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To the Reader. 
 

In this Method of Increments, I consider quantities as increased by Increments or 
diminished by Decrements,  and between the given relations of the Integral [whole] 
quantities, I seek the relations between the Increments, and from given relations between 
Increments, I seek the Integral quantities themselves in turn. The uses of these methods in 
mathematical matters is widely known ; and moreover it is shown to the greatest effect in 
these circumstances where all the properties of Fluxions may hence be easily derived.   
The most illustrious Newton, by considering the Mathematical quantities written down 
for continuous motion, finds the ratio of the velocities by which the magnitudes are 
described, by means of the Method of Fluxions arising from the first ratios of the 
increments, and in turn from these velocities (which he calls the Fluxions of the 
quantities) he seeks the magnitudes of the described quantities themselves [fluents].  
[Note : To put ourselves in the correct frame of mind of the time for Newton’s early 
calculus, we are to regard a plane curve as generated by the steady motion of a point 
along a principal axis, marked off in regular steps measured by the abscissa z from an 
origin, while the ordinate axis is a line in the plane passing through the origin at right 
angles to the principal axis, and the ordinate or x undergoes some motion. Quantities such 
as z and x that can change are called ‘fluents’ , while the rate of change of a fluent is 
called it ‘fluxion’ , which is the derivative of the variable.  Fluents such as x and z depend 
on the time t that has elapsed since the varying point passed through the origin, and z 
commonly has a fluxion 

•

z  set equal to one, and to which the other fluxions can be 
compared : thus, for example, for the circle 122 =+ zx , using Newton’s rules, to be stated 
later, we can form the fluxional equation 022 =+

••

zzxx , from which xzzx // −=
••

 . On 
setting 

•

z  = 1 , the rate of change of x with respect to z , or simply
•

x , the modern or 
Leibniz dz/dy, is equal to - z/x, where the unit rate of flow of z makes this possible. See 
Howard Eves An Introduction to the History of Mathematics, p. 339, for more of this 
elementary description. The reader should note that the function notation f(x) had not 
been invented at this time.] 
    Likewise, this [inverse process for finding fluents or integrals] has been done by other 
mathematicians, but less generally, (as the Ancients showed in the method of  exhaustion, 
and the methods of summation used by Cavalieri & Wallis.) The Ancients, by finding the 
sizes of figures inscribed and circumscribed in a circle, from finite parts and known 
constants,  and by increasing the number and diminished the size of these parts, had 
made the difference between the sums of these and the size of the figure sought less than 
whatever was required to be given.  
[This brings to mind Archimedes' attempt to find the ratio of the circumference to the 
diameter of the circle; a contemporary topic pursued in evaluating π, and presented by 
Briggs in one of the final chapters of his Arithmetica,  to be found in this series of 
translations.]  

Cavalieri & the more recent workers have considered these parts as diminishing in 
size indefinitely.  But all these, by contemplating the origins of the quantity by the 
addition of extra parts, have not satisfied the strict perfection [αχρβεια] of the ancient 
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Geometers. For the parts, in order that the Method shall be accurate, must be present 
from the beginning; since there are no [extra fractional] parts of this kind in Nature, 
rather they are ratios arising from the original fractional parts. [the writer means that a 
curve is present from the beginning, and must be worked with, rather than an 
approximation to the curve, such as a circle considered as an approximation from a 
regular n-gon inscribed or circumscribed ].  Therefore Newton, by putting the magnitudes 
of the small residual parts in place, and from these and their sum, has introduced the 
final ratios of the vanishing residual parts [we will call these nascent], arising from the 
first of these ratios, and from these first ratios he has laid the foundations of his Analysis. 
Thus by taking the first ratios of the Increments arising, or from the vanishing of the 
highest ratios, all the conclusions of the method of Increments, with the vanishing    
nascent [i. e. higher order terms] increments, have now been applied to the method of 
Fluxions, and conversely to find the whole or integral parts for fluents.  And with this 
agreed upon, all consideration of indefinitely small quantities (or, as some would like to 
say, undefined quantities) is avoided. For in the method of Fluxions, in order that the 
conclusions are true and entirely accurate,  the fractional parts or increments have to be 
taken together, not as very small, or as indefinitely small, but as actually zero: Indeed the 
ratios are not zero initially except in the very instant when they begin to arise;  for when 
once they have arisen, they are no longer in the first ratio [i. e. they are never undefined 
as 0/0]. And similarly they are not the final ratios, until the quantities have now vanished 
and made zero. Nevertheless, for the sake of making the concept easier, these augmented 
ratios arising are to be taken for the Fluxions, which Newton calls moments, and 
designates by the letter o, which are put in place for the Fluxions. 
[The moment of a fluent such as x is the amount by which it changes in an indefinitely 
small length of time o, given by 

•

xo , and all products in an equation that involve orders of 
o greater than one can be ignored. Thus, in the above example, on replacing z by ozz

•

+  
and x by oxx

•

+ , we have 1)()( 22 =+++
••

ozzoxx ; on expanding and simplifying by 

setting 122 =+ zx , we have 1)(2)(2 2222 =+++++
••••

ozozzzoxoxxx , which gives 

022 =+
••

ozzoxx , from which dividing by o, the above result follows. ] 
 And in this way, the relation between the method of Increments and the method of 

Fluxions is made easier to understand.  On account of which, it is observed in several 
propositions that we give as examples in the use of Fluxions, that to whatever the 
increments taken in their generation, which are either of finite size or of the indefinitely 
small, the o moments are to be included.  

