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____________________________________________________________ 
The Method of Increments. 

 
The Second Part. [IIc] 

 
_____________________________________________________________ 

 
LEMMA X. [page 94] 

 
 

A particle travelling in a in given direction 
with a given velocity adheres to a given fixed 
point on a rigid length about a given axis of 
motion : in the figure at hand the points C, B, b, 
A lie on the intersection of the given plane 
perpendicular to the axis of rotation, with the 
length of the line bB proportional to the velocity, 
in the direction of the velocity of the particle that 
strikes the rigid length CB, of which the 
projection bB is formed in the plane of the 
diagram.  [Thus, a particle is incident at some 
angle to the plane of the diagram at the point B, and the resolved component of the 
velocity in the plane of the diagram is bB, of which the component perpendicular to the 
fixed line CB is bD; the axis of rotation passes through C and is perpendicular to the 
plane of the diagram];  
and through any other given point [D]of the same rigid length ; the normal bD is drawn 
to CB: then the motion produced in this rigid length by the impulse of this particle will 
always be  the same, if the magnitude [mass] of the second particle is to the magnitude 
[mass]of the first particle as CB2 to CA2, and the velocity of the second particle is Db 
× CB

CA , and striking that other given point A in this  projection, in a direction 

perpendicular to the axis of  rotation CA.  
[We note that the magnitude of the angular momentum of a mass m travelling with a 

velocity v in a plane at a distance r from a perpendicular axis is given by L = mvr, and 
that the instantaneous angular velocity is given by v = ωr, giving L = mωr 2. 

The sum of the contributions of all the masses mδ  of the particles in a body located at 
distances r from the axis of rotation, of the form 2.rmδ  can be replaced by a mass located 
at a certain point B at a distance CB from the axis of rotation. Thus, according to 
elementary statics, the centre of mass CG  of mass M of such a one dimensional body is 
given by ∫→∑=× ;rdmmrMCG δ while the centre of oscillation BC defined here is 

given by ∫→∑=× .222 dmrmrMBC δ ] 
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For all the motion is taken up [absorbed] by the rigid length,  except for [the component 
in] planes normal to the axis. Whereby for all the points, by which in the aforesaid 
manner, the motion can be reduced to that in such a plane, so that the velocity of the 
striking particle and the direction of the same in this plane is represented by the line Bb. 
But the part BD of this velocity BD is taken up by the resistance of the point of rotation 
C, and the motion of the rigid length is produced by the remaining normal component of 
velocity Db.   

Moreover, the velocity of  the point A is to the velocity of the point B, as the distance 
from the centre CA is to the distance CB [For constant angular velocity ω.]: whereby the 
corresponding velocity of the point A produced by the motion of the particle striking at B 
is Db × CB

CA . Also, the [angular] momentum of the same particle [p.95] is to the [angular] 

momentum that is given to the point A, as CA to CB : whereby if the magnitude [mass] 
of the particle itself is p, by considering the [component of the linear] momentum of this 
at B to be  p × Db, then the [like linear] momentum contributed to the point A will be  p × 
Db × CB

CA . But the same velocity and the same [angular] momentum is produced at the 

point A by a particle of mass p × 2
2

CA
CB  striking at that point, in the direction 

perpendicular to CA with the velocity Db × CB
CA . Whereby with regard to the motion 

produced in the rigid length, in all cases, either the particle p strikes at B, or a particle [of 

size]  p × 2CA
CB 2  strikes at A, now by definition. Q.E.D.  

[Thus, particles in a rotating body have their masses adjusted by this inverse square 
method and these contributions are then added together at the centre of oscillation to give 
a single mass with the same total angular momentum as the distributed mass.  A particle 
has a certain amount of angular momentum p × Db × CB in the plane of the diagram, 
given as above in modern terms by .2 mvRRmL == ω  If a particle of the same mass but 
with velocity v' perpendicular to the arm strikes the body at A at some other distance R' 
from the axis, where the velocity v'  at A is related to the corresponding velocity v at B 
defined as above, by ,'/'/ RvRv =  essentially for a constant angular velocity ω, then the 

corresponding  velocity at A is Db × CB
CA , as Db corresponds to v, CB to R, and CA to R'; 

giving the corresponding angular momentum contribution at A as p ×Db × .CB
CA2

 Now, if 

a particle of mass p × 2
2

CA
CB strikes A in the same manner, with the same speed  

Db × CB
CA , then it contributes the angular momentum p × 2

2

CA
CB × Db × CB

CA2
 = p × Db × 

CB , which is the same as the initial particle at B. The same result follows if the rigid line 
is allowed to rotate at a uniform rate and pick up particles as it goes according to some 
rule of the density; thus, the rotational effect of the added mass is found as a geometrical 
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entity, independent of the velocity, which corresponds to the later idea of the moment of 
inertia, due to Euler.] 

