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____________________________________________________________ 
The Method of Increments. 

 
The Second Part. [IIb] 

 
_____________________________________________________________ 

 
[page 74] 

LEMMA V. 
 

If a rigid solid is held in equilibrium by three forces, the 
lines in the directions of the forces pass through the same 
point, and lie in the same plane.    

The forces can be applied at the points A, B, C, and act 
in the directions Aa, Bb, Cc. Since any point A is held in 
equilibrium, the forces Bb and Cc taken together add to 
give a force equal and opposite to the force Aa. But (by 
the Principles of Statics) the forces  Bb and Cc cannot be 
added together in this way, unless  each line Bb and Cc 
passes through some point p on the line Aa, and all the lines Aa, Bb, and Cc lie together 
in the same plane. Thus the situation is resolved in this manner. Q. E. D.  

 
LEMMA VI. 

 
If the volume is laden with heavy material and is held in place by two strings, the relative 
sizes of the forces in the strings depends on how the matter has been arranged within the 
volume;  if the centre of gravity always acts in this manner normal to the horizontal.  

In accordance with statics. 
N. B. The following four propositions are concerned with the figures formed by thin 

ropes or chains, sails filled with water,  and arches supporting given loads. All these 
figures, as they are made from physical materials,  have a density [or weight per unit 
length],  and are subject to bending, and give a little with the forces, either by being 
extended or compressed [now accounted for by Young’s modulus].  Hence it is necessary 
for anyone who wishes to describe the figures with accuracy to take these things into 
account. But since the solutions to these problems are found with difficulty, the 
calculation itself being of great enough complexity, these will impede our progress 
exceedingly, and  in short we neglect the effect of these, and agree to work out the 
proposed figures from materials that can be simply extended or compressed with 
complete flexibility [meaning that a segment of the material does not respond to the 
external forces, as a spring would do, by generating internal forces, and is completely 
limp]; and thus by being made thin, so that the painful [inclusion of] density disappears 
with respect to the length given [in the equation].  Nevertheless, regarding this, it is not 
always possible to make the density completely zero, since with thin ropes, and with 
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arches, on account of so much weight being supported, the weight associated with the 
structure is part of the solution of the problem.   

 
PROP. XVIII. PROB. XIII. 

 
For a given law of the density of a thin rope 
[elsewhere Taylor refers to chains] suspended from 
two points; to find the relations between the 
abscissae,  the ordinates, and the length of the 
length of the curve;  and to define the conditions 
under which the figure to be described can be 
subjected.  

 
AB is part of a certain thin rope hanging from the 

points A and B; the normals AC and BD are drawn 
to the line with the given position CD parallel to the 
horizontal, and the tangents Ag and Bg are drawn at the points A and B, of which Ag 
crosses CD in E, and the points a and b are themselves close to A and B, and by drawing 
the new ordinate bd, the line Bh parallel to the horizontal crosses bd in h, and Bq is 
drawn parallel to the tangent Ag crossing bd at q; and AC is the ordinate with the given 
fixed position, and BD the ordinate for the moving point; and let CD = z, DB = y, with 
the length of the curve AB = v, with the density at B = x, the weight of the piece of rope 
AB = p, CE : CA : AE :: 1 : n : m, and the given weight a is equal to the tension of a 
thread at A.  

Since the whole weight of the length of rope AB is considered to be held in place by 
threads of the shortest length aA and bB, in the directions of the tangents Ag, Bg, the 
whole rope is put in a plane normal to the horizontal; and if the centre of gravity of the 
part AB is G, by what has been said, GP is normal to the horizontal, the same GP meets 
the mutual tangents that cross at g. For (by Lemma 5) with respect to the threads Aa and 
Bb, likewise , and as if all the material of the rope AB is suspended by a thread GP : thus 
the volume of the figure is set up in equilibrium from the tensions of the three threads Aa, 
Bb, GP, that cross each other at [p. 76] g, and placed in the same plane, (by Lem. 4) that 
on account of the normal GP is 
perpendicular to the horizontal.  
Therefore the tensions of these threads 
are in proportion to the sides of the 
triangle Bbq , which are parallel to the 
directions of these lines. For if we make 
Bh = 

•

z , then bh =
•

y , and Bb = 
•

v , and 
(on account of the similar triangles  
Bhq and ECA,) 

•

= znhq , and 
•••

=+= zmBqznybq  and, . Whereby 
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•••

+ znyzmpa :::: , that is .0=−+
•••

zmpznaya Moreover .xvp
••

=  Hence by eliminating p 

from this equation here (as indeed with the uniform fluent
•

z also) ,  .0=−
••••

zvmxya  

Thus by resolving the equation ,and,0
••••••••••

+==− zzyyvvzvmxya (by Prop. 6) the relations 
between z, y, v themselves are given; for by hypothesis [the density] x is given, either by 
the first power, or by the second power, or some other powers of z, y, and v. 
[The modern intrinsic standard equation for the catenary is dxcdycs /tan == ψ ,where s is 
the length of the curve and c is some unknown length of the curve. Hence 

./1/or ;/1 22 cdsdxyddsdxycd ==  Hence, in the above equation for constant line density,  
c = a / mx; Thus, Taylor has taken as the boundary condition the angle and tension at A, 
rather than the horizontal tension at the lowest point, as is the case in modern analysis, as 
the latter is more convenient mathematically, but certainly not so in a practical sense, 
where Taylor’s approach must prevail.  Now, in modern terms,  c is the catenary constant 
related to the minimum tension T0 at the lowest point, and the line density w, by T0 = wc, 
which is taken to be the constant horizontal tension ; i. e. T0 = Tcosψ = wc everywhere; 
while Tsinψ = ws, is equal to the weight of the chain above the lowest point, and this 
leads to ctanψ = s as above.  In the present case, T= a is given at the boundary point A, 
and sinψ = n/m; while Tcosψ = wc, or a/m = wc;  hence c = a/mx as required. The whole 
analysis can of course be performed starting from Taylor’s basic 
equations .and,0

••••••••••

+==− zzyyvvzvmxya  We should also note the clever means of 
establishing the ‘force triangle’, where the top triangle relates to conditions at any point 
on the curve, and the lower triangle relates to the starting conditions.] 

CASE I. 
 

If the value of x depends on both y and v, the curve is described by the [boundary] 
conditions, which can be applied as you please to the values of  y and v, and their fluxions 
(by Prop. 5). 

CASE II. 
If the value of x does not depend on y, there are three [boundary] conditions in all, of 

which one at the least is to be applied to the value of y, and the two remaining can be 
applied as you wish to the values of v and y and their fluxions.  

CASE III. 
If the value of x depends on y only, there are also three [boundary] conditions that can 

be applied as you wish to the values of v and y and their fluxions, as there is only one 
applied to the value of v itself.   

CASE IV. 
Thus if x does not depend on v or y, there are three [boundary] conditions, only one of 

which is applied to the the value of v, the second [p. 77] to the value of y, and the third to 
be applied as you wish to the values v and y and their fluxions.  
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COROLL. I. 
For this [last] solution, the tension of the string at B to the given tension at A, is as Bb 

to Bq, that is as 
•

v  to .
•

zm  Therefore the tension in B is as •

•

zm
v , or on account of the given 

fixed m, as •

•

z
v : But by the  equation ,0=−+

•••

zmpznaya that is 

;21)( 2222 pmmnapana
zzzyyv +−+×=+=
•

•••••

 and the tension at A is equal to a. Thus the 

tension at B is  .21][ 22
2

22
papm

na
m
an

zm
av +−+=•

•

 And because this tension is proportional 

to •

•

z
v , this will be a minimum when 

••

= zv , that is at the lowest point of the curve at which 

the tangent is parallel to the horizontal, by considering this to be the case, the tension here 
is equal to m

a . And hence the law governing the density of the rope is of such a kind, that 

for a given tension at the one point A, by drawing the tangent, the tension is given at 
some other point B. 

 
COROLL. II. 

 
Indeed the rope can be divided into parts in which the 

weights are in a given ratio by drawing the tangents. For 
let ABC be the rope, and the tangents ADE, DEF, and 
EFC are drawn at the three points A, B, and C, crossing 
in turn at D, E, and F. Then (by this proposition) the 
centres of gravity of the ropes AB,AC and BC, are [p.78] 
on the perpendiculars passing through the points of 
mutual concurrence of the respective tangents at D, E, 
and F. Hence if the perpendicular EG is drawn through 
the point of concurrence E of the tangents AD and CF 
crossing the third tangent DBF in G, the weights of the 
parts AB and BC are to each other in the reciprocal ratio of the distances of their own 
centres of gravity from the centre of gravity of the whole rope ABC, this is, the weight of 
AB will be to the weight of BC in the reciprocal ratio of DG to GF [just by taking 
moments]. Therefore, for a given ratio of the weights, the ratio DG to GF is given. 
Hence, from the positions for the given lines DE, GE and FE, the direction is given of the 
third tangent DBF, by which the weight of the rope ABC is divided in the given ratio.   
   

