§28.1.
 Synopsis: Chapter Twenty - Eight.

The Lemma below is stated, relating the proportionality between the areas of inscribed and circumscribed regular figures, of a given order for a given circle, to the area of the inscribed figure with double the sides, and demonstrated with a number of examples:
(i) The inscribed regular hexagon has an area which is the mean proportional between the areas of the inscribed and circumscribed equilateral triangles; similarly, for the cases:
(ii) the regular inscribed/circumscribed hexagons with the regular inscribed dodecagon ;
(iii) the regular inscribed/circumscribed squares with the regular inscribed octagon;
(iv) the regular inscribed/circumscribed pentagons with the regular inscribed decagon.
[If a_{n} is the area of the inscribed n-gon, and A_{n} the area of the circumscribed n-gon, for a given circle, then $a_{2 n}=\sqrt{ }\left(a_{n} \cdot A_{n}\right)$.]

A large list of calculated lengths of side for inscribed/circumscribed regular figures in a circle with unit radius is presented, together with their perimeters and areas. A number of scaling problems is then demonstrated, showing the great advantage of using logarithms.

§28.2.

Chapter Twenty Eight. [p.78.]

With the diameter of a circle given, to find the sides and areas of the regular Triangle, Square,
Pentagon, Hexagon, Octagon, Decagon, Dodecagon, Hexadecagon, inscribed and circumscribed
in the same circle.

Lemma

1or regular figures ascribed in a circle: Let two figures of the same kind be associated with the same circle, the one inscribed and the other circumscribed: if a third figure, of which the number of sides is equal to the sum of the remaining sides taken together, is to be inscribed in the same circle, then the area of this figure is the mean proportional between the remaining areas.
[1. Inscribed and circumscribed equilateral triangles with an inscribed regular hexagon].

[Figure 28-1]

Let two triangles $D C B, G E F$ be adscribed to the same triangle, to which the hexagon $D I C H B R$ is inscribed: I assert the area of the hexagon ${ }^{1}$ to be the mean proportional between the areas of the adscribed triangles.

For the triangles $A C M, A C F$ are similar: $\& A M, A C$ (or $A H), A F$ are in continued proportion, see Figure 28-1. And therefore the triangles $A C M, A C H, A C F$: as they have the same altitude, their areas are proportional to their bases; that is, their areas are in continued
proportion, as their bases; And the figures, [i.e. the areas of these triangles and the hexagon] are also in continued proportion. Let the radius of the circle $A D$ be $1 . B C$ is the side of the inscribed triangle $\ell .3$, by Prop.12, Book13, Euclid. The perimeter of the triangle is $\ell .27$. The semi-perimeter, $\ell .6^{3} / 4 ; A M,{ }^{1 / 2}$. The area of the triangle BCD, $\ell .{ }^{27} / 16 ; \mathrm{AO}, \ell .{ }^{3} / 4 ; \mathrm{DR}, 1$. Triangle $\mathrm{DAR}, \ell .{ }^{3} / 16$. The area of the hexagon $D I C H B R$ is $\ell .{ }^{27} / 4 ; E F, \ell .12 ; A B, 1 ; E A F \ell .3$; and the area $E G F \ell .27$. [i.e. area $\triangle \mathrm{BCD} \times$ area $\triangle \mathrm{EGF}=$ area squared hexagon DICHBR.]
[2. Inscribed and circumscribed regular hexagons with an inscribed regular dodecagon].
The line $D R$ of the inscribed hexagon has length 1, [see Figure 28-1 again]. The circumscribed line NS, $\ell .4 / 3$: for the lengths $\mathrm{AO}, \ell .{ }^{3} / 4 ; \mathrm{DR}, 1 ; \mathrm{AR}, 1 ; \mathrm{NS}, \ell .{ }^{4} / 3$ are in proportion. The area of the triangle $A N S$ is $\ell . \frac{1}{3}$, and of the circumscribed hexagon $\ell .12$. Again, the area of the inscribed dodecagon is 3. For $X O$ is $1-\ell .3 / 4$, \& the square of $X O, 1^{3} / 4-\ell .3 ; \&$ the square of $D O, 1 / 4$. Therefore the square of $D X$ is $2-\ell .3 ; \&$ the square of half the line $D X$ is $1 / 2-\ell .3 / 16$. [From Pythagoras' Theorem] the square of the perpendicular from the point A to the line $D X$ is $1 / 2+\ell .3 / 16$. The area of the triangle $A D X$ is $\ell .1 / 16$, or $1 / 4, \&$ the whole area of the inscribed dodecagon is 3 . Which is the mean proportion between the areas of the inscribed hexagon $\ell .{ }^{27} / 4$ and the circumscribed hexagon $\ell .12$.

