. |

[Table 26-5].
3. If for a cylinder, in which a sphere is inscribed, a cube is circumscribed: the quantities ${ }^{1}$ involved [in the order Cube : Cylinder: Sphere] are as the diameter of the sphere [D]; to the quarter of the circumference of the great circle $\left[{ }^{1} / 4 \pi \mathrm{D}\right] ; \&$ as the sixth part of the same $[1 / 6 \pi \mathrm{D}]$. Thus the square of the diameter $\left[\mathrm{D}^{2}\right]$, to the area of the great circle $\left[{ }^{1} / 4 \pi \mathrm{D}^{2}\right], \&$ as two thirds of the area of the same circle $\left[2 / 3\left(\pi D^{2} / 4\right)=1 / 6 \pi D^{2}\right]$. And thus the surface of the cube $\left[6 D^{2}\right]$, to the surface of the cylinder $\left[6 \times \pi D^{2} / 4\right], \&$ the surface of the sphere $\left[6 \times \pi D^{2} / 6\right]$. Thus also the volume of the cube $\left[D^{3}\right]$, to the volume of the cylinder $\left[1 / 4 \pi D^{3}\right]$ \& the volume of the sphere $\left[1 / 6 \pi D^{3}\right]$.

Let the Diameter of the Sphere be 7 .

A Quarter of the Circumference is A Sixth of the Circumference
$5 \underline{4977871438}$ The first three ratios with the
36651914292 remaining ratios following in
proportion.

49
$38 \underline{484845100066}$
256563400044 294
$230 \underline{9070600396}$
$153 \underline{9380400264}$
343
2693915700462
$179 \underline{5943800308}$
[Table 26-6].
The spheroid is made by the rotation of half the ellipse by keeping other axis fixed. If the longer diameter AC remains, the spheroid is made long [i.e. prolate]; but if BD

[Figure 26-3] both are means in continued proportion, between spheres of unequal diameters: \& each of these is in the ratio of two to three to the cylinder, of which the altitude is equal to the remaining diameter, the base is still circular, having been described by the movement of the semi-diameter turning in a circle ${ }^{2}$.

With the height and width of a spheroid given, the volume of which we can thus find: The logarithm of the height is added to the logarithm of the square of the thickness: the total is the logarithm of the parallelepiped of the same altitude and base of the square. Hence, the difference \boldsymbol{B} of Chapter 25 is taken away. There remains the logarithm of the cylinder circumscribing the spheroid: from which if the difference of the ratio of one and a half [i.e. $\log 3 / 2$] is taken away 017609125905568 , there remains the logarithm of the spheroid. For, let the diameters of the ellipse be 8,5 . \& by keeping the small diameter the spheroid becomes wide: the volume is sought ${ }^{3}$.
of the ratio of one \& half $\left\{\begin{array}{rc}\text { Terms } & \text { Logarithms } \\ \begin{cases}3 & 047712125471966 \\ 2 & 030102999566398 \\ \text { Diff. of logs. } & 017609125905568\end{cases} \end{array}\right.$

Wide diameter 8	Logarithms 090308999
Square 64	180617997
Height 5	$\underline{069897000}$
Vol. of parallelepiped 320	$\underline{010491097}$
Difference \boldsymbol{B} being taken	$\underline{240023985}$
Cylinder $251 \underline{32741}$	$\underline{017609126}$
Difference of the ratios by one \& half	$\underline{222414859}$
Vol. of spheroid $167 \underline{551605}$	

[Table 26-6]
Or, by Ch. 25 , with the logarithms of the square $\&$ height, is added to the complement of the difference $B, \&$ the difference of the ratio of one and a half: the total (taking away the first digit 2) is the logarithm of the spheroid.

Square 64	Logarithms
Height 5	180617997
Comp. Diff. \boldsymbol{B}	069897000
Compl. Diff. ratio one \& a half	989508988
Volume of spheroid	$\underline{982390874}$
	[Table 26-7]

We find the same volume of the spheroids by the rule of proportion. For the parallelepipeds of which the bases are equal are in proportion with their own heights. In the same way as cylinders, so with spheroids inscribed in cylinders: if they have the same width, they are in proportion with heights. There are, therefore, a sphere to a spheroid of the same width; as the diameter or height of [p.72.] the sphere to the height of the spheroid. Therefore the logarithm of the sphere for the given diameter can be found, per Ch. 25, etc.

	Logarithms Diameter 8	090308999
Cube of the diameter	270926996	3
Difference \boldsymbol{B} taken away	$\underline{028100138}$	
Volume of sphere	$\underline{242826858}$	

Proportions		Logarithms
$\begin{cases}\text { Height of sphere 8 } & \text { Compl. Arith. }\end{cases}$		
Height of spheroid 5		009691001
Volume of sphere		$\underline{242897000}$
Volume of spheroid		2222414859
	[Table 26-8]	

Or because the parallelepiped is to the volume of the inscribed spheroid, as the cube to the sphere: from the logarithm of the parallelepiped first found, the difference D is taken away. Ch. 25 .

There is left the logarithm of the spheroid.

	Logarithms
Parallelepiped	250514997
Difference D	028100138
Volume of Spheroid	$\underline{2222414859}$

[Table 26-9A]
And this is the flat spheroid. The oblong spheroid is found in the same way.
Let the flat diameter be 5 , the height 8 .