COROLL. III. 
If in the expression for the density x, only one of  z, y, v is present, then the problem be 

solved by the quadrature of the curve.   
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CASE I. 
For in the first place if only v is present in the expression for the density x,  then at first I 

calculate using the equations ,0=−+
•••

zmpznaya and ,
••••••

+= zzyyvv and for the sake of 

brevity I write R for 2222 21 pmmnapan +−+ . It is found that R

•
•

= vaz , and 

.R

___________
••• −=−= vnampza

nampy  Thus for a given p by the quadrature of this curve , the abscissa 

is v, and the ordinate x; then z and y are given, by quadrature,  the common abscissa is v, 

and the ordinates are 
R
a  and .R

namp −  

 
CASE II. 

If in the expression for x only z is present, by multiplying each part of the equation by x, 

R
vaz
•

•

=  becomes R
paxz
•

•

= . Hence by quadrature, the curves [p. 79] of which the abscissae 

are z and p, and of which the ordinates are x and R
a , give the relation between z and p. 

Hence on account of x
pv
•

•

= , and 
•• −= za

nampy , by quadrature the curves of which the 

abscissae are p and z, and the ordinates are a
namp

x
−and1 , give v and y. 

 
CASE III. 

Hence if the value x depends only on y is, by multiplying the equation 
•• −= vR

nampy  by 

x, it becomes ).(
___________

m
RpR

nampyx =−=
••

 Whereby by making m
R equal to the area of the curve 

of which the abscissa is y, and with the ordinate x, the relation between p and y is given. 
Hence, then by quadrature, the curve with this abscissa y and with the ordinate  namp

a
−

, 

gives z. Moreover this gives v by quadrature,  as in the second case the abscissa of this 
curve is p, and the ordinate x

1 . 

  COROLL. IV. 
 By Cas. 3 Cor. 3., 

m
R is equal to the fluent 

•

yx , that 

likewise is equal to the tension in the thread, (by Cor. 
1). Hence ABC is a thin rope, at the lowest point of 
which C the tangent CEHD is drawn parallel to the 
horizontal, and the normal EF is drawn to that; and 
draw BFG [p. 80] parallel to the horizontal, in that 
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always FG = x = density of the rope at B. Then if GH is the curve, that always touches 
the point G, and the area GFEH of the end to the tangent CE is added to the area EDKI = 

m
a , the total area  IKDHGFEI is always equal to the tension in the thread at B. For EF = 

y, and thus the fluxion of the area is 
•

yx = fluxion of the tension which is equal to m
a  at 

the  point C.   
COROLL.V. 

 

By Ex.4 Prop. 15, the radius of curvature is equal to •••

•

yz
v

3

; whereby (by equation 

.0=−
••••

zvmxya ) the radius of the rope is equal to 2

2

•

•

zmx

va , that is, equal to the area DI (fig. 

Cor. 4) to be applies to FG, and then by multiplying by 2

2

•

•

z

v , that is by the square of the 

secant of the angle, that the curve makes with the horizontal.   
 
 

COROLL. VI. 
 

For a given shape of the rope, it is easy to find the ratio of its density. For given 
relations of the fluxions from the form of the figure :  hence through the equation found 

in this problem 0=−
••••

zvmxya , for a given density :  2

2

22

2

•

•

•

•••

•

•

••

••

=×=−=
zm

va

v

yz

zm

va
zvm

yax from the 

application of the radius of curvature.  
 

[p. 81] 
PROP. XIX. PROB. XIV. 

 
For a given ratio of the density, to find the figure of the arch supported by its own weight.  
 

Let AB be a certain part of the arch [formed by the 
flexing of a plane], and a and b points close to A and B, 
and the tangents Ag and  Bg are drawn. Then if the centre 
of gravity of the portion AB is at G, through this point is 
drawn the perpendicular to the horizontal GP that cuts the 
point of concurrence of the tangents g, (by Lem. 5 & 6) 
since the weight of the arch AB is supported by the short 
lines aA and bB. Thus with these forces interpreted in the 
same way as in the preceding proposition, it is agreed that 
the figure of the arch is the same as that of the rope yet 
inverted in position.  
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LEMMA VII. 
 
Let AB be some curved line in a plane perpendicular to 

the horizontal, and a surface is described by a motion of 
the line normal to the same plane, by which a fluid is 
supported, the surface of which runs to meet the same 
plane in the line CD parallel to the horizontal. 

Then I say,  
Since if the perpendiculars CA and DB are drawn to the 

horizontal, meeting the curve in A & B, and the line CD 
in C & D, and the parallels AE and BFG are drawn 
parallel to the horizontal, of which BF crosses [p. 82] the 
line CA in F, and  AE is made equal to CA, and CE is 
drawn crossing BF in G, then the total lateral pressure of the fluid, by which the surface 
AB has a force acting on it horizontally, is to the weight of the fluid enclosed in the space 
CABD, as the area AEGF is to the area CABD. 
 

Draw ca perpendicular to the horizontal, near to CA itself , and crossing the curve AB 
and the line CD at a and c; through a draw ae parallel to the horizontal, crossing CA and 
CE in f  and e. Then with the points A and a coinciding, the volume of fluid enclosed in  
CAac by being considered to weigh the same as the volume, that is, as CA × fa, [fa is a 
differential quantity, and so the pressure acting on the differential Aa due to the head of 
fluid CA is the same as on fa; the difference being a second order quantity which is 
ignored; note that C has been displaced erroneously to the left on the diagram; and it is 
common knowledge that pressure in a fluid has no fixed direction, and acts the same in 
all directions.] the absolute pressure of this in the short line Aa produced perpendicularly 
is as CA × Aa; and thus the lateral part of the same pressure parallel to the horizontal in 
the direction fa is as CA × fA, that is as EA × fA. Therefore by considering CAac as the 
fluxion of the weight, EAfe is the fluxion of the lateral pressure; hence [on summing over 
all increments of weight and pressure] when the weight is equal to the area CABD, the 
lateral pressure is made equal to the area AEGF. Q.E.D.  

COROLLARY. 
 

Hence if a right-angled triangle PQR is set up, the base of which PQ, 
parallel to the horizontal, is to the  perpendicular RP as the area AEGF 
to the area ACDB, the resultant force of the fluid on the surface AB is 
in the direction of the hypotenuse RQ, and by that it is represented, if 
the weight is represented by the perpendicular RP. 
[Thus, the single horizontal force representing the pressure averaged 

over the vertical distance FA exerted on AB is PQ, while the single vertical force 
representing the pressure exerted on AB averaged over FB  is RP, and these are balanced 
by a single force RQ produced by the sail.] 
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PROP. XX. PROB. XV. 

 
 To find the figure of a sail filled with water.  

 
Some part of the sail is represented by the curve AB, and 
[p. 83] the horizontal surface of the water by the line 
CD. The two lines EATHI and BT are tangents to the 
sail at A and B, themselves mutually crossing at T, of 

which AT is horizontal, and through the points A and B from CD and AT normals are 
drawn, with these crossing at C, D, and H; and on AT, AE = AC, and draw CE, and BG 
crosses that parallel to the horizontal at G; and with CA in F. 

Now if on AT the ratio HI to HB is taken, as the area AEGF to the area ACDB, then  
the hypotenuse BI is parallel to the direction of the total absolute force of the pressure on 
the sail AB (by Lem. 7).  But there is resistance to this force offered by the tensions of the 
threads Aa and Bb in the directions of the tangents AT and BT : whereby (by Lem. 5) the 
absolute force of the fluid pressure on the sail AB is equal in strength to the force applied 
to the point T in the direction of the line BI [for the point T is where the mechanical 
forces are applied, along the direction IB]. Therefore the tensions in the threads Aa and 
Bb, and the force of the pressure on the sail AB, are between themselves as the lines 
parallel to the directions TI, TB, BI; likewise with the weight of fluid in the volume 
CABD to the lateral force on the surface AB proving to be as BH to HI. But on account 
of  the fluid nature of the liquid, the sail will be freely moved by small parts of this, just 
as by pulleys, until the tension in the string Bb is equal to the tension in the string Aa, 
and hence TB = TI [The magnitude of the tension in the sail is taken as constant]. Hence 
if the tension in the given string is designated by the given length a, and the weight of the 
fluid held by the volume ACDB, that is also called A, and the lateral pressure by the 
volume AEGF proportional to that, called B, the ratio  
[of the three sides of the triangle BHI are in proportion to the forces, where 

→→→

=+ IBTBIT is the resultant force exerted by the sail] is a : A : B :: TB : BH : HI. 
Moreover,  ;HIHITB2BH 2−×= (as TI = TB) whereby also by this analogy 

BBB2A −= a .  
[For : a/ TB = A/ BH = B/ HI; and HI = a – B, hence BH2= a2 – (a - B)2 giving the 

vertical pressure force 2BB2A −= a .] 
Now  CA = c, AH = z, DB = y (= CF = FG.) Then [the area EAFG (recall the 450 

triangles!) is 2

22 yc − or] 2

22 ycB −= , and [the inverse gradient of the curve at the point B 

is]TH : HB :: 
••

yz : , that is, (by the analogy found above, for the value of A) 

.:::BB2: 2
••

−− yzaBa  Hence 
2

_______

BB2 −
×−=

•
•

a
yaBz naturally with the ratio having the signs 

of .and
••

yz For when the curve is  convex, with increasing z, and decreasing  y, and we 
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have 2

22 ycB −= : But when the curve is concave, the fluxions of z and y have the same 

sign, with it being understood that 2

22 cyB −= . [p. 84] Moreover the fluxion of z is of the 

same form in each case, with only the sign change. In the case of the present figure the 
fluid is indeed  contained in the sail : in another case it lies at the lower part of the sail, 
and it is acted upon by a force (consider the action of a siphon) at some point 
proportional to the perpendicular height of the fluid below the highest horizontal surface.   