 
PROP. XXIV. PROB. XIX. 

 
To find the centre of oscillation of a hanging body from a given axis parallel to the 

horizontal. 
 

 By the centre of oscillation I understand the point, the velocity of which is the same as 
if the remainder of the body has been removed, and that point alone oscillates around the 
same axis [and with the whole mass concentrated at this point. This quantity had been 
investigated initially by Huygens in his Horologium regarding the oscillations of physical 
pendulums, and had been proposed to him in his youth by Mersenne, at which time he 
had not been able to solve the problem. See the text in these translations]. 

 Therefore let the present figure be in a 
plane perpendicular to the horizontal and to 
the axis of oscillation, and which passes 
through the centre of gravity G, and let C be 
the intersection of this plane with the axis of 
oscillation. [Thus, take the vertical plane of 
the figure to be that of the page, the axis of oscillation passes through C out of the plane 
of the page, and the horizontal plane is also out of the page.] Draw Cg parallel to the 
horizontal, and A is the Centre of Oscillation sought in the line CG. Let  p be [the mass 
of] a small prismatic shape placed parallel to the axis of the motion [i. e. coming out of 
the page, and at some perpendicular distance CB from the axis of rotation, but not shown 
on the diagram], & meeting the plane of the figure in the point B. Draw CB, and draw the 
perpendiculars Bb, Gg, Aa to the line Cg  crossing that line in b, g, a. [p.96] 

If the acceleration of gravity is 1 [down the page], then the tangential acceleration of the 
element p at some point on the figure at a distance CB from the axis moving around the 
point C is CB

Cb   Whereby the [change in the] momentum at the point A arising from the 

motion of the particle p is (p × CB
Cb  × =CA

CB ) p × CA
Cb . But (from Lem. 10) the [change in 

the angular] momentum of the point A produced by the particle  p at the point B is always 

the same as if produced by a particle of weight  p × 2CA
CB2

striking the same point A. 

Whereby in place of the particle p in position B, by adding new particles of weight  p × 

2CA
CB2

at point A, the acceleration of the point A is given, arising from all the forces of the 

given body taken together, by the known rule of collisions;  truly by applying the sum of 

all the moments  p × CA
Cb to the sum of all the small particles by substituting p × 2CA

CB2

, 

that is (on account of the given CA) by applying the sum of all p × Cb ×CA to the sum of 
all  p × 2CB : But from the noted property of the centre of gravity, if the weight of the 
whole given body is P,  the sum of all  p × Cb is equal to P × Cg. Whereby if Q is written 
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for the sum of all  p × 2CB , the acceleration of the point A is equal to Q
CACP ×× g .  But 

from the  hypothesis, this acceleration is equal to the acceleration of the point A proposed 

CA
Ca or CG

Cg . Hence G
QCA CP×= . [Thus, the whole mass located at A will fall initially 

with unit acceleration, giving this result.] Thus by finding the sum of all the particles of 
the proposed body multiplied by the squares of their shortest distances from the axis of 
oscillation, by the method of inverse fluxions,  the distance of the centre of oscillation 
from the axis will be given,  by applying this sum to the product of the given body taken 
by the distance of the centre of gravity from the axis of oscillation. Q.E.I. [p.97]  

 
[Thus, when the element is placed horizontally, it can be assumed to fall with the 

acceleration of gravity, taken as 1, and later when the element is moving horizontally, the 
downwards acceleration is zero, while for some intermediate position, the tangential 
acceleration is proportional to the cosine of the angle BCb, or CB

Cb . Thus, p × CB
Cb  is the 

force acting along the tangent at B, which by the principle of moments is equivalent to a 
force (p × CA

C
CB
C Bb × =) p × CA

Cb acting at A perpendicular to the axis of rotation. This 

moment gives rise to a contribution to the change of angular moment at A of  p × CA
Cb × 

CA, or simply p × Cb. Now, according to the lemma, we can regard this moment as 

acting on a mass of p × 2CA
CB2

at A, in which case the sum of all the moments acting on the 

sum of all the masses at the same location gives a linear acceleration 

.or ;
/).(

)( . 22 Q
CACgPa

CACBp
CbpCAa ××=

∑
∑ ×==α   

Thus, we have the contribution to the moment of inertia I given by 
;.;. 222 QCBpICBpmrI =∑=== δδ also, the centre of mass satisfies ∑=× CbpCgP . . 