[This last remark shows that Taylor has generalized the use of Newton’s moments to 
produce his method of increments. One should not necessarily try to translate Newton’s 
methods, or those of Taylor, into terms of modern calculus on going through a proof, as 
what is easy in one method may be cumbersome in the other; there is of course the need 
to establish that the two methods, and the assertions of Taylor, are in fact all equivalent. 
Rather, one should look on these methods as parallel developments worthy of being 
examined in their own right ; in this way what was ‘obvious’ at the time can again be 
understood. The same results are of course obtained by either method, Newtonian or 
Leibnizian, and in this translation an attempt is made to justify formulas which seem 
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obscure. And one last word: if one was or still is, dealing only with first and second 
derivatives in problems, then the dot method involved far less writing and led to quicker 
solutions, and Newton was always a man in a hurry. On the other hand, odd drops of ink 
on the page might be interpreted as fluxions or increments of variables ...... not always a 
matter of mirth.] 
 
 
_______________________________________________________________________ 
 
 
 
 
 
 
_____________________________________________________________ 
_____________________________________________________________ 

The Method of Increments. 
 

The First Part.  
 

Where Instructions are set out about the generation of the Method of 
Increments and the Method of Fluxions . 
_____________________________________________________________ 
 

INTRODUCTION. 
I consider indeterminate quantities, [i. e. variables] with the Increments in these either 

increasing always or Decrements that are decreasing always. The indeterminate quantities 
are themselves the Integral or whole amounts that I designate by the letters z, x, v, &c. 
and the Increments of these, or the small parts that can be added to these, I designate by 
the same letters, but with points or dots below, such as , , ,

•••
vxz &c. The Increments of 

these Increments, or the second Increments I designate by the same letters with two 
points ,,

••••••
vxz , &c. The Increments of these Increments, or the Increments of the second 

Increments of the variables, I designate by the same letters with the points ,,
QQQ
vxz , and so 

on.  
[or, as here in this translation, by ,, ,

•••••••••
vxz  as it is more convenient to produce these ; and 

in explanations we revert to the modern usage , and call these finite differences Δx, Δv, 
and Δz ; along with Δ2x, Δx3, etc. for the higher orders in x, and likewise for the other 
variables. It is understood that these increments are small positive or negative quantities 
relative to the variable quantity x, etc, of an arbitrary nature, but each is an order of 
magnitude less in absolute value than the previous one, and they form a nested set for 
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positive increments of the form ΔΔΔ..Δ..ΔΔ0 121 =<<<<<<< − inn , where i is the order 
of the increment Δi, and i is not to be considered as a power of Δ.] 
But also, for higher increments for the sake of generality, and at other times, I sometimes 
write characters designating the number of points instead : Thus if n is 3, 

Q
x  is designated 

by 
n
x , or

3
x ; if n is 0, 

0
x designates the Integral amount x itself  ; if n is -1, the quantity 

designated by 
1−
x  is that for which the first Increment is x [page 2]; & thus for the others.  

Indeed, often in this tract I designate some successive values of quantities of the same 
variable by the same letter described by a small line ; obviously the present value is to be 
designated by the simple letter, the preceding by superscript grave accents, and the 

subsequent by small subscript lines.    Thus for example : 
\\\

   xxxxx ,,,,
\\\

  are five successive 

values of the same variable quantity, of which  x is the present value, 
\\\

 & xx  are the 
preceding values,  and

\\\
& xx  are the subsequent values.  

[Corresponding to the modern use of subscripts or superscripts, and also used for 
successive integrations; while Newton’s dots are used for derivatives. There is 
unfortunately a certain vagueness about the use of some of these symbols, and 
occasionally Taylor does not supply an example of their usage.]  
 
II. Fluxions, which arise in the first ratio of the increments, or in the final vanishing part, 
are described by points for the orders of the Increments,  transposed to the upper parts of 
the letters : Thus

•

x is the first Fluxion of x itself; 
••

x  is the second Fluxion of the same;
•••

x  
the third Fluxion; & so on. Fluents [the integrated quantity] also are sometimes 
designated by small lines written above the letters  (like acute accents) : Thus 
/
x designates the fluent of x itself, or the quantity of which the first Fluxion is x ; 
//

x designates the second fluent of x itself, or the quantity of which the second Fluxion is x; 
& thus henceforth. And these small lines in the signs of the fluents have the force of 
negative points (as thus I may say)  in the signs of Fluxions : Thus if  n = 2, & 
n
x designates 

••

x , with the sign changed 
//
x is designated by

n

x
−

. Henceforth fluents of 
quantities composed of several parts are sometimes designated by the quantities 
themselves enclosed in parallelograms; thus         designates the fluent of  xz2. 
 
[The reader can no doubt see that Taylor's notation lays itself open to misunderstanding 
and confusion, mainly by its similarity to Newton's dot notation for differentiation, to 
which it is distinct, and by the fact that Taylor uses Newton's notation when discussing 
fluxions. Taylor had little choice in his notation : he was Secretary of the Royal Society 
at the time, Newton was the President; it would have been a brave and rather foolish man 
to try to invent a completely new notation, or, heaven forbid, to adopt the continental 
usage of Leibniz ! Thus, he fashioned his notation around that of Newton, and if one 

xz2
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perseveres a little, it becomes rather obvious, and it is very concise. In this translation, I 
have occasionally looked at the work of L. Feigenbaum : Brook Taylor and the Method of 
Increments ; published in the Archives of the Exact Sciences, (1981), which is good for 
background information on Propositions 2, 3, 4, 7, 17, and 24, which are examined there 
in some detail, and this is a helpful source with many references for anyone with a deep 
desire to learn more about the early calculus of Newton, apart from reading Newton’s 
own work.] 

 
[page 3] 

  
PROP. 1. PROB. I. 

 
To find the increments for a given equation involving variable quantities. 
 