Moreover z is given from a given y by integrating the curve of this fluxion, for which 
the abscissa is y; and the ordinate

BBB2 −
−

a
aB . [In modern terms, this 

becomes ∫
−

−=
BBB2

)B(
a

dyaz , where  2

22 cyB −=  and a and c are constants. This expression 

reappears again for the arch and the vibrating string, and is finally integrated in Prop. 
XXIII.] And from the undetermined coefficient in the value of the fluent z, and from the 

two coefficients a and c the solution can accommodate three [boundary]conditions, of 
which at least one is in respect to the value of z; by which indeed the position of the 

curve is determined. From the equation: ,0est )(
BBB2

_______

=−=
−
×−= •

•
•

•
•

y
zyA

aB
a

yaBz [i.e. where the 

curve is vertical] that is, the ordinate y is a tangent to the curve, when [the pressure force]  

B = a, i.e. ,2

22

ayc =− [p. 85] or acy 22 −= . And in this case, the area [corresponding 

to this force] is A = a. Likewise when A = 0, 
•

z is infinite with respect to 
•

y , that is the 
curve is a tangent to a line parallel to the horizontal. And this shall be when 2aB – B2 = 0, 
that is , either when [the lateral force] B = 0, and thus y = c, or when B = 2a, and thus 

acy 42 −= . Hence if CD is the horizontal surface of the fluid, and the normal CA is 

drawn to the horizontal, on which are taken CA = c, and acC 42 −=α , and through the 
point A and α AI and αa are drawn parallel to the horizontal, with the curve described 
tangent to each, and between these the whole curve is situated. And it is made under this 
condition, that as the ordinate first by going from CA to DB arrives at EP, where 

ac 2EP 2 −= , and the area CABPE = a; then  by going backwards from EP by Db it 
arrives at ca, where acca 42 −= , and the area EPbac = a. For by the ordinate 
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progressing, the area increases : whereby if the area is zero,  this is the evidence, either 
the ordinate has not yet moved from its place, or since the decrement of the area by the 
regression of the ordinate is equal to the increment of the same first made by the 
progression of the ordinate. And hence by the infinite repetitions of the figure APBba 
made on both sides the curve will constantly crawl between the parallel lines AI and αa 
to the horizontal in the [epicycloid form of] image of a cycloid, where the point 
describing the curve is taken beyond the circumference of the wheel.  

The radius of curvature is equal to y
a  for this curve, that we will soon show in the 

following proposition.   
 

 
PROP. XXI. PROB. XVI. 

 
To find the shape of the arch supporting the weight of a liquid from above. 

 
In this figure the forces are understood entirely as in 

Prop. 20. Since the shape of this arch and the figure of the 
sail is the same, only with the weight applied to different 
parts of the figures; for in this case the fluid is applied to 
convex parts of the curve, while in the other case to it is 
applied to concave parts of the surface. [p.86]  

But in order that the situation can somehow be made 
clearer for the different solutions, some part of the arch is 
represented by the curve AB; I take A for the vertex by 
considering where the tangent is parallel to the horizontal. 
Also, the whole surface of the fluid is represented by the 

line CD parallel to the horizontal, and with the normals AC and BD drawn to the 
horizontal, these are AC = c, CD = z, DB = y, and the length of the curve AB = v, and A 
is written for the area CABD. Take each point  b and p at equal small distances from the 
point B, and the normals bS and pS are drawn to the curve concurrent in S, and the 
tangents bt and pt are drawn meeting in t, and the parallelogram btpr is completed.   

It is understood that the points b and p are each acted upon by forces trying to bring 
them closer together in the directions of the tangents bt and pt [and we note that the 
internal tension T is of constant magnitude along the curve]; for moreover these forces 
are to be resisted by the weight of the fluid pressing upon the base bp, and in the direction 
perpendicular to the base bp.  Hence these forces are as the sides of the triangle btr 
parallel to these directions, or as the sides of the similar triangle Sbp [as triangle tBb is 
similar to triangle SBb and likewise for triangles tPb and SBp; hence tb/bS = pt/pS = 
tr/BS; note however that the forces in the larger triangle have all been rotated through a 
right angle]. But the point b is acted on by the weight of the whole fluid in the area 
CABD, the component of the weight in the direction bt is to the normal component of the 

same weight A as the secant of bBD to the radius (bS), that is as 
•

v /
•

y .  
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[Perhaps some explanation is needed for these assertions. The usual way of going about 
the creation of a fluxional equation is to consider the statics of some finite object from a 
geometrical point of view, on to which is tagged an incremental part, showing how the 
quantities change when a small or incremental adjustment is made to the values. In the 
present case, a finite weight of fluid ACDB is held up by a tension force acting along the 
surface of the arch. Thus, a finite arch length v results a tension T acting along the curve 
at some small angle θ; the other right-hand end of the finite triangle of forces should be 
horizontal, and the weight A is balanced by the upward tension force N = Tθ.  Meanwhile 
the curve has the ordinate y, while the distance along the curve is v; and an incremental 

triangle with sides 
•••

vyz  and , , is considered, for which sinθ is equal to •

•

y
v . The 

incremental triangle has the same curvature as the original triangle of forces. This can be 
seen from the added drawn figure, for the small triangle of forces : the weight of the fluid 
A acting vertically is the normal force N, while the tangential force at the point b on the 

curve is T, then the ratio of T/N = •

•

y
v  ; and likewise the remarks concerning the larger 

diagram. Note that the curvature is small, and squares and higher powers of derivatives 
are ignored in the analysis, while the small angle θ is the complement of the angle bBD, 
and the normal forces are taken as vertical, even though the rather small diagram given in 
the text does not follow this edict.]  
Likewise the weight on the 
[incremental] base bp is to the 
weight of the fluid in the area 
ACDB as ybp× is to A. Whereby 
with these ratios taken together,  

•

× yybp  is to 
•

vA  as  bp to bS; 

and thus •

•

=
yy
vb AS . But for the 

given
•

v , ••

••

=
y
zvbS  (by Ex. 4. Prop. 

15).[In this situation, •

•

=
z

yθtan , 

and •

•÷

z

y~.sec2 δθθ , where for 

small θ this becomes  •

•÷

z

y~δθ . 
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Hence, .S ••

•••

==
y
zvvb δθ ]Thus •

•

••

••

=
yy
v

y
zv A , that is .0AAor ,A =−=

••••••••

yyyyyz  Hence by 

taking fluents [i. e. integrating, where a constant a is introduced for A and
••

= vy  initially 

when z = 0], •• =
v
a

y
A , that is 

••

= yavA . Moreover 
••••••

+= yyzzvv , [p.87] hence 

,
A

A
22 −

=
•

•

a
zy [on eliminating

•

v ;] that is ,
A

AA
22 −

=
•

•

a
yy  [as  .A 

••

=yz ]Thus (by taking 

the fluents, and on adding 2
2ca + , for on taking  y = c at the vertex of the curve, where A 

= 0, ) .A22
22

22

−−+= acay  For 2

22 cy −  write B, and with the calculation carried out it 

is found that ;BB2A 2−= a and thus  ,
BB2

B-
2

_______

−

×
=

•
•

a

yaz  just as in Prop. 20. 

 
 

COROLLARY. 

In this solution it was found that •• =
v
a

y
A , and that •

•

=
yy
vb AS .  Hence the pressure 

y
v
•

A multiplied by the given line increment bB is equal to the given [force] a, and the 

radius of curvature is bS = y
a .  

SCHOLIUM.  
From this expression for the radius of curvature it is agreed that this curve is also the 

figure of the flexed lamina for the given force. For this will be bent in the reciprocal ratio 
of the radius of curvature, and thus in this curve in the direct ratio of the height y. But the 
force of the given weight to the curvature of the plane is as the same minimum distance 
of the same from the point of curvature. Whereby if the weight is applied to the plane on 
the line CD, the figure generated is that we have described here.   

Indeed for the remaining points, in which this curve meets the surface of the liquid to 
the horizontal CD, if the maximum height c is lessened by an infinitesimal amount, [p. 
88],this will be the curve of the same figure a vibrating musical string puts in place, in 
some part of its motion. Which we now hurry to demonstrate. 

[This aspect of the curve being the same as that of a vibrating string, or of a sine curve, 
is explained in Vol. II  of Feynmann’s Lectures On Physics, p. 38-11. Essentially the 

curvature measures the deflection y of the lamina which is given approximately by 2

2

dx
yd , 

and as these are in proportion to each other, the usual simple harmonic equation 

ky
dx

yd −=2

2

arises with negative curvature. One might presume that Taylor was the first 
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person to investigate surface forces in this systematic manner, and for which the equation 
for the tangent to the curve of the same form keeps reappearing.]  

 
LEMMA VIII. 

 
If for two curves AB and AP having 

the common abscissa AD, the ordinates 
DB and  DP are reciprocally in a given 
ratio, with these diminishing 
indefinitely, in order that finally they 
coincide with the axis AD [at A], the 
final ratio of the flections [curvatures] 
is the same as that of the ordinates.  