Diameter 5	Logarithms 069897000
Cube of the diameter 125	209691001
Difference D	$\underline{028100138}$
Volume of sphere	$\underline{181590863}$

[Table 26-9B]

[Table 26-9C]
And in this way, we can find both the spheroids, which are in continued proportion between the unequal diameters of the spheres $8 \& 5$.

Continued proportion.
$\left\{\begin{array}{l}\text { Sphere with diameter } 8 \\ \text { Spheroid width } 8, \text { height } 5 \\ \text { Spheroid width 5, height } 8 \\ \text { Sphere with diameter } 5\end{array}\right.$

Logarithms
$268082573 \quad 242826858$
$167551608 \quad 222414860$
$104 \underline{719755} 202002862$
$65449847 \quad 181590863$
[Table 26-9D]
4. If we want to know the volume of a segment of a spheroid ${ }^{4}$, Propositions $31 \& 32$ are consulted,

[Figure 26-4] perpendicular to the axis: the segment of the spheroid is to the cone of equal height, having the same base as the segment; as the sum of the half axis \& the height of the remaining segment, is to the height of the remaining segment. For let the [prolate] spheroid be $A B C D$ cut by the plane
passing through PQ, \& perpendicular to the axis AC : I assert the segment of the spheroid PCQ , to be to the cone, of which the base is the circle of diameter PQ, with the height CL: as the sum of NA \& AL , to AL . Let $\mathrm{AC}, 20 ; \mathrm{BD}, 12 ; \mathrm{CL}, 2 ; \mathrm{PL}$ is $3^{3} / 5$. For if two arcs from the ellipse ABCD are described, the radii of which are equal to the lines NC, NB. \& PL, PVS are drawn perpendicular to the radii NC, NB; then NZ, NB : LK, LP are proportional; likewise NC, NX: SP, SV. But LK by Prop. 13, Book 6, Euclid is the mean proportional between CL, 2 \& LA, 18 [i.e. $\mathrm{LK}^{2}=$ AL.LC]; therefore LK is 6, and LP $3 \underline{6}$
[as LP $=(\mathrm{NB} / \mathrm{NZ}) \cdot \mathrm{LK}]$.

But if $B D$ is the oblate axis of the spheroid, \& crosses the plane cutting the line $O P: O P$ are of [p.74.] 16 parts, \& the circle of which the diameter $O P$ is $201 \underline{0619298297472 ; ~} \mathrm{~S} B, 2 \underline{4} ; S D, 9 \underline{6}$. The cylinder $r O P K$ is $482 \underline{54863159}$. The cone $O B P$ is 16084954386 .

[Table 26-11].
And in this way if a spheroid is cut by a single plane, perpendicular to the axis, we can find the volume of both segments.

There remains the segment that is described by the surface of the spheroid, \& two planes perpendicular to the axis and equidistant from the centre. It is our cask of whatever kind, the capacity of which we can measure, following that which was said above from Archimedes. Thus
with Book 3, Ch. 10 of Pantometria, that learned book in the vernacular by T.D. [Thomas Digges], the most distinguished of men, is conscripted. Also Errardus Barleduc, Book 3, Ch. 10, and Clavius, Geom. Practicae, Book 5, Ch. 10.

Let the cask be $B P Q D R O$ of which the height is $M L$ of 21 parts, while the width of the middle is $B D, 14$. The diameter of the base or the width of the end is $P Q 9^{1 / 3}$. To begin with the whole length of the spheroid $A C$ is required, which we find thus: $P Q 9^{1 / 3}$ is taken from $B D 14$, and half the remainder $4^{2} / 3$ is $B S 2^{1 / 3}$. Again $S D$ is $11^{1} / 3$, \& $S V$ the mean proportional between $B S \& S D[$ i.e. again we use this useful theorem, to give $\left.\mathrm{SV}^{2}=\mathrm{BS} . \mathrm{ST}\right]$, is $\ell .27^{1} /$, by Euclid, Book 6, Prop. 13, or [p.75.] 52174919477. But $S V, S P: N X$ (or $N B$), $N C$ are proportional [i.e. $\mathrm{SV} / \mathrm{SP}=\mathrm{NX} / \mathrm{NC}$]. NC therefore is $\ell .198 \underline{45}$ or $14 \underline{87228257}$ \& LC 3587228357 . The circle with diameter $P Q$ has the area 6841690667819. The cylinder PbdQ has the volume 24542706089 , the cone $P C Q$ has the volume 81809020297 . With the two segments $P C Q, O A R$ of volume 25736283611 , taken from the spheroid, leaves the cask with volume $B P Q D R O$. But if the circle of diameter $B D 15393804400259$, multiplied by the line $A C$ $28 \underline{174456514}$ makes $4337 \underline{12061456}$ for the volume of the cylinder $E F G H$, \& the whole of the spheroid is $2891 \underline{413743}$. From which the two segments $257 \underline{3628361}$ taken will leave the volume of the cask 2643050907.
pro-
port-
ion. $\begin{cases}\text { AL } & 24587228257 \\ \text { AL }+ \text { AN } & 3867456514 \\ \text { Cone } & 81809020297 \\ \text { Segment } & 12868141805\end{cases}$
[Table 26-12]
We come upon the volume of the same cask much more easily in the following way. The circle DB is sought with the mean width $14, \&$ the base $P Q 9^{1 / 3}$. These circles are multiplied by the altitude $M L$ 21: the products is the cylinders $r K f g \& O P Q R$. Taking then the difference of these cylinders, of which the difference $1 / 3$ is taken from the greater cylinder, or $2 / 3$ is added to the lesser cylinder gives the volume of the cask.