Hence, taking moments, 

. on acceleratilinear   thehence ;/ Q
CACgPaCAQaICgP ××===× α  Finally, 

CgP
Q

Q
CACgP

×
=××= CA giving, 1 . We note that there is no reference to angular 

velocity or acceleration made by Taylor, which was obviously not in vogue at the time, 
and he has steadily worked with the linear quantities, while we have sneaked in some 
angular quantities in the explanations to ease the analysis. Finally a word of caution, 
Taylor has not worked out what is called 'the moment of inertia' of a figure, which is 
normally done about a principle axis of symmetry passing through G, such as CG : he has 
worked out the moment of inertia about an axis of rotation passing through the point of 
suspension C, at right angles to CG,  which amounts to the length of the equivalent 
simple pendulum.] 
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COROLLARY I.  

 
 With the points C, G, B considered to be in the 
same plane, and in addition draw the normals HGI 
and BD to CG [CG is the line containing the point 
of suspension C and the centre of gravity G, 
perpendicular to the axis of oscillation; B is a point 
on the body, while HGI is a normal line through 
the centre of mass G]. Then it follows that 

;GD2CGCGBGCB 222 ×−+=  truly by dropping 
a line from the point B to the same side of the line 
HI and the point C. But when the point b falls on opposite side of the line HI, then 

.G2CGCGG 222 dbCb ×++=  [ Forms of the cosine rule for triangles BCG and Cob 
when the angle BGC is acute or bGC obtuse.] Hence the sum of all the elements taken 
with their own CB2 for the whole figure, equals the sum of all the small parts taken with 

their own 
_________________

22 CBG G+ for the whole figure, less the sum of all GDCG2 ××p from the 
one side of  the line HI, and plus the sum of all dp GCG2 ××  from the other side . But 
from the nature of the centre of gravity, the sum of all dp GCG2 ××  is equal to the sum 

of all GDCG2 ××p . Whereby the sum of all 2CB×p , or Q, is equal to the sum of all 
,CGGB 22 ×+× pp that is, (on account of the given CG2) equal to 2CG×p  plus the sum 

of all 2GB×p . If hence D is written for the sum of all 2GB×p , then DCGQ 2 +×= p ; 

and hence  .CGP
DCG)CGP

Q(CA
×

+=
×

=   

 [A form of the parallel axis theorem for this kind of moment of inertia, where D is the 
moment of inertia about the centre of mass, and Q is the moment of inertial about the 
point C at a distance CG from G.] 
 

COROLLARY II. 
 

 Hence  .CGP
D][GA
×

=−= CGCA  Thus for a given direction of the axis of oscillation 

with respect to the figure of the proposed body, the product )P
D(GACG =× is given [the  

square of the radius of gyration].  Hence for a given centre of oscillation arising from a 
single instance of the direction of the axis, the same is given in all others cases, from the 
last calculation. [p. 98] [See, e.g., Analytical Experimental Physics, Ference et al, p. 107.] 
 In any proposed case the calculation can be established, either by finding Q from a 
convenient assumption of the point C, or by finding D itself, as appears more convenient.  
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EXAMPLE I. 