Draw the new ordinate dp crossing 
the curves in p and b, and draw the tangents at the points B and P, crossing dp in C and c. 
Then on account of the given ratio of the ordinates, the tangents produced meet at some 
point T on the axes AD. Hence on account of the parallel lines db and DB, it follows that 
dC : dc :: DB : DP :: db : dp :: dC – db : dc – dp, that is bC : pc :: DB : DP.  
[Or : dC / dc = DB / DP; DB / DP = db/ dp; and db/ dp = (dC – db) /( dc – dp). The last 
ratio following from dC/dc =  db/ dp or dC / db – 1 = dc / dp – 1, giving (dC – db)/db = 
(dc -  dp)/ dp, or bC /db = pc/ dp]  
Now the ordinates db and DB coincide, and the vanishing increments bC and pc are as 
the subtangents of the angles of contact  bBC and pPc; and they are proportional to the 
indefinitely diminishing ordinates of the angles. But the amount of flexion is estimated by 
these angles. Whereby with the curves AB and AP coinciding with the axis AD, the 
flexion at B to the flexion at P is in the ratio of the ordinate DB to the ordinate DP. 
Q.E.D. 

 
LEMMA IX. 

 
 

For a given density of a stretched string, the 
accelerating force at any point is as the curvature at that 
point.  

 
The string is in the position of the curve ABC. Take a 

point b close to B, and draw the tangents Bt and bt 
meeting in t, [p. 89], and the parallelogram Btbr is 
completed, and the normals Bs and bS are drawn to the 
curve meeting in S. Then (by the principals of Statics) the 
resultant force acting in the movement of the element Bb 

in the direction tr to the tension in the string at B or b, by which that force is generated,  
is as tr ad tB, that is as Bb to BS, and thus the force is as 

BS
Bb ; since the tension of the 

string is given. But the acceleration of the force is in the direct ratio of the absolute force 
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and in the inverse ratio of the matter to be moved; and in this case the matter to be moved 
is in proportion to Bb. Whereby the acceleration of the force is as 

BS
1 , that is as the 

curvature at B; for the curve is in the inverse ratio of the radius. [The unbalanced force is 
Tδθ, and the acceleration is as Tδθ/Bb, which varies as 1/radius of curvature. ] 
 

 
PROP. XXII. PROB. XVII. 

 
To define the motion of a stretched string.  

 
With these I consider the string to be 

constructed from the thinnest material of uniform 
thickness; and the maximum  elongation of this 
from the axis of  the motion AB is to be  infinitely 
small; thus in order that the tension is not changed 
by the increase in length of the string at its 
greatest distances from the axis  AB, and so the 
inclination of the radius of curvature to the axis is 
always negligible.  

 
SOLUTION.  

The curve ADFB is drawn through the points A and B, an inbuilt characteristic of which 
is, that for any ordinates CD and EF drawn as you wish perpendicular to the axis, the 
curvature at  D to the curvature at F shall be as DC to FE. [which is tantamount to saying 
in modern terms that the curve is sinusoidal.] I say that is the figure put in place in any 
part of its motion; likewise since all the points D and F arrive at the axis at the same time,  
and likewise their returning vibrations are carried out in the same period of time,  the 
counterpart of the oscillating pendulum in the cycloid. [See Huygens’ Pendulum Clock in 
these translations.] Q.E.F. [p. 90]. 

 
DEMONSTRATION. 

For let the maximum distance of the string from the axis AB be ADFB , with all the 
points now at rest.  Then since the curvature at D is to the curvature at F as the distance 
CD to the distance EF (from the hypothesis),  and hence the acceleration at D to the 
acceleration at F is in the same ratio of the distances (by Lem.9); and thus in the initial 
motion the distances traversed Dd and Ff are in the same ratio: and the  separate intervals 
traversed Cd and Ef are in the same ratio : and hence also the new accelerations for the 
points  d and f are in the same ratio (by Lem.8  & 9) ; the initial accelerations at D and F 
are as the distances dC and fE to the  distances DC and FE (from the same Lemm.) Hence 
the acceleration of some point D, either in the same curve ADFB, or seen to be in the 
different curves ADFB and AdfB, is always as the same distance from the axis  of the 
motion AB. Whereby (by Prop. 51. Book.1. Phil.Nat.Principia Mathematica) all the 
points of the string reach the axis at the same time, and return at the same time and the 
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individual vibrations are performed in the given period of time, the image of a body 
oscillating in a cycloid. Q.E.D. 

Again if  [we suppose that] the string struck by means of a plectrum had not yet attained 
the form of the curve just described, then the form ADFB of this shall be that  with the 
curvature at F to the curvature at D considered to be in a greater ratio than the distance 
FE to the distance DC. In this case the velocity at F is to the velocity at D, is either in a 
greater or smaller ratio than the distance FE to the distance DC. If the velocity at F to the 
velocity at D is in a greater ratio than FE to DC, then the interval Ff  described in the least 
time to the interval Dd described in the same time is in a ratio greater than EF to CD; and 
thus the part  fR  is less with respect to FE, than EF is to CD; and thus the part  fE is less 
with respect to FE, than dC is with respect to DC, and thus (by the preceding Lemma) the 
acceleration in f is less with respect to the acceleration in F, than the acceleration in d is 
with respect to the acceleration in D. Thus with the acceleration of the greater velocity 
always decreasing, and from the contrary reasoning, with the acceleration of the lesser 
velocity always increasing (with respect to the distances from the axis AB) the motions 
can be combined together between themselves finally, in order that with the points F and 
D arriving at some points p and t, then the velocities are to the accelerations as the 
distances per to tic; and thus with the curve Apt now considered to be the same as that 
which we have described, hence all the motions [p. 91] are in agreement. And the same 
eventuates if the velocity at F to the velocity at D is in a smaller ratio than for the 
distance  FE to the distance DC. Whereby in whatever manner the string may be struck, 
the form of the curve here described is quickly adapted, and goes on to be moved in the 
manner now described. [The mode of exciting the string does explain the presence of 
harmonics, however.] Q.E.D. 

 
PROP. XXIII. PROB. XVIII. 

 
With the length of the string, and also the weight, and the stretching force given, to find 
the periodic time of the vibrations.. 
Let a length L of string be extended 

between the points A and C,  N is the 
weight of the same; the stretching 
weight is P, and the string is put in 
place in the position  ABC ; with the 
points B and b taken close together, 
the normals BS and bS are drawn to 
the curve, meeting in  S, and the 
ordinate BD is drawn normal to the 
axis.  

By Lem. 9 the force of the tension is 
to the absolute force in moving the element of length Bb is as BS to Bb. But the 
acceleration of the force is in the ratio composed directly from the absolute force and 
inversely as the matter to be moved. Whereby if the weight of the increment to be moved 
Bb is called p [we would call this mass rather than weight], the acceleration of the 
element Bb to the acceleration of the weight P arising from its own gravity, that is, the 

 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 116 
Part IIb.Translated with Notes by Ian Bruce. 

acceleration of the force of the string in moving the point B to the acceleration due to the 
force of gravity, is thus P

BS  toB
p
b ; thus if the acceleration of gravity given is called 1,  

the acceleration of the point B is . 
BS

PB
p

b
×
×  [Thus, triangle bBS is similar to the force 

triangle acting on the element of length Bb;  where if the tension in the string is called T, 
then BS is proportional to T, and Bb is proportional to Tδθ, where δθ is the angle BSb . 

Hence p
bB  is in proportion to the acceleration of the 

element a,  while the tension T is equal to a mass 
Mg = P, giving T or BS/P = g, the acceleration of 
gravity. Hence, a/g = P

BS /B
p
b  as required.] But P to 

p is in the ratio composed from P to N, and N to p  
or L to Bb, hence . 

BN
LP P
bp ×

×=  And thus, the 

acceleration of the point B is . 
BSN
LP

×
×  But since [p. 92] the curvature is proportional to the 

distance BD (per Prop. 22.) which is the same as 
BS
1 , the given quantity is BDBS× . 