BD Diameter 14	Logarithms
The Square 196	229225607
Difference \boldsymbol{B} taken away	010491012
Circle BD 153 $\underline{380400}$	218734595
PQ 9 ${ }^{1} / 3$	
Square of PQ	19400735532
Difference \boldsymbol{B} taken away	01049101186
Circle PQ 68416906678	18351634346
Large cylinder $3232 \underline{698840}$	
Small cylinder $1436 \underline{755040}$	
$\frac{\text { Difference } 1795 \underline{943800}}{1 / 3 \text { of difference } 598 \underline{647933}}$	
Cask $2634 \underline{050907}$	

[Table 26-13]
Or the area of the circle $P Q$ is taken, \& the ellipse of which the diameters are equal to the sum of the lines $B D, P Q 23^{1 / 3}$, \& two thirds of the difference of the same $3^{1} / 9$: let this sum be multiplied by the given altitude ML 21: the product is equal to the volume of the cask.

Circle PQ 68416906678
Sum of BD, PQ $23^{1} / 3$
$2 / 3$ Difference BD, PQ $31 / 9$
Circle BD 1539380400
Complement difference \boldsymbol{B}
Ellipse $57 \underline{\underline{0140889}}$
Circle + ellipse 1254309956
Cask 2634050907

Logarithms
13679767853
04929155219
218734595
98950898814
19400735532
01049101186
[Table 26-14]
The same volume as before has been found by this method ${ }^{5}$. Here is the reason for this procedure. The difference of the areas of the circles of the middle width $\mathrm{BD}, \&$ of the ends $P Q$, is equal to the area of an ellipse, the diameters of which is equal to the sum \& difference of the diameters $B D \& P Q$, as I have shown in section 2 of this chapter. This is really the difference of the areas of the concentric Circles, that is, the base of the hollow cylinder, of which the third part is placed between the surfaces of the exterior cylinder and the Spheroid, the remaining two thirds are within the same spheroid. The area of the ellipse therefore which is added to the area of the small circle amounts to two thirds of the difference of the areas of the circles $B D, P Q$ (for the whole difference of the diameters is not taken, but $2 / 3$ of the same $3^{1} / 9$: because if I take the whole difference \& as much as $2 / 3$ of the sum instead, the same ellipse comes out) which together with the
[p.76.] small circle is multiplied by the given height 21, makes the same volume which was first found for the cask.

Let the cask be $P C Q R A O$, of which the altitude $O R 7 \underline{2}$ is the small width AC $20, \& \mathrm{OP}$ is 16 .
The capacity of this cask is required. The sum of the diameters $\mathrm{AC}+\mathrm{OP}$ is 36 , their difference 4 .

1990513104
[Figure 26-4]
[Table 26-15]
And by these means we can measure the sizes of these shapes, ellipses and spheroids.
If we wish to construct the equivalent circle of a given ellipse, the mean proportional between the diameters of the ellipse is found: the circle of which the diameter is the mean proportional is equal to the given ellipse. For it is the same ratio of the circle to the ellipse, of which the square is to the oblong. If we want to describe the sphere equal to the spheroid; two continued mean proportionals are found, between the height of the spheroid and the wide diameter. The sphere, of which the diameter is the equal of that mean, which is nearer to the wide diameter; is equal to the given spheroid. For thus the cube itself holds [the same ratio]to the parallelepiped with the square base, as the sphere to the spheroid, for the parallelepiped with the same altitude. With the parallelepiped is to the equal spheroid, as the square of the base to $2 / 3$ of the area of the circle.

Notes On Chapter Twenty Six

1 The ratios are taken in the order cube : cylinder : sphere. The original ratios given are :$1: \pi / 4: \pi / 6$, where we have succumbed to modern usage with π. For a diameter D, the area of the cube is $6 \mathrm{D}^{2}$, the cylinder has a surface area, including the ends, of $3 \pi D^{2} / 2$; while the sphere has surface area πD^{2}. These areas can also be put in the ratio $1: \pi / 4: \pi / 6$.

Similarly, the volumes are in the same ratio $1: \pi / 4: \pi / 6$. This is Briggs' rule of proportions.
2 For if m_{1} and m_{2} are the two means sought, starting from the larger, then we require:
$\frac{(2 a)^{3}}{m_{1}}=\frac{m_{1}}{m_{2}}=\frac{m_{2}}{(2 b)^{3}}$. From which it follows that $m_{1}=(2 a)^{2}(2 b)$ and $m_{2}=(2 a) \cdot(2 b)^{2}$.
3 The volume of the ellipsoid with axis $2 a, 2 b, 2 c$ is $\pi(2 a)(2 b)(2 c) / 6$, where $a>b>c$. If two of the axis are equal, then we have the volumes of the Spheroids: $V_{1}=\pi(2 a)^{2}(2 c) / 6$, if $b=c$; and $V_{2}=\pi(2 a)(2 b)^{2} / 6$, if $b=c$.

In the first case, the circumscribing Parallelepiped has volume $(2 a)(2 b)^{2}$, while the circumscribed cylinder has volume $\pi(2 a)(2 b)^{2} / 4$. Thus, Briggs evaluates in order, the volumes $1 .(2 a)(2 b)^{2}$, $(\pi / 4)(2 a)(2 b)^{2}$, and $(\pi / 6)(2 a)(2 b)^{2}$. Briggs subsequently finds V_{2} in a like manner.