 The centre of oscillation of the cone, generated by the rotation 
of the isosceles triangle ACD about the perpendicular CF, is 
found, hanging from the point C. Draw IEH parallel to the base 
crossing CA, CF, CD, in I, E, H; and let CF = a. FD = c, CE = z, 
and hence EH = a

cz , and take some point B on the line EH, such 

that EB = x. Then if for an elemental prism  p for the point B, with 

the base consisting of 
••

xz  (= parallelogram Bb) with the height of 

the same considered to be 22EH2 x− , the volume element will be 
22EH2 xxzp −=

••

, and .EH2EHCE2CB 2222222 xxzxxxzp −×+−×=×
••••

 This 

is the fluxion of the sum of all  2CB×p  in the line IH. But if A is written for the area of 
the circle of this diameter IH, the whole fluent of this adjacent to the line IH is equal 

to Azz
a

ca 2
2

22

4
4 •+  (by  Quad. Curvarum : for in this case CE, EH, and 

•

z  are taken as 

given and CE : EH :: a : c.) And the whole fluent of this is the sum of all 2CB×p  in the 
whole figure. But the area A is as z2. If hence 2A nz= , and by summing the fluent 

becomes .20
4Q 33

22
anca +=  Moreover the distance of the centre of gravity from the 

vertex C is ]CG[4
3 =a , and the volume of the cone is ]P[3

3
=ana ; thus it is the case that 

,4PCG
4na=×  and hence the distance of the centre of oscillation from the point of 

suspension C is .]P3
4D

4
3

PCG
DCGCA[5

4 22

aaa
ca +=

×
+==+  [p. 99.]  

Thus also ).80
3ADCF3(80

123
P
D 2222 +=+= ca ]  
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EXAMPLE II. 
 

Let the figure proposed be a sphere. In this figure 
the calculation can proceed most conveniently by 
finding D, or the sum of all 2GB×p . Therefore let G 
be the centre of the sphere, DHI a great circle, and 
the radius of the sphere is GD = a. From the centre G 
and with some radius GB describe a circle BEF, and 
let GB = z, and the circumference BEF = nz. Then 
the sum of all the 2GB×p in the circumference BEF 
is equal to the same circumference taken with the 
height of the small portion in B multiplied by GB2, 
that is .2 223 zanz −  Hence the sum of all 2GB×p in 

the whole sphere is equal to the fluent of  ,2 223 zazzn −
•

 that is, ]P[3
5
2 =na ; Hence 

.P
D 2

5
2 a=  

SCHOLIUM. 
By the line of  the argument in this Proposition, the motion of the oscillating body, so 

with respect to the forces, as with respect to the velocities, is the same, and is equal to the 
motion of the particles equal to the sum of all 2

2

C
GB

A
p×  (that is of the particle ,Q

PGG 22× ) 

oscillating at the distance CA. Hence in place of some body oscillating it is possible to 
substitute a particle of this kind situated at the same centre of oscillation.  Therefore when 
the common centre of oscillation of a number of bodies is sought, it is convenient to find 
the centres of oscillation arising from these themselves, [p. 100.],  and to substitute these 
themselves in place of the bodies, and hence to find the common centre of oscillation by 
the principles of this calculation.   
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PROP. XXV. PROB. XX. 
 

To find the centre of percussion on a given line 
for a body of any kind rotating about a given axis.  

  
The centre of percussion is the fixed point A in 

a body that is free to rotate about an axis, by 
which on striking an obstacle the whole rotational 
motion of the rotating body can be brought to 
rest, thus so that it does not lean in one way or the 
other.  

It is agreed that the location of a point of this 
kind lies in the plane of motion of the centre of 
gravity;  and thus prismatic elements of any kind are normal to this plane; and thus 
parallel to the axis of rotation; the momenta of the elements from each side of this plane 
are always equal to each other since the motion of each is always parallel to the other; 
and thus the whole motion of the rotating body can be made to stop by a resisting force 
acting in that plane.  

If therefore C lies at the intersection of the axis of rotation with the plane of motion of 
the centre of gravity G, and the centre of percussion is sought on the line CS cut by the 
point C, and that point sought shall be taken as A.  With Diameter CA describe a circle 
CDAd, the centre of which is S; and from two points taken, B within the periphery of the 
circle, and b outside the same, and from these two points particular elemental prisms of 
magnitude p are set up parallel to the axis of rotation. Draw AB, SB, Ab, Sb, crossing the 
circle in D, F, d, f, and draw CB, Cb, CD, Cd.  [p. 101.] [Note that since CA is a 
diameter, D and d are right angles.] 