That shall be called a. [Thus, BS = a/BD, where a is the constant of proportionality.] 
Then by substituting

BD
a  for BS, the acceleration of the point B becomes equal to 

. 
N

BDLP
a×
××  But for pendulums, the periodic times vary directly as the square roots of the 

lengths, and inversely as the force of gravity, (by Prop. 52. Book1, Newton’s 
Phil.Nat.Principia Mathematica.) Whereby if a pendulum is set up, the length of which is  
D, the periodic time of the string to the period of this pendulum is in the root ratio (that 
is, for BD is applied to the acceleration ,

N
BDLP
a×
×× or) 

LP
N
×
×a to D.  [The cycloidal 

pendulum of Huygens was the archetypal simple harmonic motion, for which the time for 
a swing from one side to the other gDTp /1

π= ; Taylor oscillating system behaves in 

the same manner, and he considers the equivalent pendulum to have a length BD and an 

acceleration ,N
BDLP
a×
×× hence the period DaTT ps /BDLP

BDN/
××
××= . However , the 

period is hence independent of BD, as it should be, presumably the reason for assuming 
this form.] And the number of vibrations of the string in the time of one vibration of the 

pendulum is .
N

LPD
2
1

2
1

2
1

2
1

2
1

a
  

It remains for us to find the size of the quantity a. Thus the string is set up in the 
position ABPC, and the normal ordinate DB is set up at the mid-point D of  AC, and EP 
is some other ordinate; let DB = c, DE = z,  EP = y. Then, since the radius of curvature is 

equal to 
y
a  , it follows that (by Prop. 21. ) ,

BBB2
a-B

_______

−

×
=

•
•

a
yz  truly with 

2
yycc −  taken for B.  
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But with c and y vanishing, [so that B2 is negligible w.r.t. 2aB as the maximum value is 

nearby, and B << a ] this expression is ,
a 2222

2
1

yc

ya

yac

yaz
−

×−
=

−

×−
=

••
•

or .
2
1

yycc
yc

c
az

−
×−=

•
•

 But 

also 
yycc

yc
−

•

 is the fluxion [
•

s ] of the circular arc, of which the sine is  y, and the radius 

c. [For, the arc length s = cθ, and 
••

= θcs . If y = csinθ  then 
••

= θθcoscy , and 

22 yc
yccs
−

==
•

••

θ . ]Whereby with the arc of the quadrant [p. 93] in this circle 

considered as q, then L.2
1DC

2
1

=×= qc
a  Thus L2

1  tois 2
1

a as the radius of the circle to the 

arc of the quadrant; or thus the diameter of the circle is to the periphery of the same as 
L  to2

1

a  [i. e. π]. Therefore  p is the periphery of the circle of which the diameter is 1, and 
now by considering pa L  2

1

=  the number of vibrations of the string, in the time of one 

vibration of the given pendulum of length D, is equal to .
NL
PD

2
1

2
1

2
1

2
1

p  Q.E.I. 

 
 

COROLLARY I. 
By comparing the motions of the strings between each other, on account of the given p 

and D,  the periodic time of the string is as .
P
NL

2
1

2
1

2
1

 

 
 COROLLARY II. 

 
When the strings are of the same composition, the weight of the string N is proportional 

to the length L of the same. Whereby in comparing the motions of strings of this kind, the 
periodic time is as .

P
L

2
1   

 
COROLLARY III. 

 
With the same quantities in place, if  besides the weight P is given, that is, if the lengths 

taken for the same string are stopped up in different ways, then the periodic time will be 
as the length L. But with regard to the uncovered strings, the  half part will give the 
whole octave, the 

3
2  will give the musical fifth sound, the 

4
3  will give the musical fourth, 

and thus for the rest. Whereby the proportions of these tones are correctly defined by the  
numbers ,

4
3,

3
2,

2
1 etc. proportional to the lengths of the strings.   
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[We may note that Taylor performed experiments with his harpsichord and a chamber 
clock from which he had removed the timing mechanism, so that the clock, which 
normally kept going for several days would run down in a short time; a quill touching a 
cog wheel gave a note corresponding to a known number of contacts per second, which 
could be compared with a musical note set up in a string of the instrument set to a known 
length, tension, and linear density. The agreement of his formula, which is really a 
theoretical derivation of Mersenne’s Law, was excellent. See The Evolution of Dynamics. 
Vibration Theory from 1687 to 1742, Cannon & Dostrovsky. Springer. (1981). This book, 
which looks at 18th century work from a modern viewpoint, also discusses some of the 
assumptions made by Taylor in his derivation.] 

 
____________________________________________ 

METHODUS INCREMENTORUM. 
 

Pars Secunda IIb.  
[p. 74] 

 
LEMMA V. 

 
Si spatium rigidum a tribus  potentiis in aequilibrio 

tenetur, lineae directionum transibunt per idem punctum, 
& in eodem plano jacebunt.  

Applicentur potentiae ad puncta A, B, C, atque agant in 
directionibus Aa, Bb, Cc. Quoniam punctum quavis A 
tenetur in aequilibrio, vires Bb, Cc conjunctim sumptae 
componunt vim vi Aa contrariam & aequalem. Sed (per 
Principia Statices) vires Bb, Cc hoc modo componi 
nequeunt, nisi transeat recta utraque Bb, Cc per punctum 
aliquod p in recta Aa, atque omnes Aa, Bb, Cc jaceant in plani communi. Ergo ita se res 
habet. Q. E. D.  

 
 

LEMMA VI. 
 

Si spatium materia gravi onustum a duobus filis sustinetur, respectu virium, quibus fila 
ista tenduntur, perinde est quonam modo disponatur materia in spatio isto; si modo 
Centrum Gravitatis semper versetur in eadem recta ad Horizontem normali.  

Constat ex Staticis. 
N. B. In propositionibus quatuor sequentibus sumus acturi de figuris funiculorum, 

linteorum aqua plenorum, atque fornicum data onera sustinentium. Omnes hae figurae, 
utpote ex materia physica compositae, veram habent crassitiem, sunt ad flexuram 
nonnihil ineptae, & cedunt aliquantulum viribus, vel extendentibus vel comprimentibus. 
Ergo ad haec omnia attendere oportet eum, qui velit has figuras accurate describere. Sed 
cum ea ad computum mathematicum difficule revocentur, & calculum, per se satis 
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prolixum, nimis impedirent, nos, eorum effectus prorsus negligentes, fingimus figuras 
propositas constare ex materia perfecte flexili extentioni, atq; contractioni prorsus inepta, 
atque adeo tenui, ut ejus crassities poene evanescat respectu longitudinis datae. Respectu 
tamen sui ipsius non semper fingimus crassitiem esse absolute nullam, quoniam in 
funiculis, & in fornicibus propria tantum pondera sustinentibus, ea ad figuras formandas 
plurimum valet.  

 
PROP. XVIII. PROB. XIII. 

 
Data lege crassitudinis Funiculi dependentis a 
duobus punctis; invenire relationes fluxionum 
abscisae, ordinata, & curva; & definire conditiones 
quibus figura describenda subjici potest. 

 
Sit AB funiculi pars quaedam dependens a punctis 

A & B, atque; ad rectam positione datam CD 
Horizonti parallelam ducantur normales AC, BD, & 
ad puncta A & B ducantur tangentes Ag, Bg, 
quarum Ag occurrat ipsi CD in E, atque sint puncta 
a & b ipsis A & B proxima, &    ducta nova 
ordinata bd, ei occurrat Bb Horizonti parallela in b, atque Bq tangenti Ag parallela in q; 
atque sit AC ordinata positione data, & BD ordinata mobilis; & sint CD = z, DB = y, 
longitudo curvae AB = v, crassitudo in B = x, pondus funiculi AB = p, CE : CA : AE :: 1 : 
n : m, atque a pondus datum aequale tensioni fili in A.  

Quoniam pondus totius funiculi AB sustinetur a filis brevissimis aA, bB, in 
directionibus tangentium Ag, Bg, jacet totus funiculus in plano ad Horizontalem normali; 
atque si partis AB centrum gravitatis sit G, per quod ducatur Horizontali normalis GP, 
transibit eadem GP per tangentium concursum mutuum g. Nam (per Lemma 5) respectu 
filorum Aa, Bb, perinde est, ac si omnis materia funiculi AB appendatur ad filum GP : 
unde spatio figurae constituto in aequilibrio per tensiones trium filorum Aa, Bb, GP, 
transibunt ea per [p. 76] g, atque jacebunt in eodem plano, (per Lem. 4) quod ob 
normalem GP est Horizonti perpendicularis. Sunt ergo tensiones horum filorum, ut latera 
trianguli Bbq eorum directionibus parallela. Sed si fiat Bb = 

•

z , erit 
 bb =

•

y , atque Bb = 
•

v , & (ob similia triangula Bbq, ECA,) 
•

= znbq , atque 
•••

=+= zmBqznybq &, . Quare est 
•••

+ znyzmpa :::: , hoc est .0=−+
•••

zmpxnaya Est autem 

.xvp
••

= Unde eliminato p ab aequatione hac (nempe fluente uniformiter z) erit 

.0=+
••••

zvmxya  

Itaque resolvendo aequatione ,,&0
••••••••••

+==+ zzyyvvzvmxya (per Prop. 6) dabuntur 
relationes ipsorum z, y, v; nam ex hypothesi datur x, vel dignatates unius, vel duorum, vel 
omnium z, y, v. 
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CASUS I. 
 

Si utrumque y & v ingrediuntur valorem ipsius x, describetur curva per conditiones, 
quae possunt pro lubitu applicari ad valores y, & v, & fluxionum suarum (per Prop. 5). 

 
CASUS II. 

Si desit y in valore x erunt conditiones omnino tres, quarum una ad minimum 
applicanda est ad valorem ipsius y, & reliquae duae possunt pro lubitu applicari ad 
valores ipsorum v & y, & fluxionum suarum.  

CASUS III. 
Si tantum y ingreditur valorem ipsius x erunt etiam conditiones tres, applicandae pro 

lubitu ad valores ipsorum v, y, & fluxionum suarum modo ut una applicetur ad valorem 
ipsius v.  

 
CASUS IV. 

Denique si in valore ipsius x desit utrumque v & y, erunt conditiones tres, quarum una 
applicanda est ad valorem ipsius v, altera [p. 77] ad valorem ipsius y, & tertia pro lubitu 
applicati potest ad valores v, y, & fluxionum suarum.  