[Figure 28-2]
[3. Inscribed and circumscribed squares with an inscribed regular octagon].

For the inscribed square $B C D E$ the side has length $\ell .2$, area 2 [see Figure 28-2]; the circumscribed square $F G H K$ has side of length 2 , and area 4.

For the inscribed octagon ${ }^{2}$ the side DP has length
ℓ.bin. $2-\ell .2$. (For $A Q$ is $\ell . \frac{1}{2} ; P Q 1-\ell . \frac{1}{2}$, and the square of
$P Q 1 \frac{1}{2}-\ell .2$. The square of $D Q: \frac{1}{2}$; therefore the square of $D P$ is $\left.2-\ell .2\right)$. The square $D O(1 / 4$ of the square $D P$) is $1 / 2-\ell .1 / 8$, which taken from the square of the radius $A D 1$, gives the square $A O$ as $1 / 2+\ell .1 / 8$, and the product of AO with the line $O D$:
ℓ. bin. ${ }^{1} / 2+\ell .{ }^{1} / 8$ times ℓ. bin. ${ }^{1} / 2-\ell .{ }^{1} / 8$, which is $\ell .{ }^{1} / 8$ the area of the triangle ${ }^{3} A D P$. The area of the inscribed octagon is $\ell .8$. Which is the mean proportional between the area of the inscribed square 2 , and the circumscribed square 4.

[4. Inscribed and circumscribed octagons with an inscribed regular hexadecagon].

The line MN of the circumscribed octagon has length $\ell .8-2$, [see Figure 28-2], (because HA, HN are equal, \& therefore DN is $\ell .2-1, \& \mathrm{NM}$ twice the same, is $\ell .8-2$. But also as HA, HN are equal, it is evident by Prop.5, Book 1, Euclid; that the angle HAN has the value $3 / 4$ of a right angle from the construction, \& HNA is equal to the sum of the angles NGA, NAG by Prop.32, Book 1, Euclid.) The radius AD is 1 ; the product of the radius 1 by $\mathrm{DN} \ell .2-1$ is $\ell .2-1$, is equal to the area of the triangle AMN, of which the corresponding 8 -fold is $\ell .128-8$, equal to the area of the circumscribed octagon.[while the area of the inscribed octagon is $\ell .8$ from above].

With the inscribed hexadecagon [16-gon], the length of the side is ℓ.bin $32-\ell .512$ [There is a typographical error here, but the correct value is given in Table 28-6].
[5. Inscribed and circumscribed pentagons with the inscribed regular decagon].

The length of the side of the inscribed pentagon is ℓ. bin. $5 / 2-\ell . \frac{5}{4}$, the perpendicular to the centre is the length ℓ. bin. ${ }^{3} / 8+\ell .5 / 64$; the product of this perpendicular with the half of the side of the pentagon

[Figure 28-3]
ℓ. bin. $.5 / 8-\ell .5 / 64$ is the area of the triangle $A B C \ell$. bin. $5 / 32+\ell .{ }^{5} / 1024$, and the total area of the inscribed pentagon ${ }^{4}$ is ℓ. bin. ${ }^{125} / 32+\ell .{ }^{3125} / 1024$. The side of the circumscribed pentagon is ℓ. bin. $20-$ $\ell .320$. The product of the radius by the half of this side is ℓ. bin. $5-\ell .20$, the area of the triangle AGH, and the total area of the circum-scribed pentagon is ℓ. bin. $125-\ell .12500$.

The side of the inscribed decagon $B P$ is $\ell .5 / 4-1 / 2$, of which the square is $3 / 2-\ell .5 / 4$. The square of the line $B X$ is $3 / 8-\ell .5 / 64 \&$ the square of $A X$ is $5 / 8+\ell .5 / 64$, the area of triangle $A B P$ is ℓ. bin. ${ }^{5} / 32-\ell .5 / 1024$, and the total area of the decagon ℓ. bin. ${ }^{125} / 8-\ell .{ }^{3125} / 64$, which is the mean proportional between the areas of the inscribed and the circumscribed pentagons. [The ratio of the inscribed pentagon to decagon is $\sqrt{ }\{(5+5 \sqrt{ } 5) / 8\}$, as also is the ratio of the inscribed decagon to the circumscribed pentagon].