In the proposed equation, in place of these variable quantities, write the same 
quantities increased by their own increments as you see fit, and a new equation will be 
the result; then, by taking away the first equation, there will be left an equation from 
which the relations of the increments are given.  
 For example, let the equation be 03223 =−+− bzaxvx , where a & b are determined 
and unchanging quantities.  And thus for the variables x, v, and z by writing 

•••
+++ zzvvxx  & ,,  in their place, a new equation is produced : 

;02233 32222223223 =−++−−−−−−+++
•••••••••••

bzazavxvvxvxvxvxxvxxxxxx  
then with the first equation subtracted, the remainder is the equation 

;02233 2222322 =+−−−−−++
•••••••••••
zavxvvxvxvxvxxxxxx with the help of which the relations 

between the increments are given.   
 
[Thus, in modern terms, if we write Δx, Δv, and Δz in place of 

•••
zvx  & ,, , then we have on 

expansion :   

;0)())((

)()(2)()(2)()()(33
3222

2223223

=−++−

−−−−−+++

bzazavx

xvxvxvxxvxvxxxxxxx

ΔΔΔ

ΔΔΔΔΔΔΔΔ  

from which on subtraction of the original expression, we obtain : 

;0)())((

)()(2)()(2)()()(33
22

22322

=+−

−−−−++

zavx

vvxvxvxvxvxxxxxx

ΔΔΔ

ΔΔΔΔΔΔΔΔ
 

This is the same as the above equation, but written in terms of Δx, Δv, and Δz in place of 

•••
zvx  & ,, ]  

 If in this solution,  zero is written for the nascent increments arising [i. e. those of 
order greater than one], and for the first of these ratios the ratios associated with the 
fluxions are substituted, then all the operation can be performed at once simultaneously, 
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with these terms ignored. For a proposed equation, on account of the vanishing nascent 
increments, can then be stated according to  Newton's Rule, which is as follows:   

"Every term of the equation is multiplied by the index of the corresponding 
"quantity and by the fluent of this quantity involved,  and in the individual 
"multiplications the power of the quantity is changed into its own Fluxion;   
"and the new equation is the sum of the factors with the appropriate signs, by 
"which the Fluxion related to the equation is defined.  

   
 
 
 
 
 

EXAMPLES.  
[The quote marks indicate that Newton’s method of fluxions is being quoted.] 
"Let a, b, c, d, &c. be determined and unchangeable quantities, and an equation is 
"proposed with several fluent [derivatives or speeds] quantities involved z, y, x, &c., such 
"as 03223 =−+− bzaxyx . 
"First the terms [involving x] are to be multiplied by the indices corresponding to x, & in 
"the multiplications of individual terms by the appropriate power [the word latus or side 
is used, synonymous with the power or index (the original powers encountered were the 
squares of sides and cubes, etc), of one power less than the original],  

"or in the case of x of one dimension, 
•

x  alone is written, & the sum of the factors will be 

" 223 yxxx
••

− . The same can happen in y, & will produce yyx
•

− 2 . And in z, and 

"produces  
•

za2 .  The sum of the factors is put equal to zero, and the equation is 

"obtained :  .023 222 =+−−
••••

zayyxyxxx  
" In the same manner, if the equation should be :  

" 032223 =−−+− byaxaxyx then  " 023 2222 =−+−−
•

•••

yaxayyxyxxx  is 

"produced. Where, if you wish to find the fluxion
•

− 2yax , you put 2yax − = z, and 

"then 22 zyax =− , & (from this Prop.) zzyyxa
•••

=− 22 , or 
•••

=− zz
yyxa

2
2 , that is  

" 2

2

2
2

yax
yax

yyxa −=
−

−
••

. And hence .023
2

22

2

 222 =+−−
−

−
••••

yax

yyaxayyxyxxx   

  
 [These examples on finding what corresponds to finding the total derivative of a 
function of several variables corresponding geometrically to a surface in three 
dimensions, are taken from, or are similar to, those in Newton's notes, which had not 
been published at this late date, though some 50 years had passed since Newton had first 
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set out his ideas on the calculus and circulated to friends, but which were to be published 
soon afterwards. See, e. g. The Mathematical Works of Isaac Newton Vol. I in the 
Sources of Science Series, p. 31; or the original A Treatise on the Methods of 
Fluxions……. ;Newton's dot notation is not to be confused with the one now employed 
by Taylor. However, Taylor now shows how the total derivative or fluxion can be 
determined from the evaluation of finite differences, as follows.] 
 

By the repeated operation gone through above, applied to the increments [from the 
first order difference], the Fluxions of the second, third, and following orders can be 
found. Let the equation be : 0=− avxz . Then by the first operation [i. e., of Taylor’s 
finite difference method set out above] the equation becomes :  0=−++

•••••
vaxzzxzx . In 

this equation in place of 
•••
vvzzxx ,,,,,  by writing 

••••••••••••
++++++ vvvvzzzzxxxx ,,,,, , and 

with the original equation subtracted, then from which the second operation is formed : 
0222 =−+++++

••••••••••••••••••
vazxzxzxzxzxzx .  

[In modern notation, we set 
••••••••••••

++++++ vvvvzzzzxxxx ,,,,,  as 

vΔΔvΔv,vz,ΔΔzΔz,zx,ΔΔxΔx,x 222 ++++++ , and the second order operation becomes :  
)())(())(())(( 22222 vvazzxxzzxxzzxx Δ+Δ−Δ+ΔΔ+Δ+Δ+ΔΔ++Δ+Δ+Δ -  

( 0)... =Δ−ΔΔ+Δ+Δ vazxzxzx  

Giving : .0...2..2..2 2222222 =Δ−ΔΔ+ΔΔ+Δ+ΔΔ+Δ+ΔΔ vazxzxzxxzxzzx  
This corresponds to the above result; corresponding to Taylor's notation for increments.] 
  