 
COROLL. I. 

Per hanc solutionem, est tensio fili in B ad tensionem datam in A, ut Bb ad Bq, hoc est 

ut 
•

v  ad  .
•

xm  Est ergo tensio in B ut •

•

zm
v , vel ob datam m, ut •

•

z
v : Sed per aequationem 

,0=−+
•••

zmpxnaya est ;21)( 2222 pmmnapana
zzzyyv +−+×=+
•

•••••

 atque est tensio in A 

aequalis a. Tensio itaque in B est .21 22
2

22
papm

na
m
an +−+  Et cum haec tensio sit 

proportionalis ipsi •

•

z
v , ea erit minima quando est 

••

= zv , hoc est in curvae puncto infimo ad 

quod tangens est Horizonti parallala, existente tensione ista aequali m
a . Et hinc 

qualiscunque sit lex crassitudinis funiculi, data tensione in uno puncto A, ducendo 
tangentem dabitur tensio in alio quovis puncto B. 

 
COROLL. II. 

 
Quinetiam ducendo tangentes dividi potest funiculus in 

partes quarum pondera sint in data ratione. Sit enim ABC 
funiculus, & ad puncta tria A, B, C ducantur tangentes 
ADE, DEF, EFC sibi invicem occurrentes in D, E, & F. 
Tum (per hanc propositionem) centra gravitatis 
funiculorum AB,AC, BC, erunt [p.78] in 
perpendicularibus transeuntibus per respectivos 
tangentium concursus mutuos D, E, & F. Proinde si per  
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duarum tangentium AD, CF concursum E ducatur perpendicularis EG occurrens tangenti 
tertiae DBF in G, erunt pondera partium AB,BC inter se in ratione reciproca distantiarum 
propriorum centrorum gravitatis a centro gravitatis totius funiculi ABC, hoc est pondus 
ipsius AB erit ad pondus ipsius BC in ratione reciproca DG ad GF. Data ergo ratione 
ponderum, dabitur ratio DG ad GF. Unde datis positione rectis DE, GE, FE, dabitur 
directio tangentis tertiae DBF, per quam invenitur punctum B, quo dividitur funiculi ABC 
pondus in data ratione.  
  COROLL. III. 

Si in expressione crassitudinis x insit tantum unum ex ipsius z, y, v, solvetur Problema 
per quadraturam curvarum.  

 
CASUS I. 

Primo enim insit tantum curva v in expressione crassitudinis x. Tum inito calculo per 
aequationes ,0=−+

•••

zmpxnaya ,
••••••

+= zzyyvv & brevitatis causa pro 

2222 21 pmmnapan +−+ scripto R. Invenietur R
vaz
•

•

= , atque .
___________

••• −=−= vR
nampza

nampy  

Unde dato p per quadraturum curvae cujus abscissa est v, & ordinata x, deinde dabuntur z 

& y, quadrando curvas abscissa communis est v, & ordinatae sunt 
R
a , atque; .a

namp −  

 
CASUS II. 

Si in expressione ipsius x insit tantum z, ducta utroque; membro aequationis R
vaz
•

•

= in x, 

fiet R
paxz
•

•

= . Unde quadrando curvas [p. 79], quarum abscissae sunt z & p, & quarum 

ordinatae sunt x & 
R
a , dabitur relatio inter z & p. Deinde ob x

pv
•

•

= , & 
•• −= za

nampy , 

quadrando curvas quarum abscissae sunt p & z, & ordinatae sunt a
namp

x
−&1 , dabuntur v 

& y. 
CASUS III. 

Denique si in valore x insit tantum y, ducendo 

aequationem 
•• −= vR

nampy  in x, fiet 

).(
___________

m
RpR

nampyx =−=
••

 Quare faciendo 
m
R aequale 

areae curvae cujus abscissae est y, & ordinata x, 
dabitur relatio inter p & y. Unde deinde quadrando 
curvam cujus abscissa est y, & ordinata  

namp
a
−

dabitur z. Dabitur autem v, ut in casu 

secundo, quadrando curvam cujus abscissa est p, & ordinata x
1 . 
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COROLL. IV. 
 Per Cas. 3 Cor. 3., est 

m
R aequale fluenti 

•

yx , quod idem aequale est tensioni fili, (per 

Cor. 1). Ergo sit ABC funiculus, ad cujus punctum infimum C ducatur tangens CEHD 
horizonti parallela, & ad eum ducatur normalis EF; atque ducta BFG [p. 80] horizonti 
parallela, in ea sit semper FG = x = crassitudini funiculi in B. Tum si sit GH curva, quam 
perpetuo tangit punctum G, atque areae GFEH terminatae ad tangentem CE addatur area 
EDKI = m

a , erit area tota IKDHGFEI semper aequalis tensioni fili in B. Nam est EF = y, 

adeoque fluxio areae est 
•

yx = fluxioni tensioni quae in puncto C aequalis est m
a .  

COROLL. IV. 
 

Per Ex.4 Prop. 15, est radius curvaturae aequalis •••

•

yz
v

3

; quare (per aequationem 

.0=−
••••

zvmxya ) in funiculo est radius iste aequalis 2

2

•

•

zmx

va , hoc est, aequalis areae DI (fig. 

Cor. 4) applicatae ad FG, & deinde ductae in 2

2

•

•

z

v , hoc est in quadratum secantis anguli, 

quem facit curva cum horizonte.  
COROLL. IV. 

 
Data figura funicui facile invenitur ratio crassitudinis suae. Nam dantur relationes 

fluxionum per speciem figurae : unde per aequationem in hoc Problemate inventam 

0=−
••••

zvmxya , datur crassitudo 2

2

22

2

•

•

•

•••

•

•

••

••

=×=−=
zm

va

v

yz

zm

va
zvm

yax applicato ad radium 

curvaturae. 
PROP. XIX. PROB. XIV. [p. 81] 

 
 

Data ratione crassitudinis, invenire figuram Fornicis proprium 
pondus sustintentis. 
 
Sit fornicis porito quaedam AB, & sint a & b puncta ipsis A & 
B proxima, & ducantur tangentes Ag, Bg. Tum si portionis AB 
centrum gravitatis sit G, per id ducta horizonti perpendicularis 
GP transibit per tangentium concursum g, (per Lem. 5 & 6) 
quoniam sustinetur pondus arcus AB pe lineolas aA, bB. 
Viribus itaque eodem modo interpretatis, atq; in Propositioni 
praecedenti, constat figuram hujusmodi fornicis, eandem esse 
atque; funiculi, in situ tamen inverso. 
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LEMMA VII. 

 
Sit AB linea quaevis curva in plano ad horizontem 

perpendiculari,  & per motum rectae eidem plano 
normalis per curvam AB describatur superficies, per 
quam sustineatur fluidum cujus superficies Horizontali 
parallela occurrat plano eidem in recta CD. 

Tum dico,  
 Quod si ad Horizontem ducantur perpendiculares 
CA, DB, occurrentes curva in A & B, & recta CD in C & 
D, & ducantur Horizontali parallelae AE, BFG, quarum 
BF occurrat [p. 82] recta CA in F, & fiat AE = CA, atque 
ducatur CE occurrens BF in G, erit fluidi pressio tota 
lateralis, per quam urget fundam AB in directione Horizonti parallela, ad pondus fluidi 
spatio CABD inclusi, ut area AEGF, ad aream CABD. 
 

Duc ca horizonti perpendicularem, ipsi CA  proximam, atque occurrentem curvae AB & 
rectae CD in a & c, atq; per a duc ae horizonti parallelam, occurrentem ipsis CA,CE in f 
& e. Tum coincidentibus punctis A &a, fluidi spatio CAac inclusi pondere existente ut 
idem spatium, hoc est ut CA × fa, ejus pressio absoluta in lineolam Aa perpendiculariter 
facta erit ut CA × Aa; adeoque ejusdem pressionis pars lateralis horizontali parallela in 
directione fa erit ut CA × fA, hoc est ut EA × fA. Existente igitur CAac fluxione 
ponderis, erit EAfe fluxio pressionis lateris; adeoque; ubi pondus sit aequale areae 
CABD, pressio lateralis fiet aequalis areae AEGF. Q.E.D.  

 
 

COROLLARIUM. 
 

Hinc si constituatur triangulum rectangulum PQR, cujus 
basis PQ horizontali parallela sit ad perpendicularem RP. 
ut spatium AEGF ad spatium ACDB, fluidi vis tota 
absoluta in fundum AB erit in directione hypothenusae 
RQ, & per eam repraesentabitur, si repraesentetur pondus 
per perpendicularem RP. 
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PROP. XX. PROB. XV. 
 

 Invenire figuram Lentei aqua pleni. 
 

Repraesentetur Lentei partio quaedam per curvam AB, & 
[p. 83] aquae superficies horizontali parallela per rectam 
horizontali parallela CD. Tangant linteum rectae duae 
EATHI, BT in A & B, sibi muto occurrentes in T, 
quarum AT sit horizontali parallela, & per puncta A & B 

ducantur ipsis CD, AT normales, iis occurrantes in C, D, & H, & in AT sit AE = AC, & 
ducta CE, ei occurrat BG horizonti parallela in G, atq; ipsi CA in F. 