On account of the rotational motion, the absolute velocities of the points chosen, in the 
direction perpendicular to CB and Cb, are as the distances CB and Cb. [which are in turn 
as the lengths BD to db from similar triangles.] Whereby upon striking the body in the 
point A, the opposing velocities on the elements taken in the interval around A are as the 
distances AB, Ab to the lines BD, bd. Therefore the absolute forces acting on the 
elements at the ends of the lines AB, Ab, are in the ratio DB×p  to  bp d× ; and  the 
effectiveness of  these forces in stopping the body on the opposite sides of A are as  

.bd and,BDB AbpAp ××××  Hence from the conditions of the problem, the sum of all  
BADB××p within the circle is equal to the sum of all Ad bbp ×× outside the circle. 

But from the nature of the circle it follows that : 
222222 SASAand ,SBSASBSFBADB −=×−=−=× bb db . Thus the sum of all 

22 SBSA ×−× pp within the circle is equal to the sum of all 22 SAS ×−× pbp  outside 

the circle. Whereby by transferring all the terms 2SAp×  to one side of the equation, and 

the terms 22 S,SB bpp ×× to the other side, the sum of all the terms is 2SA×p , so within 

as without for the whole body, equal to the sum  of 2SB×p , also for the whole body.  But 
by drawing SG and GB, and for the size of the body I write P, then the sum of all the 
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terms is  2SB×p (by Cor. 1. Prop. 24). Likewise on account of the given  SA2, the sum  

of all 22 SAPSA ×=×p . Hence if for the given sum of all 2GBp× I write D, then 

DSGSAP 22 +×=× p , that is P
DSGSA 22 =− . 

To CA draw the normal Gg, and draw CG; and thus 222 SACGCSCSG +×−= G , and  
222 CCCASG-SA Gg −×= , that is P

DCCCA 2 =−× Gg . Moreover, all the terms CG, 

Cg, P & D are given; whereby the point A is also given.  Q.E.I. [p.102.] 
 

COROLLARY. 
 

Thus CA is to CGP
DCG
×

+  as CG to Cg. Whereby if the line  CG crosses the circle at 

O, by considering the angle at O as right, and thus the with the triangles CAO and CGg 
similar, then .CGP

DCGCO
×

+=  Thus (by Cor. 1. Prop. 24)  O is the centre of 

oscillation.  Hence with a line drawn from the centre of rotation to the centre of 
oscillation O, the perpendicular to that is the centre of percussion. And thus the centre of 
percussion is found from the centre of oscillation.  

 
[Taylor is incorrect in his analysis, as the centre of percussion and the centre of 
oscillation are in fact identical; both satisfy the relation 2' kll = or  

)P
D(GACG =× derived above. Hence, the points O and A coalesce, and A lies on the 

line CG extended.] 
____________________________________________ 

METHODUS INCREMENTORUM. 
 

Pars Secunda IIc.  
[p. 94] 

 
LEMMA X. 

 
Si in punctum datum spatii rigidi circa datum 

axem mobilis, impingat data particula in data 
directione, data cum velocitate; atq; in figura 
praesenti sint puncta C, B, b, A intersectiones 
plani ad axem datum rotationis perpendicularis, 
cum ipso axe & cum rectis ei parallelis, 
transeuntibus per locum puncti in quod impingit 
particula data, per extremitatem rectae in 
directione motus, & proportionalis velocitati 
istius particulae impingentis; & per spatii 
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ejusdem aliud punctum datum : atq; ad CB ducatur normalis bD : tum erit motus istius 
spatii productis per impulsum istius particuale omnino idem, ac si produceretur per 
aliam particulam, cujus magnitudo est ad magnitudinem particulae prioris, ut CB2 ad 
CA2, & velocitatas est ut Db × CB

CA , impingentem in istud aliud punctum datum cujus 

projectio est A, cum directione tum recta CA tum Axi rotationis perpendiculari. 
 
Nam per rigorem spatii omnis motus tollitur, nisi quatenus sit in planis ad axem 

normalibus. Quare punctis omnibus de quo agitur modo praedicto ad tale planum 
reductis, particulae impingentis velocitas & ejusdem directio in hoc plano 
repraesentabitur per rectam Bb. Sed hujus velocitatis pars BD tollitur per resistentiam 
puncti C, & per partem reliquam Db producitur motus spatii. Velocitas autem puncti A 
est ad velocitatem puncti B, ut distantia a centro CA ad distantiam CB : quare puncti A 
velocitas producta per motum particulae impingentis in B erit Db × CB

CA . Sed & 

momentum ejusdem [p.95] particuale est ad momentum quod tribuit puncto A, ut CA ad 
CB : quare si particulae istius magnitudo sit p, ejus momento in B existente  
p × Db × CB

CA . Sed eadem velocitas & idem momentum producuntur in puncto A per vim 

particulae p × 2
2

CB
CA  impingentis in illud punctum, in directione ipsi CA perpendiculari 

cum velocitate Db × CB
CA . Quare respectu motus producti in spatio rigido, perinde 

omnino est sive particula p impingat in B, sive particula p × 2
2

CB
CA impingat in A jam 

definito. Q.E.D. 
 