 Thus with [Newton’s] fluxions for the same proposed equation, the above expression 

for the first fluent equation becomes 0=−+
•••

vazxzx , and for the second 

02 =−++
••••••••

vazxzxzx . And thus you can go on as you wish by means of the 
increments, to the third, fourth, and fifth order fluxions, and beyond.  
 
 [Note initially that the equation with the superscript dots is a fluxional equation, 
corresponding to a differential equation in Newton’s notation, as explained previously. 
Here we may note that differential equations result when the higher order increments in a 
Taylor incremental equation are set to zero, and here we have a first order differential 
equation : 0/././. =−+ dtdvadtdzxdtdxz , where all the variables are considered as 
functions of some parameter t from our point of view, or one variable z is considered as 
the free one that has a constant rate of increase 

•

•
zor  z  set equal to one, for the incremental 

and fluxional cases respectively; or the equivalent equation 0... =−+ dvadzxdxz , with 
similar expression for the second order quantities, as Taylor now demonstrates. ] 
  
 But when the increments or the fluxions have gone in this way through the second, 
third, fourth, and those orders that follow, it is agreed to consider some quantity as 
uniformly increasing, and to write zero for the Increments or for the Fluxions for the 
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second, third, and subsequent orders of these. Thus in the equation proposed just now : 
0=− avxz ,  

[p. 5] with z uniformly increasing, by going through the second operation, the equation 
[for the increments] becomes : 022 =−++

•••••••••
vazxzxzx . And for the fluxions proposed 

for the same equation, by the second fluxion operation, the fluxion equation becomes : 

02 =−+
••••••

vazxzx , and by the third 03 =−+

•

••

•

•••••

vazxzx .  

And in this case it is convenient for the given Fluxion
•

z  to be written as 1. With this 
agreed upon, the aforementioned equations are  

03 and,02  ,0 =−+=−+=−+

•

••

•

•••••••••••

vaxzxvazxxvaxzx . 
 
 [Thus, Taylor shows that his method of finite differences can be used to generate 
fluxions on disregarding higher order differences.]  
 

PROP. II. PROB. II. 
 

In an incremental equation with several variables involved, every one of 
these variables can have a new variable substituted in its place, with the 
same size of increment in place, but increasing in the opposite direction.    
[This theorem asserts that for an incremental equation, the principal or independent 
variable can be allowed to travel from left to right, or from right to left. The theorem 
establishes how a variable can be defined in terms of one or the other.] 
 Let one of the original variables in a proposed equation be x, and v one of the new  
variables, to be substituted in place of x ; thus, in such a manner that as x is increased by 
an increment, v is made less by the same increment.  If n is the index of the smallest 
increment in the proposed equation, then the conditions of the problem for 

•••
xxx ,, , &c.  

will be satisfied  [as derived in Prop. 1 above.], and a sequence of values can be written 
for these; where d is a fixed quantity to be taken as you please.  
  

.&..... 3
2

2
1

12
1

11 cvvvvdx nnnnnn −−−−−=
••••••

−−− , then 

.&..... 3
3

2
2

1
1

2
2

1
1

1
1

______________________________

cvvvvx nnnnnn ++++=
•••••••••••

−−−−−− , and 

.&.. 2
3

1
2

1
2

_______________

cvvvx nnn −−−−=
•••••••••••

−−− , while 

.&1
3

_____

cvvx n ++=
••••••••••

−  & thus henceforth. [p. 6] 

[Note : In the scheme adopted, x is the value of a right-moving integral or whole variable 
defined at some point z = a, which is set equal to some arbitrary constant d from which is 
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taken the sum of the increments of the left-moving variable v, with all its orders up to 
some finite order n, and with special coefficients chosen equal to the binomial 
coefficients of a binomial of degree n.  It becomes clear that Taylor had invented the shift 
operator E defined to-day by )()( dafaEf += ; and the above relation is postulated 
between the right moving increments and the left moving increments, which are shown to 
be equivalent. The various successive orders of the differences of x then follow by the 
application of the method of Prop. 1, in an inductive manner. An illustration of the 
method is then provided. Taylor does not appear to have used this Proposition in the rest 
of the book, and as with the next Proposition, which does find application, it has been 
inserted for completeness. The idea of right-handed axes is just our convention, and the 
idea of using backwards moving differences is avoided in this way. 

 In modern notation, we can write Prop. II as a set of difference equations based on the  
given form : vdx n

L )1( Δ+−= , where we set 1)1( 1or  ;I)1).(1( −Δ+=Δ+=Δ+Δ+ LRLR . 
Thus, the action of the step or shift operator to the right E, or )1( RΔ+ , increases the 
variable x in a right-going difference equation from

•
+ xxx     to , or by

•
x , and when acting 

on a set of differences defined for a variable v for a left going difference equation, it is 
equivalent to the left-going operator 1)1( −Δ+ L ; thus, these operators are formally the 
inverses of each other. Initially, the difference operators acts at some point a on the z axis 
for both x and v.   
Thus, vdx n

L )1( Δ+−= is the given difference equation, with v defined at n steps to the 
left of the starting point; and by acting on this equation with the operator 1 + ΔR, for  

])1([])1([)1(])1()[1()1( 11 vdvdvdx n
L

n
LL

n
LRR

−− Δ+−=Δ+−Δ+=Δ+−Δ+=Δ+ , and so on 
in an inductive  manner for r =  2, ........., n : ])1([)1( vdx rn

L
r

R
−Δ+−=Δ+  as in the text, 

then the variable v is defined at the steps n – 1, n – 2, etc, in turn, while the variable x is 
moved forwards by the corresponding steps. On taking the difference of the first two 
equations, we have 

••

−−− Δ+=ΔΔ+=Δ++Δ+−==Δ vvvvxx n
LL

n
L

n
L

n
LR

111 )1(.)1()1()1( ; 
again,  
 

•••••

−−−− Δ+=Δ+=Δ++Δ+−=+ vvvvxx n
L

n
L

n
L

n
L

2212 )1()1()1()1( ; and hence 

••••••

−−− Δ+−=Δ+−Δ+= vvvx n
L

n
L

n
L

212 )1()1()1( , etc., as required. Thus, the whole machinery 
for moving a variable along an axis in steps has been established.] 
 