4 Proposition 31,32 On Conoids and Spheroids, Archimedes, may be stated, according to Figure 26-5, in the form, where $\mathrm{AC}=2 a:-$
(Volume of smaller spheroid segment PCQ$) /(f+a)$
$=($ Volume of cone PCQ $) / f$; and
(Volume of larger spheroid segment PAQ) $/(d+a)$

[Figure 26-5] $=($ Volume of cone PAQ $) / d$.

To check the results, we may write the volume of the small segment of the spheroid as $\mathrm{V}_{\mathrm{R}}=(\pi / 3) \mathrm{LP}^{2} d(1+a / f) ;$ and similarly
$\mathrm{V}_{\mathrm{L}}=(\pi / 3) \mathrm{LP}^{2} f(1+a / d)$ for the large segment. Subsequently, the total volume
$\mathrm{V}=(\pi / 3) \mathrm{LP}^{2}[d(1+a / f)+f(1+a / d)]=(\pi / 6) \mathrm{LP}^{2}(2 a)^{3} / f d$. But as in the text, $\mathrm{LP} / \mathrm{LK}=2 b / 2 a$, and $\mathrm{LP}^{2}=(2 b)^{2} /(2 a)^{2} . f d$ hence $\mathrm{V}=(\pi / 6)(2 b)^{2}(2 a)$ as required.

Briggs leans on the work of Archimedes for this application of Logarithms. We may recall that the treatise The Method...., in which Archimedes disclosed the method by which he had discovered his wonderful results, lay undiscovered at this time. The Archimedes' Palimsest is again a centre of active research on its re-emergence, after the detective work and genius of Heiberg in its discovery and the production of a translation under difficult circumstances, and its subsequent disappearance.
[See, e.g. Physics Today, Volume 53, No. 6; June 2000, 'The Origins of Mathematical Physics:
New Light on an Old Question', by Reviel Netz].
5 The area of the ellipse in question is $(\pi / 4)\left(\mathrm{BD}^{2}-\mathrm{PQ}^{2}\right)=(\pi / 4)(2 b-\mathrm{PQ})(2 b+\mathrm{PQ})$. Now, ${ }^{2 / 3}$ of the area of this ellipse is placed outside the circle with diameter PQ, giving a total area of:
$\pi \cdot \mathrm{LP}^{2}+(1 / 6) \pi \cdot\left(\mathrm{BD}^{2}-4 \mathrm{LP}^{2}\right)=\left({ }^{1} / 6\right) \pi \cdot\left(\mathrm{BD}^{2}\right)+\left({ }^{1} / 3\right) \pi \cdot\left(\mathrm{LP}^{2}\right)=\left({ }^{1} / 6\right) \pi \cdot(2 b)^{2}+(1 / 3) \pi \cdot(2 b / 2 a)^{2} \cdot f d$, and
the volume of the cask $\mathrm{V}_{\mathrm{C}}=(\pi / 6) \cdot\left(4 b^{2}\right)\left[1+f d / 2 a^{2}\right] \cdot 2(a-d)$, as $\mathrm{PQ}^{2}=4 \mathrm{LP}^{2}=4(2 b / 2 a)^{2} . f d$; and
$\mathrm{BD}=2 b$. We may subsequently write $\mathrm{V}_{\mathrm{C}}=(\pi / 6) \cdot(2 b)^{2}\left[2 a-d^{2} / a-f d^{2} / a^{2}\right]$.
We have to reconcile this formula for V_{C} with that obtained above:-
The volume of the entire spheroid is $(\pi / 6) a b^{2}$, Hence, the volume of the cask V_{C} is given by:
$\mathrm{V}_{\mathrm{C}}=(\pi / 6)(2 a)(2 b)^{2}-(\pi / 3)(2 b / 2 a)^{2} \cdot f d \cdot 2 d(1+a / 2)=(\pi / 6)(2 b)^{2}\left[2 a-f d^{2} / a^{2}-d^{2} / a\right]$, as above.

§26.4.

Caput XXVI. [p.69.]
De Elleipsi, Sphaeroide, \& Dolio.
Elleipsis est communis intersectio superficiei conicae \& superficiei planae, secantis conum ex omni parte. Sumitur etiam elleipsis pro ipsa figura, ab huiusmodi sectione comprehensa; quae dici poterit circulus oblongus, vel Cycloeides: ut apud Archimedem sphaeroeides dicitur, quae sphaerae similitudinem obtinens, inaequaliter distat a medio comprehensi spatij. ut ABCD Elleipsis, est vel peripheria ambiens, vel figura intus comprehensa. eius diameter longissima AC , brevissima BD , priorem ad rectos angulos intersecans in Centro E .

Elleipsis est media proportionalis inter circulos Diametrorum AC, BD; Archim. prop 5.lib.de Conoid. nam ut Oblongo rectangulum, a lateribus inaequalium quadratorum comprehensum, est medium proportionale inter Quadrata: sic Elleipsis est media proportionalis inter Circulos diametrorum inaequalium. Et rectangulum a Diametris $A C, B D$
comprehensum, est ad Elleipsim: ut Quadratum Diametri ad Circulum. Datis idcirco Diametris $A C, B D$; area elleipsis sic inveniemus. A Logarithmis Diametrorum auferatur Differentia \boldsymbol{B}, (quae superiori Capite ablata e Logarithmo Quadrati relinquebat Logarithmum circuli) reliquus erit Logarithmus Elleipsis. ut sunto Diametri AC, 8: BD, 5.