 

PROP. XXIV. PROB. XIX. 
 

Corporis dati e dato Axe Horizonti parallelo dependentis invenire Centrum 
Oscillationis.  

 
 Per Centrum Oscillationis intelligo punctum, cujus velocitas idem semper est ac si 

corpore reliquo amoto illud solum circa 
eundem axem oscilletur. 

 Sit ergo praesens figura in plano ad 
horizontalem & ad Axem oscillationis 
perpendiculari, transeunte per corporis 
centrum gravitatis G, atque sit C intersectio 
hujus plani cum Axe oscillationis. Duc 
horizontali parallelam Cg, atque in recta CG sit A Centrum oscillationis. Duc Horizontali 
parallelam Cg, atque in recta CG sit A Centrum oscillationis quaesitam. Sit p particula 
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prismatica Axi motus parallela, & plano figurae insistens in puncto B. Duc CB, & ad 
rectam Cg duc perpendiculares Bb, Gg, Aa, ei occurentes in b, g, a. [p.96] 

Si gravitatis acceleratio datae sit 1, tum particulae p acceleratio, ad spatium figurae 
movendum circa punctum C, erit CB

Cb . Quare puncti A momentum a vi particulae p 

oriundum erit (p × CB
Cb  × =CA

CB ) p × CA
Cb . Sed (per Lem. 10) motus puncti A per 

particulam p in puncto B productus perinde omnino est, ac si produceretur a particula  

p × 2
2

CA
CB impingente in ipsum punctum A. Quare vice particulatum p in locus B, 

substitutis novis particulis p × 2
2

CA
CB in puncto A, dabitur acceleratio puncti A, oriunda ex 

conjunctis viribus totius Corporis dati, per notissimam regulam Collisionum; nempe 
applicando summam omnium momentorum p × CA

Cb ad summam omnium particularum 

substitutaram p × 2
2

CA
CB , hoc est (ob datum CA) applicando summam omnium  

p × Cb ×CA ad summam omnium p × 2CB : Sed ex notissima propietate centri 
gravitatis, si magnitudo corporis totius dati sit P, erit summa omnium p × Cb aequalis P × 
Cg. Quare si pro summa omnium p × 2CB scribatur Q, erit acceleratio puncti A aequalis 

Q
CACP ×× g . Sed, ex hypothesi, est haec acceleratio aequalis ipsius puncti A 

accelerationi propositae CA
Ca vel CG

Cg . Est ergo G
QCA CP×= . Inventa itaque summa 

omnium particularum corporis propositis ductarum in quaddrata suarum distantiarum 
minimarum ab Axe oscillationis, per Fluxionum Methodum inversam, dabitur distantia 
centri oscillationis ab Axe, applicando hanc summam ad productum corporis dati ducti in 
distantiam centri gravitatis ab Axe oscillationis. Q.E.I. [p.97]  

 
COROLL. I.  

 
 In eodem plano existentibus punctis C, G, B 
iisdem ac supra, ad CG duc normales HGI, BD. 
Tum erit ;GD2CGCGBGCB 222 ×−+= nempe 
cadente puncto B ad easdem partes rectae HI atque 
punctum C. Sed ubi cadit punctum b ad contarias 
partes rectae HI, erit 

.G2CGCGG 222 dbCB ×++=  Est ergo summa 
omnium particularum ductarum in propria sua CB2 
per totam figuram, aequalis summa particularum 

ductarum in propria 
_________________

22 CBG G+ per totam figuram, minus summa omnium 
GDCG2 ××p ex una parte recte HI, plus summa omnium dp GCG2 ×× ex altera parte 
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HI. Sed ex natura centri gravitatis est summa omnium dp GCG2 ××  aequalis summae 
omnium GDCG2 ××p ex ultera parte HI. Quare est summa omnium 2CB2×p , seu Q, 
aequalis summae omnium ,CGGB 22 ×+× pp  hoc est, (ob datum CG2) aequalis 2CG×p  
plus summa omnium 2GB×p . Si ergo pro summa omnium 2GB×p  scribatur D, erit 

DGBQ 2 +×= p ; adeoque; .CGP
DCG)CGP

Q(CA
×

+=
×

=  

 
 

COROLL. II. 
 