DEMONSTRATION. 
 
                  A.                     B. 
 
     

••••••
+++ vvvvx 33............................1  

     
••••

+++ vvvxx 2......................2  
     

••••
+++ vvxxx ...........2.3  

     vxxxx  ........ 33.4
••••••

+++  
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 If for argument's sake n = 3,  and in the tables A & B, four corresponding values of x & 
v are shown with orders increasing in opposite directions ; which are easily brought 
together by adding the increments. Then since from the Hypothesis the corresponding 
increments in both tables are always equal [and opposite], the sum of the corresponding 
values of these as you please ought to be x & v in these tables. Since if the sum that is 
given is d, then   
 

••••••
−−−−= vvvvdx 33......................  

••••
−−−=+ vvvdxx 2.............  

••••
−−=++ vvdxxx ......2  

vdxxxx −=+++
••••••

33  
Then by taking the differences of these :  

•••••••
++= vvvx 2...................  

••••••
+=+ vvxx       ..........  

•••••••
=++ vxxx     ....2  

And then by taking the differences of these equations :   
 

•••••••
−−= vvx       .....  

•••••••
−=+ vxx        

[p. 7] Finally, by taking the differences of these equations :  
••••••

= vx    . 
Moreover, the values of ,,,

••••••
xxx  are themselves the same and ordered in the solution ; & 

and the argument is the same when n has some other value.  Whereby for a certain x, by 
substituting the values of the increments in this way, the problem is correctly solved.     
Q.E.D. 

 
COROLLORY. 

 On account of the vanishing of the increments in the solution of Fluxions, the task is  
easier by proving to be:   

••

••

••

••••••••••••••

−==−==−= vxvxvxvxvdx ,,,, , & thus henceforth [as the higher increments 
vanish.] 

SCHOLIUM. 
 

 Truly, incremental equations can be transformed with the help of any assumed 
equations that pleases you. Thus if you should make  x = vv, by taking the increments 
(according to Prop. I) the equations become :    

••••
+= vvvvx 2 ; 2242

••••••••••••
+++= vvvvvvvx ; & thus henceforth ; hence the equation for 

,,,
••••••

xxx &c. will be transformed by substituting these values [into the incremental equation 
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for x and its increments]. The same happens  if  x = d - v. But in this case v is a negative 
quantity, since 

••
−= vx ; whereby the substituted quantity v is not in fact an increasing 

quantity in the transformed equation, but decreasing, with the nearby decrement to be 
taken away from the value of v present. Hence if you wish the equation to transform thus, 
in order that the quantities v are decreasing with increasing x, & yet in the transformed 
equation the increments are truly those of 

•
v , as the former increments are indeed those 

of
•
x , then the procedure is according to this Proposition. 

 
PROP. III. PROB. III. 

 
A fluxional equation, in which there are two fluents z and x, of which z is the 
uniform fluent, can be transformed thus in order that x is the uniform fluent. 
[A differential equation can be changed from one involving differentials of x with respect 
to z to one involving differentials of z with respect to x.] 

The problem is solved for ,,,
••
•••••••

xxx   etc., and by substituting the sequences of their 

values, truly .&,,  ,
3

33

2

2
15103 cxxx

z
xzxzzzxzz

z

xzxz

z
xz

z

•

••••••••••••
••
••••

••

•

••••
•••

•

•••
•• −+−+− ==−= [by means of 

which the inversion of the equation is effected.] 
 

DEMONSTRATION. 
 
 Let A, B, C, D, E, &c. be quantities derived from x, for a given composition, and let 
the equations be ,,,,

••••••••

==== xEDxDCxCBxBA and thus henceforth.   Then if we put  

z = A,  ,
••

= Az  & (with z the uniform fluent) :   

,)(0 2•••••••

+=+= xCxBxBxB ,3)2(0 32
•

••••••
•

••••••••••

++=+++= xDxxCxBxCxxCxBxB  

,6340 422
••••••••••

••
••

++++= xExxDxCxxCxB &c. again (by Prop. I).  
But when x is the uniform fluent, and z is the variable fluent, then the equations are : 

•

••
••

•

•••

•

••

•

•

====
432

,,,
x

z

x

z

x

z

x

z EDCB , &c. Thus with these values written for B, C, D, E, 

&c., the values of ,,,
••
•••••••

xxx etc,  are themselves found, as are shown above. From which 
hence in on substituting in the equation, then x is the uniform fluent rather than z.  Q.E.D. 
 
[Notes : In the initial setting, where z is the independent variable, according to the 
scheme proposed, we have : 
 1 = Bdx/dz; while dB/dz = Cdx/dz ; dC/dz = Ddx/dz; dD/dz = Edx; etc.  
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Thus, according to Taylor, but written in modern notation, these relations give : 
;)/()/()/()/)(/(0 22222 dzdxCdzxdBdzxdBdzdxdzdB +=+= while similarly,   

32233 )/()/)(/(3)/(0 dzdxDdzdxdzxdCdzxdB ++= ;and 
;)/()/)(/(6)/(3)/)(/(4)/(0 42222223344 dzdxEdzdxdzxdDdzxdCdzdxdzxdCdzxdB ++++= et

c, for higher orders.  The change from dx/dz to dz/dx is effected by extracting this factor 
from each differentiation. 
 In the standard notation of the calculus, there is a symbolic distinction in the notation 
of the numerator and denominator of the ratio; the upper line d, d2, d3, etc., refers to the 
order of the difference from which the limiting value of the ratio is derived, while the 
lower line refers to the number of times the difference has been divided by the constant 
difference before the limit is taken: hence the order number is placed in a different 
location on the numerator and denominator lines. This distinction is more apparent in 
Taylor’s or Newton’s notation.  
  