Jam si in AT sumatur HI ad HB, ut est spatium AEGF ad aream ACDB, erit 
hypothenusa BI parallela directioni totius vis absolutae pressionis fluidi in fundum AB 
(per Lem. 7) Sed huic vi resistitur per tensiones filorum Aa, Bb, in directionibus 
tangentium AT, BT : quare (per Lem. 5) vis absoluta pressionis fluidi in fundum AB 
aequipollet vi applicatae ad punctum T in directione rectae BI. Tensiones ergo filorum 
Aa, Bb, & vis pressionis fluidi in fundum AB, sunt inter se ut rectae earum directionibus 
parallelae TI, TB, BI; simul existentibus pondere fluidi in spatio CABD, & pressione 
laterali in fundum AB ut BH & HI. Sed ob liquoris fluiditatem, libere movebitur linteum 
per ejus particulas, tanquam per trochleas, adeoque est tensio fili Bb aequalis tensioni fili 
Aa, & inde TB = TI. Ergo si tensio fili data se signetur per datam spatium a, atque 
pondus fluidi per spatium contiens ACDB, quod etiam dicetur A, & pressio lateralis per 
spatium ei proportionale AEGF, quod dicetur B, erit a : A : B :: TB : BH : HI. Est autem 

;HIHITB2BH q−×= (ob TI = TB) quare etiam per hanc analogiam erit BBB2A −= a .  

Sit jam CA = c, AH = z, DB = y (= CF = FG.) Tum erit 
2

22 ycB −= , atque TH : HB :: z : 

y, hoc est, (per analogiam supra inventam, per valorem ipsius A) .:::BBB2:
••

−− yzaBa  

Unde sit 
BBB2

_______

−
×−=

•
•

a
yaBz quippe ratione habita signorum ipsorum .&

••

yz Nam ubi curva est 

versus convexa, crescente z, decrescit y, atque est 2

22 ycB −= : Sed ubi curva est ad 

concava, ipsorum z & y fluxiones sunt ejusdem signi, existente etiam 2
ccyyB −= . [p. 

84] Ipsius autem z fluxio est ejusdem 
formae in utroque casu, signo tantum 
mutato. In casu figurae praesentis 
fluidum vere continetur in linteo: in casu 
altero jacet ad lintei partes inferiores, 
idque (puta mediante syphone) sursum 
urget cum vi in quovis puncto 
proportionali fluidi altitudini 
perpendiculari infra altissimam 
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superficiem horizontalem.  
Datur autem z ex dato y, quadrando curvam cujus abscissa est y, atq; ordinata  

BBB2 −
−

a
aB . Et per coefficentem indeterminatum in valore fluentis z, & per coefficientes 

duos a & c accommodari potest solutio ad tres conditiones, quarum ad minimum una 
respectum habebit ad valorem ipsius z; per quem nempe determinatur positio curvae. Per 

aequationem ,0est )(
BBB2

_______

=−=
−
×−= •

•
•

•
•

y
zyA

aB
a

yaBz hoc est, ordinata y tangit curvam, quando 

est B = a, i.e. ,2 ayycc =− [p. 85] vel accy 2−= . Et in hoc casu est area A = a. Item ubi 

A = 0, erit 
•

z infinita respectu
•

y , hoc est curva tanget rectam horizonti parallelam. Et hoc 
sit ubi est 2aB – BB = 0, id est , vel quando B = 0, adeoque y = c, vel quando B = 2a, 
adeoque; accy 4−= . Ergo si sit CD fluidi superficies horizontalis, atque ad horizontem 
ducatur normalis CA, & in ea sumantur CA = c, & accC 4−=α , & per puncta A & α 
ducantur AI & αa horizontali parallelae, curva descripta utrasque tanget, & inter eas tota 
jacebit. Idque fiet sub hac conditione, ut ordinata DB primum pergendo de CA per DB 
perveniat in EP, ubi sit acc 2EP −= , atque area CABPE = a; deinde regrediendo de EP 
per Db perveniat in ca, ubi sit accca 4−= , atque area EPbac = a. Nam progrediente 
ordinata area increscit, & regrediente ordinata decrescit: quare si area sit nihil, hoc est 
indicium, vel ordinatum de loco suo nondum movisse, vel quod areae decrementum per 
regressionem ordinatae aequale sit ejusdem incremento prius facto per progressionem 
ordinatae. Et hinc per infinitas repetitiones figurae APBba utrinque factas curva serpet 
perpetuo inter horizonti parallelas AI, αa ad instar cycloidis, ubi punctum describens 
sumitur peripheriam rotae. 

In hac curva est radius curvaturae aequalis ipsi y
a . Quod mox demonstrabimus in 

propositione sequenti.  
 

PROP. XXI. PROB. XVI. 
 

Invenire figuram Fornicis sustinentis onus fluidis superincumbentis. 
 

In hac figura vires omnino interpretantur ut in Prop. 20. 
Quare est hujus fornicis figura eadem, atque figura lintei, 
onere tantum ad contrarias partes figurarum applicato; in 
hac enim applicatur fluidum ad curvae partes convexas, 
in illa ad partes concavas. [p.86]  

Sed ut per varias solutiones res quodammodo fiat 
illustrior, repraesentetur fornicis portio quaedam per 
curvam AB; vertice summo ubi tangens est horizontali 
parallela, existente A. Repraesentatur etiam fluidi 
superficies summa per rectam horizontali parallalem CD, 
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& ductis horizontali normalibus AC, BD, sint AC = c, CD = z, DB = y, atque curva AB = 
v, & pro area CABD scribatur A. Sume puncta b & p utrinque ad distantias minimas a 
puncto B, & ducatur ad curvam normales bS, pS concurrentes in S, atque ducantur 
tangentes bt, pt concurrentes in t, & compleatur parallelogrammum btpr.   

Constat puncta b & p versus invicem urgeri per vires duas in directionibus tangentium 
bt & pt; his autem viribus resisti per pondus fluidi insistentis fundo bp, idque in 
directione ad fundum perpendiculari. Sunt ergo vires illae ut latera trianguli btr earum 
directionibus parallela, vel ut latera trianguli consimilis Sbp. Sed punctum b sustinet 
pondus totius fluidi in area CABD, cujus pressio in directione bt est ad ejusdem 

pressionem perpendicularem ut secans anguli bBD ad radium, hoc est ut 
•

v  ad 
•

y  : item 
pressio in fundum bp est ad pondus fluidi in spatio ACDB ut yad × ad A. Quare 

conjunctis his rationibus sit 
•

× yybp  ad 
•

vA  ut bp ad bS; adeoque; •

•

=
yy
vb AS . Sed 

data
•

v est ••

••

=
y
zvbS  (per Ex. 4. Prop. 15). Unde sit •

•

••

••

=
yy
v

y
zv A , hoc est 

.0AA vel,A =−=
•••••••

yyyyzy  Unde capiendo fluentes sit •• =
v
a

y
A , hoc est 

••

= yavA . Est 

autem 
••••••

+= yyzzvv , [p.87] unde sit ;
A

A
22 −

=
•

•

a
zy  hoc est .

A
AA

22 −
=

•
•

a
yy  Unde 

(capiendo fluentes, & addendo 2
cca + , ut fiat y = c in vertice curvae, ubi est A = 0, ) 

sit .A22
22

22

−−+= acay  Pro 2

22 cy −  scribe B, atque calculo peracto invenietur 

;BB2A 2−= a adeoque ,
BB2

B-a
2

_______

−
×=

•
•

a
yz  omnino ut in Prop. 20. 

 
COROLLARIUM. 

In hac solutione inveniebatur •• =
v
a

y
A , atque erat •

•

=
yy
vb AS . Est ergo pressio y

v
•

A facta in 

lineolam bB aequalis datae a, atque radius curvaturae bS = y
a .  

SCHOLIUM.  
Ex hac expressione radii curvaturae constat eandem hanc curvam etiam esse figuram 

laminae data vi flexae. Nam est flexura in ratione reciproca radii curvaturae, adeoque in 
hac curva in directa ratione altitudinis y. Sed dati ponderis vis ad laminam incurvandam 
est ut ejusdem distantia minima a puncto flexurae. Quare si pondus applicetur ad 
laminam in recta CD, figura genita ea erit quam hic descripsimus.  

Quinetiam manentibus punctis, in quibus haec curva occurrit fluidi superficiei 
horizontali CD, si minuatur altitudo maxima c in infinitum [p. 88], erit haec eadem curva 
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cujus figuram induit Nervus musicus vibrans, in quovis articulo motus sui. Quod jam 
demonstrare properamus. 

 
LEMMA VIII. 

 
Si curvarum duarum AB, AP abscissam communem 

habentium AD, ordinatae DB, DP sint ad invicem in data 
ratione, imminutis iis in infinitum, ut curvae tandem 
coincidant cum axe AD, erit ultima ratio flexurae eadem, 
quae ordinatarum. 

Duc novam ordinatam dp curvis occurrentem in p & b, 
& ad puncta B & P, duc tangentes occurrentem dp in C & 
c. Tum ob datam rationem ordinatarum, tangentes 
productae concurrent in aliquo puncto T in axe AD. Unde 
ob parallelas db, DB, erit dC : dc :: DB : DP :: db : dp :: 
DC – db : dc – dp, hoc est bC : pc :: DB : DP.  Coincidant 

jam ordinatae db, DB, atque lineolae evanescentes bC, pc erunt subtensae angulorum 
contactus bBC , pPc; atque imminutis ordinis in infinitum erunt angulis ipsis 
proportionales. Sed per hos angulos aestimatur flexura. Quare coincidentibus curvis AB, 
AP cum axe AD, erit flexura in B ad flexuram in P ut ordinata DB ad ordinatam DP. 
Q.E.D. 