Logarithmi.

Diametri $\begin{cases}8 & \text { Logarithmi. } \\ 5 & \underline{090308999} \\ \text { Summa } & 160205999\end{cases}$	ectanguli 40 comprehensi a diametris.	
Diff. \boldsymbol{B}	$\underline{010491012}$	
Logarithmus areae	149714987	area Elleipsis $31 \underline{41592692}$.

Idem Areae quaesitae Logarithmus invenietur, si loco Differentiae B, auferendae, additur eius complementum. ut in Cap. 15 ostendimus, ut

> Logarithmi.

Diametri $\begin{array}{rr}8 & 090308999 \\ 5 & 06989700\end{array}$
Sum
Compl. Diff. $B$$\underline{\underline{9895089989}} \mathbf{l}$
(1)149714987 Logarith. areae

Eadem area prodibit, si quaeratur per cap. 17 medius proportionalis inter datarum diametrorum Circulos, inventos per cap. 25.
[p.70.]
Logarithmi.
Quadratum diametri AC. 64
180617997
Differentia Bauferenda ab utroque
010491012
$\underline{139794001}$
170126985
circlulus maior 502654824
$\underline{129302989}$ circulus minor 196349541
Reliquus Logar. circuli maioris
Reliquus Logar. circuli minoris
299429974
Logarithmus medij proportionalis
Proportionem
149714987
Elleipsis -- 3141592692
Logarithmi.
$\left\{\begin{array}{l}\text { vel, ut Diameter minor5 } \\ \text { ad Diametrum maiorem } \\ \text { sic circulus minor } \\ \text { ad Elleipsim }\end{array}\right.$
Compl. Arith. 930102999
090308999
129302989
$1 \overline{149714987}$

2. Si duo circuli sint concentrici, Area eorum peripherij interiecta

 aequatur Elleipsi, cuius Diametri sunt summae \& differentia datarum Diametroram.Nam ut in Quadratis, Differentia Quadratorum aequatur rectangulo comprehenso a summa \& differentia Laterum: sic in Circulis, Differentia Circulorum aequatur Elleipsi, cuius Diametri aequantur sumae \& differentia datarum diametris. Est enim Rectangulum a Diametria comprehensum, medium proportionale inter Quadrata diametrorum : \& Elleipsis est media proportionalis inter Circulos diametrorum.

Erit igitur ut Quadratum ad Rectangulum; sic Circulus ad Elleipsim, \& alterne; ut Quadratum ad Circulum, sic rectangulum ad Elleipsim: \& Rectangulum quod differentiae Quadratorum est aequale; ad Elleipsim, quae differentiae Circulorum aequabitur.

Rectang. 39. Differentia
$\begin{array}{cc} & 306305284 \\ \text { Elleipsis Differentia. } \\ \text { Circulus } 50 \underline{2654824} & \text { Circulus } 196349541\end{array}$
Quad. 64 Quad. 25

Ut esto Diameter longior 8, minor 5. erunt Quadrata 64. 25. Circuli 502654824: 196349541. Differentia Quadratorum 39. Differentia circuli 306305284.

Sunto Diametri Elleipsis, 13 summa, 3 differentia diametrorum datarum. Rectangulum 39, eius Logarithmus 159106461. Differentia \boldsymbol{B} ablata, relinquit 148615448 . Logarithmum Elleipsis 306305284.

$$
\left.\begin{array}{lrr}
\text { Diametri } & \left\{\begin{array}{r}
\text { Logarithmi } \\
113 \\
3
\end{array}\right. & 11394335 \\
047712125
\end{array}\right)
$$

3. Si Cylindro, cui Sphaera inscribatur, circumscribatur Cubus: erunt ut Diameter Sphaerae, ad Quadrantem Peripheriae maximi Circuli, \& ad Sextantem eiusdem: sic Quadratum Diametri, ad Circuli \& ad duas tertias circuli. Et sic Superficies Cubi, ad Superficies Cylindri \& Sphaerae : sic etiam Cubus, ad Cylindrum \& Sphaeram.

Esto Diameter Sphaerae	7
Erit Quadrans Peripheriae	$5 \underline{4977871438}$ tres primi tribus proximis,
Sextans Peripheriae	$3 \underline{6651914292}$ reliquisq; sequentibus, sunt
	proportionales.
Quad. Diametro	49
Circulus	$38 \underline{484845100066}$
$2 / 3$ Circuli	$25 \underline{6563400044}$
Superficies Cubi	294
Superficies Cylindri	$230 \underline{9070600396}$
Superficies Sphaerae	$153 \underline{9380400264}$
Cubus	343
Cylindrus	$269 \underline{3915700462}$
Sphaerae	$179 \underline{5943800308}$

Sphaeroeides sit, conversione semielleipsis manente altera Diametro. Si maneat AC diameter longior, sit Sphaeroeides oblongata; sin maneat BD, Sphaeroeides lata. quae ambae sunt mediae continue proportionales, inter Sphaeras inaequalium diametrorum: \& earum utraque, est in subsesquialtera ratione ad Cylindrum, cuius altitudo aequatur Diameter manenti, basis vero est circulus, motu semidiametri circumactae descriptus.