 Later, on p. 25, Taylor considers the fluxional or differential equation  

.02=−−+
••••••

xxxxnzx  It is useful of us to consider this equation here as an example of his 
method of transforming fluxional or differential equations, as he makes use of the 
formulae for the derivatives to solve a fluxional equation involving an infinite series in a 
finite form. Following the original, we write 1=

•

z  or  (with y written for z + nx), 

y
xxx

2
••

•• += (*). Thus, it is an easy matter to find the second derivative. Then by continued 

differentiation : 

2

2 ))(1())(2(
y

xxxnnxzxxxx
••••••••

••• ++−++= ,)2()2( 2

32

2

22 )()1)(()21)(( ••
•••••••••

−=−== +++−++ xnn y
x

y
xx

y
xnxxxxx  

on substitution of *. Thus, the third derivative is found ,)2(
••

•
•••

−= xnx y
x (**). Again, 

])22())(2(])[2(
22

2

24 )2()1()1(
y

xxn
y
x

y
xnx

y
xxx

y
xnxx

y
xxx nxnnx

•••••
••••••••••••••••••••••••

−−++++ +−=−−=−−=  

To proceed further, we must express 2
••

x in terms of 
•

x  and 
•••

x : Thus, from * 

n
xx

y
xxxxx

y
xxx −

+++++
•••••••••••••

=== 2
)1()(

2

3232
222 )( . Hence, y

xx
y

xn
••••••

+− = )1()2( 2

, and the fourth derivative 

is found from :  

),23()22()22(
24 )2( nxxnxnxx y

x
y
x

y
x

y
xxn

y
x −=+−=+−=

•••••••••••••••••
••••

−− (***) as required; while the fifth 

derivative is found from : 

;)23()23( 2

45 )1()23(
y

xnxxn
y
x

y
x nxnxx

••••••
•••

••
+−−−+−= To proceed, we need two expressions that 

can be derived from these above : ; and 23
)1(

23

44

n
xx

n
xy xxxx −

+
−

•
•••••••••

==  On substitution into the 
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expression for 
5

x , we obtain )23(.
4

5

nx y
xx −=
•

,(****) as required; etc. Thus, each derivative 

can be written as a product of 
•

x  and the previous derivative. In which case, from this 
theorem, we can write a series of differential equations of increasing order. Thus for the 
original equation chosen as an example :  

0)/(/))(/(or ,0 2222 =−−+=−−+
••••••

dzdxdzdxnxzdzxdxxxxnzx : from  

 y
xxx

2
••

•• += , we have on transforming, ,0)1( , 
2

=+++=−=
••••

••

•

•••
•• + xznx)(zzor x y

xx
z
xz which we 

can write as 0or ,0)/1()/( 22 =+++=+++
••••••••

zzzxznxzzdxdznx)(zdxzd  ; and likewise for 
equations of higher orders. Note the change in sign of the last two terms. Taylor is later to 
show that this equation cannot be solved in general, but the inverse equation can be 
solved, which he does, as noted.] 
   

[p. 9] 
 

SCHOLIUM. 
And in the same way it is possible to transform an equation, which involves more fluents 
v, y, &c. besides z and x; but no fluxion [derivative] of v, y, &c., is involved beyond the 
first order in the equation. Whereby if for an equation, if you want to transform it by this 
proposition,  there are certain fluxions of v, y, &c. of the second and third orders, and 
consequently these are first to be eliminated with the help of the given equations, and 
then the transformation can proceed to be done by this Proposition.   
 

PROP. IV. THEOR. I. 
 

 For a given [finite-difference] equation, for which all the values are given for a 
variable z [the independent variable for which 1=

•

z ],  there are besides some increments 
of another variable quantity x involving the orders  

21
,,

++ mmm
xxx etc ; the first of these is 

m
x , 

and the last 
nm

x
+

, (also it is possible that there is a  region in which both  z, and all the 

increments 
21

,
++ mm
xx , &. between 

m
x  & 

nm
x
+

 need not be defined ;)  and in addition there 

are m + n [starting values or boundary] conditions given for the observed m + n given 
values z, and with as many corresponding values taken between for the [boundary] values 
of x, 

•••
xx, , &c .and so on indefinitely ; thus as no more than n values of x can be taken for 

m
x or

1+m
x , or of any lesser increments you wish to consider [i. e. higher in order and 

smaller in magnitude], or between the several increments 
21

,,
++ mmm
xxx , &  those below; 

neither more than n + 1 values can be taken of 
1−m

x ; nor more than n + 2 values can be 
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taken of 
2−m

x ; and thus henceforth; all the values of x itself are given from the given 

values of z. 
 [This  is a general theorem, and care has to be taken to understand what is being said. 
Essentially, there is a difference equation involving the fluents z and x, corresponding to 
the independent and dependent variables, that starts at some difference order m and ends 
at order m + n, where the starting order m can of course be zero or some small number, in 
which case the integral quantity z itself is involved, perhaps the most common 
circumstance. The extra conditions that Taylor considers are added increments that insure 
the correct starting or boundary conditions on the difference equations of the various 
orders. Thus, there will be a difference of the same order as a starting value for each 
order of z, and ending with a difference of order m + n. An example done a little later by 
Taylor helps to clarify matters. An obvious example for the time being, is the initial 
displacement and speed of a body undergoing some kind of accelerated motion, in which 
each boundary condition can be set to be the difference of the two initial values of the 
preceding order.] 