 
 

LEMMA IX. 
 

 
Data crassitudine nervi tensi, vis accelatrix cujusvis 

puncti est ut flexurain isto puncto. 
 
Sit nervus in positione curvae ABC. Sume punctum b 

puncto B proximum, & duc tangentes Bt, bt concurrentes 
in t, [p. 89], & compleatur parallelogrammum Btbr, atque 
ad curvam ducantur normales Bs, bS concurrentes in S. 
Tum (per principia Statices) erit vis absoluta ad 
movendam particulam Bb in directione tr ad fili 
tensionem in B, vel in b, per quam generatur vis illa, ut tr 

ad tB, hoc est ut Bb ad BS, adeoque vis illa est ut 
BS
Bb ; quoniam fili tensio est data. Sed 

est vis acceleratrix in ratione vis absolutae directe & materiae movendae inverse; & in 
hoc casu est materia movenda ut Bb. Quare est vis acceleratrix ut 

BS
1 , hoc est ut 

curvatura in B; curvam enim est in ratione reciproca radii. 
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PROP. XXII. PROB. XVII. 
 

Definire motum Nervi tensi. 
 

In his pono nervum constare ex materia 
tenuissima uniformiter crassa, ejusque; 
elongationem maximum ab axe motus AB esse 
infinite parvam; ita ut vis tensionis non mutetur 
per auctam longitudinem nervi in majoribus suis 
distantiis ab axe AB, & ut inclinatio radiorum 
curvaturae ad axem sit semper insensibilis.  

SOLUTIO.  
Per puncta A & B describatur curva ADFB, 

cujus indoles sit, ut, ductis ad libitum ordinatis 
ad axem normalibus CD, EF, sit curvatura in D 
ad curvaturam in F, ut DC ad FE. Dico quod haec sit figura, quam induit nervus in quovis 
articulo motus sui; item quod puncta omnia D, F simul ad axem pervenientia & simul 
redeuntia vibrationes suas omnes peragunt in eodem tempore periodico, ad instar penduli 
oscillantis in Cycloide. Q.E.F. [p. 90]. 

 
DEMONSTRATIO. 

Sit enim curva ADFB nervi distantia maxima ab axe AB, puctis omnibus jam 
quiescentibus. Tum quoniam curvatura in D est ad curvaturam in F ut distantia CD ad 
distantiam EF (ex hypothesi) erit acceleratio in D ad accelerationem in F in eadem ratione 
distantiarum (per Lem.9) adeoque; in initio motus spatia simul percursa Dd, Ff erunt in 
eadem ratione: adeoque; & divisim spatia percurrenda Cd, Ef erunt in eadem ratione : 
unde etiam accelerationes novae in punctis d, & f erunt in eadem ratione (per Lem.8, & 9) 
atque; erunt ad accelerationes priores in D & F, ut distantiae dC & fE ad distantias DC & 
FE (per eadem Lemm.) Ergo puncti cuiusvis D, vel ut in eadem curva ADFB, vel ut in 
diversis ADFB & AdfB spectati, acceleratio semper est ut ejusdem distantia ab axe motus 
AB. Quare (per Prop. 51. Lib.1. Phil.Nat.Princ.Math.) puncta omnia Nervi ad axem 
simul perveniunt, simul redeunt, & vibrationes singulas peragunt in dato tempore 
periodico, ad instar corporis in Cycloide oscillantis. Q.E.D. 

Porro si Nervus plectro modo percussus nondum induerit formam curvae jam 
descriptae; sit ejus forma ADFB, curvatura in F existente ad curvaturam in D in majori 
ratione quam distantiae FE ad distantiam DC. In hoc casu velocitas in F est ad 
velocitatem in D, vel in majori, vel in minor ratione, quam distantia FE ad distantiam DC. 
Si sit velocitas in F ad velocitatem in D in ratione majore quam FE ad DC, erit spatium Ff 
in tempore minimo descriptum ad spatium Dd eodem tempore descriptum in ratione 
majore quam EF ad CD; adeoque divisim erit fR minor respectu FE, quam est EF ad CD; 
adeoque divisim erit fE minor respectu FE, quam est dC respectu DC, indeque  (per 
Lemm. praed.) acceleratio in f minor erit respectu accelerationis in F, quam est acceleratio 
in d respectu acceleratione in D. Itaque majoris velocitatis acceleratione semper 
decrescente, & minor velocitatis acceleratione e contra semper crescente (respectu 
distantiarum ab axe AB) motus inter se tandem ita temperabuntur, ut perventis punctis F 
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& D in puncta quaedam p & t, erunt tum velocitates tum accelerationes ut distantiae pE, 
tC; adeoque curva AtpB jam existente eadem quam descripsimum, motus dehinc [p. 91] 
omnes conspirent. Atque idem eveniet si sit velocitas in F ad velocitatem in D in minore 
ratione quam distantiae FE ad distantiam DC. Quare quocunque modo percutiatur nervus, 
quam citissime induet formam curvae hic descriptae, atque perget moveri more jam 
descripto. Q.E.D. 

 
PROP. XXIII. PROB. XVIII. 

 
Datis longitudine Nervi, ejusdem pondere, & pondere tendiente; invenire tempus 

periodicum. 
Sit Nervi inter puncta A & C extensi 

longitudo L, ejusdem pondus N, atque; 
pondus tendens P, & constituatur nervus in 
positione ABC; & sumptis punctis B & b 
proximis, ducantur ad curvam normales BS, 
bS, concurrentes in S, & ducantur ordinata 
axi normalis BD.  

Per Lem. 9 est vis tensionis Nervi ad vim 
absolutam ad movendam particulam Bb ut 
BS ad Bb. Sed est vis acceleratrix in ratione 
composita vis absolutae directe & materiae 
movendae inversae. Quare si particulae movendae Bb pondus dicatur p, erit acceleratio 
particuale Bb ad accelerationem ponderis P ab ipsius propria gravitate oriundam, hoc est, 
vis acceleratrix vervi ad movendum punctum B ad vim acceleratricem gravitatis, ut 

P
BS ad B

p
b ; unde si gravitatis acceleratio data dicatur 1, erit puncti B acceleratio . 

BS
PB
p

b
×
×  

Sed est P ad p in ratione composita P ad N, & N ad p, seu L ad Bb, unde sit . 
BN
LP P
bp ×

×=  

Adeoque; acceleratio puncti B est . 
BSN
LP

×
×  Sed quoniam [p. 92] est curvatura ut distantia 

BD (per Prop. 22.) quae eadem est ut 
BS
1 , erit BDBS× quantitas data. Sit illa a. Tum pro 

BS substituto  
BD
a , fiet acceleratio puncti B aequalis . 

N
BDLP
a×
××  Sed in funipendulis 

tempora periodica sunt in dimidiata ratione longitudinum directe, & virium 
acceleratricium inverse (per Prop. 52. Lib.1. 
Phil.Nat.Princ.Math.) Quare si constituatur 
pendulum cujusvis longitudinis D, erit tempus 
periodicum nervi ad tempus periodicum istius 
penduli in dimitiata ratione (BD applicatae ad 

,
N

BDLP
a×
×× hoc est) 

LP
N
×
×a ad D. Atque numerus 

vibrationum nervi in tempore unius vibrationis 

penduli erit  .
N

LPD
2
1

2
1

2
1

2
1

2
1

a
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Superest ut inveniamus quantitatem a. Constituatur itaque nervus in positione ABPC, & 
ad axis AC punctum medium D erigatur ordinata normalis DB, & sit alia quaevis ordinata 
EP, atque; sint DB = c, DE = z,  EP = y. Tum ob radium curvatura aequalem 
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fluxio arcus circularis, cujus sinus est y, & radius 

c. Quare arcu quadrantali [p. 93] in isto circulo existente q, erit L.
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a ut diameter circuli ad 

peripheriam ejusdem. Sit ergo p peripheria circuli cujus diameter est 1, atque jam 
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= erit numerus vibrationum Nervi, in tempore unius vibrationis penduli 

datae longitudinis D, aequalis .
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COROLL. I. 
Comparatis motibus Nervorum inter se, ob data p & D, erit tempus periodicum Nervi ut 
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 COROLL. II. 

Ubi Nervi constituuntur ex eodem filo, est Nervi pondus N ut ejusdem longitudo L. 
Quare in comparandis motibus hujusmodi Nervorum, est Tempus periodicum ut .
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COROLL. III. 

Iisdem positis, si praeterae detur pondus P, hoc est, si longitudines sumantur in eodem 
Nervo diversimodo obturato, erit Tempus periodicum ut L. Sed respectu Nervo aperti, 
pars dimidia edit sonum Diapason, pars 
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Diatessaron, & sic de caeteris. Quare a Musicis recte definiuntur proportiones hujusmodi 
tonorum per numeros  ,
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1 &c. longitudinibus Nervorum proportionales.  

 