[End of Examples of Lemma]

If we wish to construct some of these figures for a circle of which the diameter is given or found: in the first place the appropriate differences of the logarithms can be found for an individual figure; when I have shown these, then I can explain the rest briefly.

For the Circle and the Triangle.

	S
	0,30102,99956,6398
	0,23856,06273,5983
	0,53959,06230,2381
	0,06246,93683,0415
	0,23856,06273,5983
	Logarithms
	0,79817,98683,5500
	0,71568,18820,7949
	1,01671,18777,4347
Log. difference for the triangle $\left\{\begin{array}{r}\text { inscribed } \\ \text { circumscribed }\end{array}\right.$	0,08249,79862,7551
	0,21853,20093,8847
	Logarithms
Terms \quad Area of circle $3 \underline{14159265359}$	0,49714,98726,9102
inscribed \quad. ${ }^{27} / 16$	0,11362,18907,5153
Area of triangle ¢ circumscribed $\ell .27$	0,71568,18820,7949
Log. diff. for triangle	0,38352,79819,3949
	0,21853,20093,8847

If a circle with diameter 9 is given \& the sides of the inscribed and circumscribed triangles are sought. [Note: Briggs favours an inverted ratio in the case where a negative logarithm results: as with diameter/length of inscribed side; subsequently, he subtracts this logarithm when scaling, as below].

Difference of the sidesSides of the triangle	Log. of diameter 9----		
		095424251	
	\{ inscribed	006246937	
	circumscribed	023856063	
	inscribed	089177314	7794228
	circumscribed	119280314	15588457

The sides of the triangle are: inscribed $7 \underline{794228}$; circumscribed $15 \underline{588457}$.
If the side of length 6 of a triangle is given : \& the diameters of the inscribed and circumscribed circles are required.

Log. of given side 6----		Logarithms	
		077812125	
Difference for the triangle Log. for the diameter	$\{$ inscribed	023856063	
	\{ circumscribed	006246937	
	$\{$ circumscribed	084062062	$6 \underline{928406}$
	inscribed	053959062	3464203
		[Table 28-3]	

The diameters of the circles is: inscribed 3464203; circumscribed $6 \underline{928406}$.

If the area $\ell .243$ of a triangle is given: $\&$ the areas of the inscribed and circumscribed circles are required.

		Logarithms	
Log. of g	rea $\ell .243$-----	119280313	
	\{ inscribed	038352798	
Difference for the triangle	\{circumscribed	021853201	
Log. of area of circle	$\{$ circumscribed	157633111	$37 \underline{699112}$
	inscribed	$\begin{aligned} & 053959062 \\ & \quad[\text { Table 28-4] } \end{aligned}$	9424778

The areas of the circles is: inscribed 9424778 ; circumscribed (four times that of the inscribed) 37699112.
2. For the Circle \& the Square.

Terms $\left\{\begin{array}{lrl} & \text { Logarithms } \\ \text { Diameter of circle } & 2 & 0,30102,99956,6398 \\ \text { Side of inscribed square } & \ell .2 & 0,15051,49978,3199 \\ \text { Side of circumscribed square } & 2 & \underline{0,30102,99956,6398}\end{array}\right.$
Difference of logs. for sides of squares inscribed
circumscribed
:---
$0,00000,00000,0000$

		Logarithms
Terms $\left\{\begin{array}{l}\text { Perimeter of square }\end{array}\right.$	628318530718	0,79817,98683,5500
	\{ inscribed $\ell .32$	0,75257,4981,5995
	\{circumscribed 8	0,90308,99869,9194
Difference of logs. for perimeter of the square	$\{$ inscribed	0,04560,48791,9505
	\{ circumscribed	0,10491,01186,3694
		Logarithms
Terms \quad Area of circle	314159265359	0,49714,98726,9102
	$\{$ inscribed 2	0,30102,99956,6398
Area of square	\{circumscribed 4	0,60205,99913,2796
Log. diff. for square	\{ inscribed	0,19611,98770,2704
	$\{$ circumscribed	0,10491,01186,3694
		[Table 28-5]

For the circle and adscribed regular many-sided figures [Table 28-6].