[p. 10.] 
 

DEMONSTRATION. 
 
 Throughout a given difference equation, 

nm
x
+

is expressed in terms of z and by the 

increments 
21

,,
++ mmm
xxx , &c. with the upper value

nm
x
+

. Thus, (by Prop. 1.) the next closest 

increment 
1++nm

x  is expressed by the same quantities ; then (by the same Proposition) the 

next increment 
2++nm

x can be expressed by the same quantities ; and with the operations 

continued indefinitely all the increments below
nm

x
+

[in a table of values where each row 

has the order increased by one] can be expressed in terms of the same quantities  z, and 
by the increments 

21
,,

++ mmm
xxx , &c., as far as

nm
x
+

. Thus if  a, c, and 
•••
cc,  [are starting value 

of] z and x,
•••
xx, , &c. are indeed corresponding values, then all the values 

21
,,

+++++ nmnmnm
ccc , 

&c. are given in the indefinitely continued expressions through a, & 
21

,,
++ mmm
ccc , &c. 

themselves above 
nm

c
+

. Thus through addition all the values of z itself 
m
x are given in the 

table of values before being continued. And for 
o
z  & x with new values substituted (Per 

Prop. 2) in the same way all the values 
m
x can be continued backwards in the table. Hence 

by continued addition and subtraction all the nearby increment above
1−m

x ,  can be 

expressed by the same quantities, and through 
1−m

c : and then by the same method all the 

values of the increments still above 
2−m

x can be expressed by the same quantities and by 

2−m
c . And thus by proceeding finally all the values of x are expressed by [p. 11.] a & by 
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the terms c,
•••
cc, , &c. and by 

2+m
c themselves above.  But the number of terms before the 

term 
2+m

c is m + n . Whereby all the terms c,
•••
cc, , &c. are determined by the number m + n 

according to the conditions, and thus all x are given. Q.E.D.  
 But since the values of 

21
,,

++ mmm
xxx , &c. themselves only include the terms  

21
,,

++ mmm
ccc , 

&c., the number of which is just n  ; hence there are no more than n conditions that can be 
applied to the values of the increments 

m
x & of those below. Likewise since the values of  

1−m
x include just as many terms 

11
,,

+− mmm
ccc , &c. , the number of which is only n + 1, there 

cannot be more than n + 1 values applied to the increments 
1−m

x : And the argument is 

similar for the rest. Thus by this given theorem are correctly determined, and the 
conditions of these, for as many as two whole quantities, and the increments involved 
with these.     
 

[p. 12.] 
 

PROP. V. THEOR. II. 
 

 For two given difference equations, for which all the values of [the independent 
variable] z are given, there are a number of increments involving the variables v & x as 
well as z.  For these,  the largest increments [i. e. the finite differences of the smallest 
order] taken from both the difference equations are

p
v  and 

π
x , while the smallest 

increments  [i. e. those differences of the highest order] in the one difference equation 
are

ap
v
+

 and 
απ +

x , and in the other equation they are
bp

v
+

and 
βπ +

x ; if m is made the 

maximum of the numbers a + β and α + b, then all the differences for v are given by the 
number of conditions m + p applied to the m + p  values of the differences of z itself, and 
to just as many corresponding values of 

•••
vvv ,, , etc, and 

21
,,

++ πππ
xxx , etc. ; also, all the 

differences for x are given by the number m + π conditions with regard to the m + π 
[orders] of  z itself, and to the same corresponding values of 

•••
xxx ,, , etc. and  of 

21
,,

++ ppp
vvv , etc., themselves.  Thus it is insured that it will not be possible to apply more 

than m [boundary or starting] conditions to the values of the initial  increments of the 
smallest order 

p
v  and 

π
x , and for the rest of the conditions  to be applied to the 

intermediate values of those smaller differences
•••
xxx ,, , etc,  and 

•••
vvv ,, etc. themselves,  

provided that 
π
x  and 

p
v  follow the above rules for the values of the increments set out 

above for the 
m
x  in Proposition four; that is, in order that for the one smallest value given 
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to x itself, there are two values required for x and
•
x , three values of 

•••
xxx ,, , etc; and thus 

similarly regarding 
•••
vvv ,, , etc. , and thus henceforth.  

[p. 13.] 
[Note: The lowest orders are found from both difference equations by inspection, which 
must be reducible to similar forms on taking repeated differences: 

p
v  and 

π
x . Additional 

finite differences are formed from both the first and the second finite difference 
equations, taking each maximum order of difference of x and v up to the level of other 
equation acted on in the same way. Thus, 

ap
v
+

 and
απ +

x are the given maximum orders in 

I, and 
bp

v
+

and 
βπ +

x  in II.  

The differences are augmented in I to 
β++ap

v  and
βαπ ++

x , while those in II are increased 

to orders  
α++bp

v and 
αβπ ++

x ; the maximum of these two operations a + β and α + b for 

the final order of difference of v is taken as m, while the x value can be substituted into 
the other equation in terms of other v increments. Thus, there are m + p conditions 
applied to v, and m + p + π conditions applied to x. ] 

 
DEMONSTRATION. 