Datis altitudine \& crassitudine Sphaeroeidis, eius soliditatem sic inveniemus. Addatur Logarithmo altitudinis, Logarithmo quadratae crassitudinis: totus erit Logarithmus parallelepipedi eiusdem
 altitudinis \& basis quadratae. Hinc, auferenda est differentia \boldsymbol{B} capitis 25. restabit Logarithmus Cylindri, Sphaeroeidi circumscripti : quo si auferatur Differentia rationis sesquialterae 017609125905568 , restabit Logarithmus Sphaeroeidis. Ut sunto Diametri Elleipsis 8.5. \& manente diametro minore fiat Sphaeroeides lata: quaeritur soliditas.
Rationis sesquialterae $\left\{\begin{array}{cl}\text { Termini } & \text { Logarithmi. } \\ \{3 & 047712125471966 \\ 2 & 030102999566398 \\ \text { Diff. Logar. } & 017609125905568\end{array}\right.$

	Logarithmi.
Diameter crassitudinis 8	090308999
Quadratum 64	180617997
Altitudo 5	$\underline{069897000}$
Parallelepipedum 320	$\underline{250514997}$
Differentia \boldsymbol{B} auferenda	$\underline{010491012}$
Cylindrus $251 \underline{32741}$	$\underline{017609126}$
Differentia rationis sesquialterae	$\mathbf{2 2 2 4 1 4 8 5 9}$
Sphaeroeides 167551605	

Vel, per cap. 25, Quadrati \& altitudinis Logarithms, addantur complementa Differentia B, \& Differentae rationis sesquialterae: Totus (dempta prima nota 2) erit Logarithmus sphaeroeidis.

Logarithmi

Quadrati 64	180617997
Altitudinis 5	069897000
Compl. Differentiae B	989508988
Compl. Differentiae rationis sesquialterae	$\underline{982390874}$
Sphaeroeides	2222414859

Eandem soliditatem Sphaeroeidis, per proportionis regulam inveniemus. Sunt enim parallelepipeda quorum bases sunt aquales, ipsis altitudinibus proportionalia. eodem etiam modo tam Cylindri, quam Sphaeroeides cylindris inscriptae, si sint eiusdem crassitudinis, sunt altitudinibus proportionales. Erit igitur Sphaera, ad sphaeroeidem crassitudinis; ut Diameter vel altitudo
sphaerae, ad altitudinem Sphaeroeidis. Quaerendus est idcirco Logarithmus Sphaerae pro datis Diametro, per Cap. $25, \& c$.

	Logarithmi.	
Diameter 8	090308999	1
Cubus Diametri	270926996	3
Differentia \boldsymbol{B} auferenda	$\underline{028100138}$	
Sphaere	242826858	

| Proportiones | | Logarithmi. |
| :--- | :--- | :--- | :--- |
| $\left\{\begin{array}{llll}\text { Altitudo Sphaerae } & 8 & \text { Compl. Arith. } & 909691001 \\ \text { Altitudo Sphaeroeidis } & 5 & & 069897000 \\ \text { Sphaera } & & \underline{242826858} \\ \text { Sphaeroeides } & & 2222414859\end{array}\right.$ | | |

Vel quia parallelepipedum est ad Sphaeroeidem, ut Cubus ad Sphaeram: e Logarithmo parallelepipedi prius invento, auferatur Difference D. cap. 25. reliquus erit Logarithmus Sphaeroeidis.

	Logarithmi.
Parallelepipedum	250514997
Differentia D	028100138
Sphaeroeides	$\underline{2222414859}$

Atque haec est Sphaeroeides Lata. Sphaeroeides Oblonga eodem modo invenietur. Esto Diameter crassitudinis 5, Altitudo 8.

Logarithmi.
Diameter 5069897000
Cubus Diametri 125209691001
Differentia $D \quad \underline{028100138}$
Sphaera $\underline{181590863}$
$\left\{\begin{array}{lll}\hline \text { proportionem } & \text { Logarithmi } \\ \text { Altitudo Sphaerae 5 } & \text { Comp. Arith. } & 930102999 \\ \text { Altitudo Sphaeroeides } 8 & & 090308999 \\ \text { Sphaera } & \underline{181590864} \\ \text { Sphaeroeides } 104 \underline{719755} & & 1202002862\end{array}\right.$

Atque ad hunc modum, utrasque Sphaeroeides invenimus, quae sunt continue proportionales inter Sphaeras Diamerrorum inaequalium 8 \& 5 .

Contin. propor.
\int Sphaera cuius Diameter 8 Sphaeroeides crassa 8, alta 5 Sphaeroeides crassa 5, alta 8
Sphaera cuius Diameter 5

Logarithmi.
$268082573 \quad 242826858$
$167551608 \quad 222414860$
$104 \underline{719755} 202002862$
$65449847 \quad 181590863$
4. Si segmenti Sphaeroeidis soliditatem scire velimus, consulendem sunt Archimedis prop. 31 \& 33.lib. de Conoid. Quas unica hac exprimere conatus sum. Si Sphaeroeides plano secetur perpendiculari ad axem: segmentum Sphaeroeidis est ad Conum aequealium, habentem eandem cum segmento basim; ut composita ex axe dimidiato \& altitudine reliqui segmenti, est ad altitudinem reliqui segmenti.