With these logarithms found, if any whatever of these figures are proposed, given either their
side, perimeter, or area, then we can find any of these other terms. Because we have shown the triangle in more detail, hence we will show only a single example from the rest.

Let the given side of a regular octagon be of 7 parts. The side is sought, perimeter, and area of the pentagon, with the same circle as the inscribed octagon.

The required side can be found thus:
With a circle of which the radius is unity, the side of the inscribed octagon is
7653668647, but the side of the pentagon is $1 \underline{175579504}$. If the side of the octagon is taken as 7 parts, the side of the pentagon sought is the fourth proportion. Therefore the logarithms of the given terms are taken, so that the logarithm of the term required may be found (as in Ch .15).
$\begin{cases}\text { proportions } & \text { Logarithms } \\ \begin{cases}\text { Side of the given octagon } \underline{7653668647} & -0,11613034 \\ \text { Side of the octagon taken } 7 & 0,84509804 \\ \text { Side of the given pentagon } 1 \underline{175579504} & 0,07024868 \\ \text { Side of the pentagon sought } 10 \underline{7516982} & 1,03147706\end{cases} \end{cases}$
[Table 28-7]
Where it is observed that the logarithm of the first term (as this is less than unity) is negative, as we showed in Ch. 10; and because of this, it is not to be taken away from the sum of the means of the ratio, but rather added on; and the logarithm of the fourth proportional is 1,03147706 , and the required side 107516982 .

This side, if we neglect to use the rule of proportion with logarithms, is the root of the four numbers ${ }^{5} 122^{1} / 4+\ell .75031 / 8-\ell .3001^{1} / 4-\ell .1500^{5} / 8$. [For from the table, the length of the side by proportion is $7 \times\left\{\ell\right.$. bin. $\left.{ }^{5} / 2-\ell .{ }^{5} / 4\right\} /\{\ell . \operatorname{bin} 2-\ell .2\}$, which can be written as the square root of the number shown].

By the same method the perimeter of the pentagon is found, if for the third term the perimeter of the given pentagon is taken, and of this, the logarithm. As [Table 28-8]:
$\begin{cases}\text { proportions } & \text { Logarithms } \\ \text { Side of the given octagon } \underline{7653668647} & -0,11613034 \\ \text { Side of the octagon being taken } 7 & 0,84509804 \\ \text { Perimeter of the given pentagon } 5 \underline{877852523} & 0,76921861 \\ \text { Perimeter of the pentagon sought } 5 \underline{3758491} & 1,73044706\end{cases}$

If we seek the area of the pentagon, with nothing given except the side of the octagon inscribed in the same circle: then we remember that the areas of similar plane figures are in the duplicate
ratio with the logarithms of their corresponding sides. Therefore the side squared of the octagon can be found, in order to be able to establish area from the comparison. Thus, in this process, it is not necessary to find the length of the side of the pentagon, as we need only be concerned with the squares themselves, which will be easiest by the method of Ch .16 , as we have the logarithms of these. As you see here:

		Logarithms
pro-	¢ Square of the side of the given octagon $2-\ell .2$	-0,0,232260686
port-	Square of the side taken 49	1,690196080
ion-	Area of the given pentagon ℓ. $\operatorname{bin}^{125 / 32}+\ell .{ }^{3125 / 1024}$	0,376146310
als	(Area of the pentagon sought 1988854794	12,298603076

[Table 28-9]
If the area of the given decagon is 6 , and the side of the octagon circumscribing the same circle is sought, of which the decagon is inscribed; the calculation is:

pro- port- ion- als		Logarithms
	(Area of the given decagon $2 \underline{93892626}$	0,46818869
	Area of decagon taken 6	0,77815125
	Square of the side of the given circumscribed octagon	$\underline{-0,16349138}$
	Sum of the means	$\underline{0,61465987}$
	Square of the side of the sought circumscribed octagon	0,14647118
	Side sought $1 \underline{18368622}$	0,07323559

[Table 28-10]
And thus in this way with a circle, and with these figures adscribed to the same circle, from a single term given, any other can be found by using logarithms.
§28.3.