 Hinc est .CGP
DGA
×

+=  Unde data directione Axis Oscillationis respectu figurae 

corporis propositi, dabitur productum ).P
D(GACG =×  Adeoque dato centro oscillationis 

in uno casu ejusdem directionis Axis, dabitur idem in omnibus aliis, absque ulteriori 
calculo. [p. 98] 
 In casu aliquo proposito calculus institui potest, vel per inventionem ipsius Q ex 
commoda assumptione puncti C, vel per inventionem ipsius D, prout commodius 
videbitur.  

EXEMPL. I. 
 Inventium sit centrum oscillationis Coni recti geniti per 
rotationem per rotationem trianguli isoscelis ACD circa 
perpendiculum CF, & dependentis ab ibsius vertice C. Duc basi 
parallelam IEH occurrentem ipsis CA, CF, CD, in I, E, H; & sint 
CF = a. FD = c, CE = z, adeoque; EH = a

cz , & in recta EH sumpto 

quovis puncto B, sit EB = x. Tum si particulae prismaticae p 
puncto B insistentis basis sit 

••

xz (= parallelogrammo Bb) ejusdem 

altitudine existente xxq −EH2 , erit particula ipsa xxxzp −=
••

2EH2 , atque; 

.EH2EHCE2CB 2222 xxxzxxxxxzp −×+−×=×
••••

 Et haec est fluxio omnium 
2CB×p in recta IH. Sed si pro Area circuli cujus diameter est IH scribatur A, erit hujus 

fluens totalis adjacens rectae IH aequalis Azzaa
ccaa 2

4
4 •+ (per Quad. Curvarum : nam in 

hoc casu sumuntur CE, EH, & 
•

z  pro datis & est CE : EH :: a : c.) Et hujus fluens totalis 
est summa omnium 2CB×p  in tota figura. Sed est area  A ut z2. Si ergo 2A nz= , & 

sumendo fluentem fiet .20
4Q 33

22
anca +=  Distantia autem centri gravitatis a vertice C est 

]CG[4
3 =a , atque magnitudo Coni est ]P[3

3
=ana ; unde sit ,4PCG

4na=×  adeoque; 

distantia centri Oscillationis a puncto suspensionis C est 
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.]P3
4D

4
3

PCG
DCGCA[5

4 22

aaa
ca +=

×
+==+  [p. 99.] Unde etiam sit 

).]80
3ADCF3(80

123
P
D 2222 +=+= ca  

EXEMPL. II. 
 

Sit figura proposa Sphaera. In hac figura calculus 
commodissime procedit per inventionem ipsius D, 
seu summae omnium 2GB×p . Sit ergo G centrum 
Sphaerae, DHI circulus maximus, & sit Sphaerae 
radius GD = a. Centro G & radio quovis GB describe 
circulum BEF, & sit GB = z, & circumferentia BEF 
= nz. Tum summa omnium 2GB×p incircumferentia 
BEF erit aequalis eidem circumferentiae ductae in 
altitudinem particulae in B ductae in GB2, hoc est 

.2 223 zanz −  Est ergo summa omnium 2GB×p in 

tota sphaera aequalis fluenti ipsius ,2 223 zazzn −
•

 hoc est, ]P[3
5
2 =na ; Unde sit 

.P
D 2

5
2 a=  

SCHOLIUM. 
Per argumentationem in hac Propositione, corporis oscillantis motus, tam respectu 

virium, quam respectu velocitatis, idem est, ac foret motus particulae aequalis summae 
omnium 2

2

C
GB

A
p×  (hoc est particulae ,Q

PGG 22× ) oscillantis ad distantiam CA. Adeoque; 

vice corporis cujusvis oscillantis substitui potest hujusmodi particula sita in ejusdem 
centro Oscillationis. Ubi ergo quaeritur corporum plurium centrum [p. 100.] Oscillationis 
commune, convenit singulorum centra Oscillationis seorsim quaerere,  & in iis 
substituere hujusmodi particulas vice corporum ipsorum, atque deinde quaerere centrum 
commune oscillationis per principia hujus calculi.   