Ut esto Sphaerois $A B C D$, secta plano transeunte per $\mathrm{PQ}, \&$ perpendiculari axi AC : aio segmentum PCQ , esse Conum, cuius basis est Circulus Diametri PQ, altitudo vero CLm

> [p.73.]

: ut composita ex NA \& AL, ad AL. Esto AC, 20; BD, 12; CL, 2 ; PL erit $3 / 5$. Nam si in Elleipsi ABCD describantur duae peripherea quarum radij aequantur rectis NC , NB. \& ducantur PL, PVS perpendiculares radij NC, NB; erunt NZ, NB: LK, LP ; item NC, NX: SP, SV proportionales. Est autem LK per 13.prop.6.lib.Eucl. media proportionalis inter CL, 2 \& LA, 18, erit igitur LK 6, \& LP $3 \underline{6}$
prop-
port. $\left\{\begin{array}{lll}\text { NZ } & 10 \\ \text { NB } & 6 \\ \text { LK } & 6 \\ \text { LP } & 3 \underline{6}\end{array} \quad\right.$ prop. $\begin{cases}\text { AL } & 18 \\ \text { LK } & 6 \\ \text { LC } & 2\end{cases}$

Sin fuerit $B D$ axis sphaeroeidis Lata, \& transeat planum secans per rectam $O P$: erit $O P$ partium $16, \&$ Circulus cuius Diameter $O P 2010619298297472 ; \mathrm{S} B, 2 \underline{4} ; S D, 9 \underline{6}$. Cylindrus $r O P K$ 48254863159. Conus $O B P 16084954386$.
[p.74.]

Logarithmi.

Diametri $O P 16$		120411998
Quadratum OP 256		240823996
Differentia \boldsymbol{B} auferenda		010491012
Circulus $O P$	20106192983	230332985
Altitudo BS 24	48254863159	$\underline{038021124}$
Cylindrus rKPO		268354109
3.Logarithmus auferendus		$\underline{047712125}$
Conus OBP	16084954386	220641984

pro- $\int S D 9 \underline{6}$	compl. arith.	$\begin{array}{r} \text { Logalnmm. } \\ 80172877 \end{array}$
port. $\{N D+S D 15 \underline{6}$		219312460
Conus OBP	271433605	220641984
Segmentum $O B P$	26138030877	1241727321
Circulo OP	20106192983	230332985
Altitudo $S D \quad 9 \underline{6}$		$\underline{098227123}$
Cylindrus OgfP	$1930 \underline{19452637}$	328560108
3.Logarithmus auferendus		047712125
Conus ODP	64339817546	280847983
proportiones.		Logarithmi.
(BS 24	Compl. Arith.	861978876
$\{B S+B N 84$		192427929
Conus ODP	64339817546	280847983
Segmentum OADCP	22518936141	1335254788
Segmentum OADCP	22518936141	
Segmentum OBP	26138030877	
Tota Sphaerois	$2513 \underline{2741229}$	
		Logarithmi
Diameter AC 20		13010299956
Cubus Diametri 8000		39030899870
Differentia \boldsymbol{D} auferenda		$\underline{02810013777}$
Sphaera	$4188 \underline{7902047864}$	36220886093
Proportiones.		Logarithmi
$\int A C 20$	Compl. Arith.	86989700044
\{ $B 12$		10791812460
Sphaera Diametri $A C$	41887902078644	36220886093
Sphaera BADC	$2513 \underline{2741228718}$	134002398597

Atque ad hunc modum si Sphaeroeides unico secatur plano, perpendiculari ad axem, poterimus utriusque segmenti soliditatem invenire.

Superest Segment quod superficie Sphaeroeidis, \& duobus planis perpendicularibus Axi \& aequidistantibus a centro comprehenditur. cuiusmodi est Dolium nostrum, cuius capacitatem metiri poterimus, secundum ea quae superius dicta sunt ex Archimede. sic Pantometria lib.3.cap.10. quem librum vir clarissimus T.D. lingua vernacula eruditissime conscripsit. sic Errardus Barleduc, lib.3.cap.10. sic Clavius Geom. Practicae lib.5.cap.10.

Ut esto Dolium $B P Q D R O$ cuius altitudo sit $M L$ partium 21, crassitudo autem media sit $B D$, 14. Diameter basis vel crassitudo extrema sit $P Q 9^{1 / 3}$. imprimis quaerenda est longitudo integrae sphaeroeid $A C$, quam sit inveniemus: $P Q$ $9^{1 / 3}$ auferatur $B D 14$, semissis reliqui $4^{2} / 3$ erit $B S 2^{1} / 3$. vero erit $S D 11^{1} / 3, \& S V$ media proportionalis inter $B S \& S D$, erit $\ell .27^{1} / 9$, per13.p.6.lib. Eucl. vel
[p.75.]
52174919477. sunt autem $S V, S P: N X($ vel $N B), N C$ proportionales. erit igitur NC $\ell .19845$ vel $14 \underline{87228257}$ \& LC 3587228357. Circulus Diametri $P Q 6841690667819$. Cylindrus $P b d Q 24542706089$, Conus $P C Q$ 81809020297. Duo segmenta $P C Q, O A R$ 25736283611, quae ablata e Sphaeroeid, relinquunt Dolium $B P Q D R O$. Est autem Circulus Diametri $B D 15393804400259$, qui ductus in rectam $A C 28174456514$ facit 433712061456 , cylindrum $E F G H \&$ totam Sphaeroeidem 2891413743 .e qua si demantur duo segmenta 2573628361 restabit Dolium 2643050907.
pro- port. $\begin{cases}\text { AL } & 24 \underline{587228257} \\ \text { AL + AN } & 38 \underline{674456514} \\ \text { Conus } & 81 \underline{809020297} \\ \text { Segm. } & 12 \underline{86141805}\end{cases}$