Notes on Chapter Twenty Eight.

1 Briggs refers to figures according to the number of angles they contain; thus, 'sexangulum' for hexagon.
${ }^{2} \ell$. means 'latus' or side, being one of the abbreviations for the square root sign at this time, while bin. is short for 'bin-us, -a, -um', meaning 'a pair or two', and indicates in this case that the square root of both terms is included The expression thus means $\sqrt{ }(2-\sqrt{ } 2)$.
${ }^{3}$ Here we have a good example of the nature of algebraic manipulations at the time. In modern terms, we have
$\mathrm{DO}^{2}={ }^{1} / 4 \mathrm{DP}^{2}=1 / 2-\sqrt{ } 1 / 8$. Then $\mathrm{AO}^{2}=1 / 2+\sqrt{ } 1 / 8$, and the product

AO.OD $=\sqrt{ }(1 / 2+\sqrt{ } 1 / 8) \sqrt{ }\left(1 / 2-\sqrt{ }^{1} / 8\right)=\sqrt{ } 1 / 8$, the area of $\triangle \mathrm{ADP}$.
4 The construction of the regular pentagon is contained in Proposition 11, Book 1V, Euclid. As this development may not be so obvious as the previous constructions have been, we give a construction of the pentagon, attributed to Ptolemy, as shown by Henry E. Dudeney in his Amusements in Mathematics, Nelson, 1917, p. 38. [Heath, Volume 2 of The Elements , p. 104 of the Dover edition, gives another method, due to H. M. Taylor]. In this construction, the radius of the (circumscribed) circle is taken as unity. Two perpendicular diameters are constructed. The mid-point A

[Figure 28-4] of the line BC is found, and the length AD used to mark off with compasses the equal length AE: of size $\sqrt{ } 5 / 2$ by Pythagoras. The length EC is $(\sqrt{ } 5-1) / 2$, and hence
$E D=\sqrt{ }(5 / 2-\sqrt{ } 5 / 2)$, and the equal length FD marked off with the compasses as a side of the pentagon. The other sides are produced by drawing equal arcs around the circle. It suffices to show that this is indeed the length of side of the inscribed pentagon: for if the radius of the circumscribed circle is 1 , then the length of the side a is given by $\mathrm{a}=2 \sin (\pi / 5)$, where $\sin (\pi / 5)=\sqrt{ }\{(5-\sqrt{ } 5) / 8\}$. Thus, the radius of the in-circle to the pentagon is $\sqrt{ }\{(3+\sqrt{ } 5) / 8\}$, while the area of $\triangle A B C$ is $\sqrt{ }\{(5+\sqrt{ } 5) / 32\}$, etc. An up to date presentation can be found 'on the web' currently at www.cut-the-knot.org

Data Diametro Circli, invenire Latera \& Areas ordinatorum Trianguli, Quadrati, Quinquanguli, Sexanguli, Octanguli, Decagon, Decanguli, Dodecanguli, Sedecanguli, eidem circulo inscripti, \& circumscriptorum.

Lemma.

In figuris circulo ordinatis ascriptis. Si duae figurae homogeneae circulo adscribantur, una intus, reliqua extra: tertia, cuius latera sunt numero aequalia lateribus reliquorum simul sumptis, eidem circulo inscripta, erit media proportionalis inter reliquas.

Sunto duo Triangula $D C B, G E F$ eidem circulo adscripta, cui inscribatur Sexangulum $D I C H B R$:aio Sexangulum esse medium proportionale inter Triangula adscripta.