 
PROP. XXV. PROB. XX. 

 
Corporis cujusvis circa datum Axem revolventis invenire Centrum Percussionis in recta 

data.  
 

 Est Centrum Percussionis punctum in corpore 
circa axem mobilem, sed immotum, revolvente, quo 
in obstaculum impingente sistitur motus totus 
corporis revolventis, ita ut nec huc neq; illuc inclinet. 

Constat hujusmodi puncti locum esse in plano 
motus centri gravitatis; nam elementi cujusvis 
prismatici huic plano normalis, adeoque; axi 
revolutionis paralleli, motus, cum sit sibi semper 
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parallelus, momenta ex utraque; parte hujus plani erunt aequalia; adeoque per 
resistentiam in eo factam sisti potest motus totus corporis revolventis.  

Sit ergo G interfectio axis revolutionis cum plano motus centri gravitatis G, & quaeratur 
centrum percussionis in recta CS transeunte per punctum C, & sit punctum illud 
quaesitum A. Diametro CA describe circulum CDA d, cujus centrum sit S; & sumptis 
punctis duobus, B intra circuli peripheriam, & b extra eandem, iis insistant particulae 
duae prismaticae p axi revolutionis  parallelae. Duc AB, SB, Ab, Sb, circulo occurrentes 
in D, F, d, f, & duc CB, Cb, CD, Cd.  [p. 101.] 

Ob motum revolutionis, punctorum velocitates absolutae, in directionibus ipsis CB, Cb 
normalibus, sunt ut distantiae CB,Cb. Quare impingente corpore in punctum A, 
particularum velocitates ad trhhendum spatium circum A in partes contrarias per radios 
AB, Ab erunt ut rectae BD, bd. Vires ergo absolutae particularum in extremitatibus 
radiorum AB, Ab, sunt ut DB×p , & bp d× ; & harum virium efficaciae ad corpus 
trahendum in partes contrarias circum A, sunt ut .Ad&,BDB bbpAp ××××  Ergo per 
conditiones Problematis, debet summa omnium BADB××p intra circulum aequari 
summae omnium Ad bbp ×× extra circulum. 

Sed ex natura circuli est 
222222 SASAatque ,SBSASBSFBADB −=×−=−=× bb db . Unde est summa 

omnium 22 SBSA ×−× pp intra circulum aequalis summae omnium 22 SAS ×−× pbp  

exta circulum. Quare transferendo omnes terminos 2SAp× ad unam partem aequationis, 

& terminos 22 S,SB bpp ×× , ad alteram partem, erit summa omnium 2SA×p , tam intra 

quam extra circulum in universo corpore, aequalis summae omnium 2SB×p , etiam in 
iniverso corpore. Sed ductis SG & GB, & pro Corporis magnitudine scripto P, erit summa 
omnium 2SB×p (per Cor. 1. Prop. 24). Item ob datum SA2, est summa omnium 

22 SAPSA ×=×p . Proinde pro data summa omnium 2GBp× scripto D, erit 

DSGSAP 22 +×=× p , hoc est P
DSGSA 22 =− . 

Ad CA duc normalem Gg, & duc CG; atque erit 222 SACGCSCSG +×−= G , 
adeoque; 222 CCCASG-SA Gg −×= , hoc est P

DCCCA 2 =−× Gg . Dantur autem 

omnes CG, Cg, P & D; quare etiam datur punctum A. Q.E.I. [p.102.] 
 

COROLLARIUM. 
Hinc est CA ad CGP

DCG
×

+  ut CG ad Cg. Quare si recta CG occurrat circulo in O, 

existente angulo ad O recto, adeoque & triangulis CAO. CGg similis, erit 
.CGP

DCGCO
×

+=  Unde (per Cor. 1. Prop. 24) est O centrum Oscillationis. Proinde 

per centrum rotationis C ducta recta ad centrum Oscillationis O, ei perpendicularis OA 
erit locus centri Percussionis. Invenire itaque; centre Percussionis per calculum centri 
Oscillationis. 