Eandem Dolij capacitatem multo facilius assequemur, ad hunc modum. Quaerantur circuli DB crassitudinis mediae 14, \& basis $P Q 9 \frac{1}{3}$. hos circulos multiplicet altitudo $M L$ 21: facti erunt Cylinderi $r K f g$ \& $O P Q R$. sumatur deinde horum Cylindrorum differentia, huius differentiae ${ }^{1 / 3}$ ablata e Cylindro maiore, vel ${ }^{2} / 3$ adiectae Cylindro minori dabunt soliditatem Dolij.

BD Diameter 14	Logarithmi.
Quadratum 196	229225607
Differentia \boldsymbol{B} auferenda	010491012
Circulus BD 1539380400	218734595
PQ $9^{1 / 3}$	
Quadratum PQ	19400735532
Differentia \boldsymbol{B} auferenda	01049101186
Circulus PQ 68416906678	18351634346
Cylindrus ma. $3232 \underline{698840}$	
Cylindrus mi. $1436 \underline{755040}$	
Differentia $\quad 1795 \underline{943800}$	
$\frac{1 / 3}{}$ Differentiae	$598 \underline{647933}$
Dolium	$263 \underline{\underline{050907}}$

Vel sumatur Circulus $P Q, \&$ Elleipsis cuius diametri aequantur summae rectarum $B D, P Q 23^{1 / 3}, \&$ duabus tertijs differentiae earundem $3 / 9$:horum summam multiplicet altitudo data ML 21: factus aequabitur Dolio.

Circulus PQ 68416906678
Summa BD, PQ $23^{1 / 3}$
$2 / 3$ Differentiae BD, PQ $3 / 9$
[Circulus BD 1539380400
Complem. Differentiae \boldsymbol{B}
Elleipsis 570140889
Circ. Elleipsi 1254309956 — 01049101186
Circ. + Elleipsi 1254309956
Dolium 2634050907
Hoc modo inventa est eadem soliditas quae antea. Cuius rei ratio haec est. Differentia Circulorum mediae crassitudinis $\mathrm{BD}, \&$ extremae $P Q$, aequatur Elleipssi, cuius Diametri aequantur summae \& differentiae Diametorum $B D$ $\& P Q$, ut ostendi, 2. sect.huius capitis. Ista vero Circulorum concentricorum differentia, est basis Cylindri Concavi, cuius pars tertia sita est inter superficies Cylindri exterioris \& Sphaeroeidis, reliquae duae tertiae sunt intra Sphaeroeidem. Elleipssis idcirco quae circulo minori adijcitur valet tantum duas tertias illius differentiae Circulorum $B D, P Q$ (sumebatur enim non integra Diametrorum differentia, sed tantum ${ }^{2} / 3$ eiusdem $3 / 9$: quod si totam differentiam \& tantum ${ }^{2} / 3$ summae sumpsissem, eadem Elleipsis evenisset) quae una cum Circulo
[p.76.]
minore multiplicata per datam altitudinem 21, facit eandem quae prius inventa est soliditatem Dolij.
Esto Dolium PCQRAO, cuius altitudo OR $7 \underline{2}$ sit minor crassitudine AC 20, \& sit OP 16. Quaeritur huius Dolij capacitas. Summa Diametrorum AC + OP 36, differentia 4.

Quadratum OP 256	2408239965
Differentia \boldsymbol{B}	$\mathbf{0 1 0 4 9 1 0 1 1 9}$
Circulus OP 20106192983	2303329846
$2 / 3$ summae Diametrorum 24	1380211242
Differentia Diametrorum 4	0602059991
Compl. Difference \boldsymbol{B}	$\underline{9895089881}$
Elleipsis 753982235	11877361114

Circulus 2010619298
basis 2764601533
Altitudo

Logarithmi.
13679767853
04929155219
218734595]
98950898814
19400735532
01049101186

Dolium $1990 \underline{\underline{513104}}$

Atque his modis metiri poterimus magnitudines harum figurarum, Elleipsis \& Sphaeroeidis.
5 Si datae Elleipsi Circulum aequalem construere velimus, quaerenda est media proportionalis inter Diametros Elleipsis: Circulos cuius Diameter aequatur mediae, erit aequalis datae Elleipsi. Est enim eadem ratio Circuli ad Elleipsim, quae est Quadratum ad Oblongum. Si Sphaeroeidi Sphaeram describere velimus; inveniendae sunt duae mediae continue proportionales, inter altitudinem Sphaeroeidis \& Diametrum crassitudinis. Sphaera, cuius diameter aequabitur illi mediae, quae est crassitudinis diametro propior; erit aequalis datae Sphaeroeidi. nam ita se habet Cubus ad Parallelepipedum quadratae basis, ut Sphaera ad Sphaeroeidem eiusdem cui Parallelepipedo altitudinis. cum Parallelepipedum sit ad Sphaeroeidem aequealtam, ut Quadrata basis ad ${ }^{2} / 3$ Circuli.