Sunt enim Triangula $A C M, A C F$ similia: \& $A M, A C($ vel $A H), A F$ continue proportionalia. \& idcirco Triangula $A C M, A C H, A C F$ cum sint aequealta, sunt ut bases: id est sunt continue proportionalia; ut ipsae bases; \& Figurae, horum Triangulorum Sextae, sunt etiam continue proportionales. Esto $A D$ radius circuli 1. erit $B C$ Latus trianguli inscripti $\ell .3$, per 12.p.13.1.Eucl. Perimeter Trianguli $\ell .27$. semiperimeter $\ell .6^{3} / 4$. $A M, 1 / 2$. Area Trianguli $\ell .{ }^{27} / 16$. AO, $\ell .{ }^{3} / 4$. DR 1. Triangulum DAR, $\ell .3 / 16$. Sexangulum DICHBR $\ell^{27}{ }^{27} / 4$;
$E F, \ell .12 ; A B, 1 ; E A F \ell .3 ; E G F \ell .27$.
Latus Sexanguli inscripti $D R, 1$. Circumscripti latus NS, $\ell .4 / 3$: Sunt enim AO, $\ell_{.}^{3} / 4 ; \mathrm{DR}, 1 ; \mathrm{AR}, 1 ; \mathrm{NS}, \ell^{4} / 3$ proportionales. \&
 Triangulum ANS $\ell . \frac{1}{3}$, \& Sexangulum circumscriptum $\ell .12$. Dodecangulum autem inscriptum est 3. est enim $X O$ is $1-\ell .{ }^{3} / 4, \& \mathrm{Qu} . X O, 1^{3} / 4-\ell .3 ; \& \mathrm{Qu} . D O, 1 / 4$. est igitur Qu . $D X 2-\ell .3 ; \&$ Qu. semissis rectae $D X^{1 / 2}-\ell .^{3} / 16$. \& Quad. perpendicularis a puncto A in rectam $D X$ est $1 / 2+\ell .3 / 16$. Triangulum igitur $A D X \quad . ._{16}^{16}$, vel $1 / 4, \&$ totum Dodecangulum inscriptum est 3 . Quod est medium
[p.79.]
proportionale inter Sexangulum inscripti $\ell .{ }^{27} / 4$ \& Sexangulum circumscriptum $\ell .12$.

Quadrati $B C D E$ inscripti Latus $\ell .2$, Area 2, Circumscripti $F G H K$ Latus 2, Area 4.

Octanguli inscripti Latus, DP
ℓ. bin. $2-\ell .2$. (est enim $A Q \quad \ell^{1} / 2 ; P Q 1-\ell .{ }^{1} / 2, \& \mathrm{Qu}$.
$P Q 1 / \frac{1}{2}-\ell .2$. Qu. $D Q:{ }^{1} / 2$; idcirco Qu. $D P 2-\ell .2$). Qu. $D O\left({ }^{1} / 4 \mathrm{Qu}\right.$. $D P$) erit $\frac{1}{1} / 2-\ell .1 / 8$. quo ablato e quadrato Radiij $A D 1$, restabit $\mathrm{Qu} . A O \quad 1 / 2+$ $\ell .{ }^{1} / 8, \&$ factus a recta AO $\ell . \operatorname{bin} .{ }^{1} /{ }_{2}+\ell .{ }^{1 / 1 / 8}$ in $O D: \ell$. bin. ${ }^{1 / 2}-\ell .{ }^{1} / 8$, erit $\ell .{ }^{1} / 8$ Area trianguli $A D P$. \& Octangulum inscriptum erit $\ell .8$. Quod medium est proportionale inter Quadratum inscriptum 2, \& Quadratum circumscriptum 4.

Octanguli circumscripti Latus MN, $\ell .8-2$, (quia HA, HN aequantur,
 \&idcirco DN est $\ell .2-1, \&$ NM dupla eiusdem, $\ell .8-2$. Quod autem HA, HN aequantur, patet per 5.pro.1.lib.Eucl.; quia HAN valet ${ }^{3} / 4$ recti ex fabrica, \& HNA aequatur angulis NGA, NAG per 32.p.lib.1. Eucl.) $A D$ radius 1 . factus a radio 1 in $\mathrm{DN} \ell .2-1$,. est is $\ell .2-1$, aequalis Areae Trianguli AMN, cuius octuplum $\ell .128-8$, aequatur Octangulo circumscripto.

Sedecanguli inscripti Latus est ℓ.bin $32-\ell .512$. Latus inscripti Quinquanguli ℓ. bin. $5 / 2-\ell .5 / 4$, perpendicularis a centro in Latus ℓ. bin. ${ }^{3} / 8+\ell .5 / 64$. factus ab hac perpendiculari in semissem lateris Quinquanguli ℓ.bin. ${ }^{5} / 8-\ell .5 / 64$, erit Triangulum ABC ℓ.bin. ${ }^{5} / 32+\ell .{ }^{5} / 1024$. \& Area totius inscripti Quinquanguli ℓ.bin. ${ }^{125} / 32$ $+\ell .{ }^{3125} / 1024$. Latus Quinquanguli circumscripti, erit ℓ.bin. $20-$ $\ell .320$. Factus a Radio in semissem huius lateris erit ℓ. bin. $5-\ell .20$, Triangulum AGH, \& totum Quinquangulum circumscriptum ℓ.bin. 125 - $\ell .12500$.

Latus Decanguli inscripti $B P \quad \ell_{.}^{5} / 4-1 / 2$, cuius quadratum $3 / 2$ $\ell_{3}^{5} / 4$. Quadratum rectae $B X$
$3 / 8-\ell .5 / 64 \&$ Qu. $A X^{5 / 8}+\ell .5 / 64$, area Trianguli ABP ℓ. bin. ${ }^{5} / 32-\ell .{ }^{5} / 1024$, \& totum Decangulum ℓ. bin. $.^{125 / 8}-\ell^{3125 / 64}$, quod proportione medium est inter Quinquangula inscriptum \& circumscriptum.

Si circulo cuius diameter data vel quaesita fuerit, harum figurarum aliquam adscribere velimus: inprimis: quaerendae sunt Logarithmorum unicuique figurae convenientium Differentiae. quas ubi exhibuero, reliqua qua potero brevitate expediam. Pro Circulo \& Triangulo.

	arithmi.
	0,30102,99956,6398
	0,23856,06273,5983
	0,53959,06230,2381
Differentia Logarith. pro Triangulo finscribed	0,06246,93683,0415
[p.80.]	
Termini $\left\{\begin{array}{l}\text { Peripheria Circuli } \\ \text { Perimeter trianguli }\end{array}\left\{\begin{array}{l}6 \underline{68318530718} \\ \begin{array}{l}\text { inscripti } \\ \text { circumscripti }\end{array} \ell .27\end{array}\right.\right.$	Logarithmi.
	0,79817,98683,5500
	0,71568,18820,7949
	1,01671,18777,4347
Differentia Logarithm.pro Triangulo $\left\{\begin{array}{r}\text { inscripti } \\ \text { circumscripti }\end{array}\right.$	0,08249,79862,7551
	0,21853,20093,8847
	Logarithmi.
Termini $\{$ Area Circuli $3 \underline{14159265359}$	0,49714,98726,9102
\{ inscribed $\ell .{ }^{27} / 16$	0,11362,18907,5153
Area Trianguli $\{$ circumscribed $\ell .27$	0,71568,18820,7949
Differentia Logarithm. pro Triangle $\left\{\begin{array}{l}\text { inscripti } \\ \text { circumscripti }\end{array}\right.$	0,38352,79819,3949
	0,21853,20093,8847

Si Data sit Circuli Diameter 9 \& quaeruntur latera Triangulorum inscripti \& circumscripti.

Logarith. Diametri 9----	Logarithms	
	095424251	
-inscripti	006246937	
Differentia pro lateribus circumscripti	023856063	
Latera Triangulorum \quad inscribed	089177314	7794228
circumscribed	119280314	$15 \underline{588457}$

Erunt latera Triangulorum: inscripti $7 \underline{794228}$; circumscripti 15588457.
If datum sit Trianguli Latus $6: \&$ quaeruntur Diametri circulorum inscripti \& circumscripti.
Logarithmi
Logarithmus. Lateris dati 6---- 077812125
$\left\{\begin{array}{rrl}\text { inscripti } & 023856063 \\ \text { circumscripti } & 006246937 & \\\right.$\cline { 2 - 3 } circumscripti \& 084062062 \& $\underline{6928406} \\ \text { inscripti } & 053959062 & \underline{464203}\end{array}$

Erunt diametri circulorum: inscripti 3464203; circumscripti $6 \underline{928406}$.
Si data sit Area trianguli $\ell .243: \&$ quaerantur Areae circulorum inscripti \& circumscripti.

Logsrithmus Areae datae $\ell .243$	Logarithmi	
	119280313	
$\{$ inscripti	038352798	
Differentiae pro triangulo (circumscripti	021853201	
Logar. pro Areis Areis circulorum\{ circumscripti	157633111	$37 \underline{699112}$
inscripti	053959062	9424778

Circuli inscripti Area erit 9424778; circumscripti (quadrupla inscripti) $37 \underline{699112}$.
2. Pro Circulo \& Quadrato.

His Logarithmis inventis, si proposita harum figurarum qualibet, detur eius latus vel perimeter vel area; poterimus alterius cuiusvis harum, quemlibet terminum invenire. Quod in triangulo ostendimus fusius, idem unico aut altero examplo in reliquis deinceps ostendimus.

Esto datum latus Octaguli ordinati partium 7. quaeruntur Latus, Perimeter et Area quinquanguli, eidem circulo cum Octagulo inscripti.

Latus quaesitum sic invenietur:
[P.82.]
In circulo cuius Radius est unitas, latus inscripti Octanguli est
7653668647, Latus autem Quinquanguli est 175579504. et si latus Octanguli sumatur partium 7, erit latus
Quinquanguli quaesitum, quartum proportione. Sunt igitur semendi Logarithmi datorum terminorum, ut (per cap. 15) inveniatur Logarithmus termini quaesiti.
proportiones
$\begin{cases}\text { Latus Octanguli datum } \underline{7653668647} & \text { Logarithmi. } \\ \text { Latus Octanguli sumptum7 } & -0,11613034 \\ \text { Latus Quinquanguli datum } 1 \underline{175579504} & 0,84509804 \\ \text { Latus Quinquanguli quaesitum } 10 \underline{7516982} & 0,07024868 \\ \hline, 03147706\end{cases}$

Ubi animaduertendum, Logarithmum primi termini (cum is sit minor unitate) esse defectum, ut cap. 10 ostendimus; atque ea de causa, non esse auferendum e summa mediorum, sed addendum potius; eritque Logarithmus quartus 1,03147706 , et latus quaesitum 107516982.

Hoc latus, si neglectis Logarithmis per proportionis regulum quaeritur, erit latus Quadrinomij $122^{1 / 4}+\ell .7503^{1} /{ }_{8}-$ ८. $3001^{1 / 1} 4-\ell .1500^{5} / 8$.

Eodem modo inveniri poterit perimeter Quinquanguli, si pro tertio termino sumatur perimeter dati Quinquanguli, eiusque, logarithmus. ut :
proportiones
$\begin{cases}\text { Latus octanguli datum } \underline{7653668647} & \text { Logarithms } \\ \text { Latus octanguli sumptum } 7 & -0,11613034 \\ \text { Perimeter Quinquanguli data } 5 \underline{577852523} & 0,84509804 \\ \text { Perimeter Quinquanguli quaesita } 53 \underline{758491} & 1,76921861 \\ \end{cases}$

Si quaerimus Aream Quinquanguli,cum nihil aliud sit datum praeter latus Octanguli eidem circulo inscripti : meminisse debemus, figuras similes planas, esse in duplicata ratione homologorum laterum: et idcirco laterum Octanguli quadrata esse sumenda, ut rite institui possit comparatio. Veruntamen, in hoc negotio, non opus erit, ut de ipsis quadratis simus solliciti, modo eorum Logarithmos, quod per cap. 16 facillimum erit, habuerimus. ut hic vides.

$\begin{aligned} & \text { pro- } \\ & \text { port. } \end{aligned}$	¢Quadratum lateris Octanguli data	$2-\ell .2$	Logarithmi. $-0,0,232260686$
	Quadratum lateris sumpti	49	1,690196080
	Area Quinquanguli dati ℓ. bin ${ }^{12}$	$+\ell .{ }^{312}$	0,376146310
	Area Quinquanguli quaesita	88854794	12,298603076

Si area dati Decanguli sit 6, et quaeratur latus Octanguli circumscripti eidem circulo, cui Decangulum inscribitur; erunt:

$\begin{aligned} & \text { pro- } \\ & \text { port. } \end{aligned}$		Logarithms
	(Area decanguli dati $2 \underline{93892626}$	0,46818869
	Area Decanguli sumpta	0,77815125
	Quadratum lateris Octanguli circumscripti dati	$\underline{-0,16349138}$
	aggregatum mediorum	$\underline{0,61465987}$
	Quadratum lateris Octanguli circumscripti quaesiti	0,14647118
	Latus quaesitum $1 \underline{18368622}$	0,07323559

Atque ad hunc modum in circulo, et in his figuris eidem circulo adscripti, ex unico termino, poterit alius quilibet per Logarithmos inveniri.