 
 For according to the given equations, and thence from new equations derived 
according to  Prop. 1, by eliminating v with its increments,  a difference equation is given 
besides z involving just as many increments of x itself, the greatest of which is 

π
x , and the  

smallest is
m

x
+π

 [thus, a difference of lowest order in one variable can be taken from one 

difference equation and inserted into the other]. And an equation is given as found before 
above in terms of z and the increments of x itself and from the values 

π
x  and for higher 

differences, involving terms such as 
p
v . Hence,

p
v  is given by an expression through z and 

the increments of 
π
x  and higher orders. But if a,  & c,

•••
cc, , etc. are the values of these, and  

z, & x,
•••
xx, , etc., are certain corresponding values, all the increments of

π
x  and for higher 

values are given expressed by a number m of these difference equations : a, and 

21
,,

++ πππ
ccc , etc., according to Prop. 4. Whereby also all the

p
v are expressed by the same 

quantities. Thus if d,
•••

dd , , etc. are values of v,
•••
vv, , etc. corresponding to the value a of z, 

and the series d,
•••

dd , , etc. is continued as far as to include 
1−p

d , in order that the number of 

terms is p, all v are given expressed by the quantities d,
•••

dd , , etc. and 
21

,,
++ πππ
ccc ; etc. of 

which the number of values is m + p. Moreover all the values of x can be expressed by 
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the quantities c,
•••
cc, , etc. , the number of which is m + π. Whereby with all the values  

c,
•••
cc, , etc. determined by the number of conditions m + π with regard to the values of x 

and of its increments, then all of d,
•••

dd , , etc., can be determined by other conditions with 
regard to the number p for the values v,

•••
vv, , etc., [p. 13.]  or by the determination of all 

d,
•••

dd , , etc,  and from some terms 
21

,,
++ πππ
ccc ,  etc.,  by conditions with respect to the values  

v,
•••
vv, , etc. of the rest of the terms c,

•••
cc, , etc. that are determined by conditions regarding 

the values x,
•••
xx, , etc. Hence by the m + p conditions all the v terms are given, and by the 

m + π conditions, all the x terms are given, (Q.E.D.) and by the entire m +p +π set of all 
conditions is given, as for v, and so for x. Moreover in this manner the conditions are to 
be applied to the values of v and x, and to the higher increments of 

p
v and 

π
x , in agreement 

with Proposition four.  
 

 
SCHOLIUM. 

 
 In the same manner through the elimination of variables it is also possible to precede 
to find the condition, for which it is possible to form the boundary for three or four or 
more incremental equations  involving three or four or more variables besides z, all the 
values of which are given.   
 Let  032

4
=+−

••
bxzxz be the equation. In this equation

••
x  is the same as

m
x  of Proposition 

Four, and likewise
4
x  is the same as

π+m
x ; hence m = 2, and n = 2. Whereby the four 

conditions give all the values of x, for all the given values of  z. And since
••
x  is the first of 

all the differences 
•••
xxx ,, ; etc. which occur in the equation, at least two conditions are 

applied to the values of x and
•
x  themselves; thus , as either one condition is applied to 

the value x, and the other to the value of
•
x , or each is applied to the value at π. Moreover 

the rest of the conditions can be applied as you please to the values of all  
•••
xxx ,, , etc. 

indefinitely; thus, as either one condition is applied to one of these terms, and the other to 
the other term, or also all the conditions can be applied to the different values of the same 
term.   

[p. 15.] 
 There are two equations .0 and ,0 =−=+−

•••••••••••
vzxvvx  For these equations, the terms of 

the proposition are  p = 1 [from 
•
v in I], π = 2 [from 

••
x  in I], a = 2 [from 

•
v → 

•••
v in I], α = 0 

[from 
••
x  in I, as there is higher difference], b = 1 [from 

•
v → 

••
v in II], β = 1 [from 

•••
x  in the 

second equation]. Thus ,1and3 =+=+ ba αβ hence :  
m = 3 .6 and ,5,4and)( =++=+=++= ππβ pmmpma  Hence all the values of v are 
given by four conditions,  all the values of x are given by five conditions, and all the 
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values both of x and v are given by six conditions, with the two values of x and
•
x , with 

the remaining three values applied in some manner to the values of the increments 
•••
xv, , 

and of those smaller increments.  
[One can of course adopt the method of the proof, and take successive differences until a 
common difference is found, at which time the common value is substituted in the other 
equation, etc.] 

 There are two fluxional equations .0z and ,0
42222 =−−=−−

••••••••••

xxxxzvzxv  Then 
according to method of this Proposition: 

;&,:]2[;,:]1[;,:]common[
4
xxvvndxxvvstxxvv

bpapp
======

++++

••••••

βπαππ
,4,5,4 hence and ;3,4,4,2,1,0 ,0,1 thus =+=+==+=+====== παββαπ mpmmbabap

and .5=++ πpm  Hence all the terms v and x are given entirely for all z by five 
conditions ; of which the smallest one relates to a value of v, and the rest can be applied 
to the values of v, x, and of their fluxions. Hence if two curves are to be described, the 
ordinates of which are v and x, and with the common abscissa z, the curve described with 
this ordinate v is given by five points; or by four points and with the fifth point cutting the 
ordinate axis at a given angle;  or is to generated by a curve that passes through one given 
point, and four ordinates with the position given cut either in points or in given angles, or 
in their extremities have a given curvature, or with a certain indication of the curvature 
depending on the values of the fluxions 

•••••

vv, , and lower orders; all the points of each kind 
of curve are given. Or also if the other curve is described, of which the ordinate is x; thus, 
in order that it cuts four given ordinates, or in other cases it cuts in points, others in    

[p. 16.] 
given angles; or in given curvatures it may have of these for the boundaries, or it may 
have some other kind of curvature depending on the third, fourth, and higher order 
differences; in addition, all the points of each curve are given from the one value of v. 
And in the same manner one condition can be given regarding the initial value of v, and 
the rest of the conditions can be chosen freely between the values of the ordinates x and v, 
and of their fluxions [i. e. derivatives].  
 Again in these cases there can be two or more values equal to each other for a given z, 
or  (which is the same in geometry)  two or more values taken from the positions of the 
given ordinates can coincide. [i. e. the curves can cross each other] But this depends on 
certain conditions arising from considerations of the nature of any proposed equations. 

Thus for the two proposed equations :  ,0 and 
4
=−+=

••••••

vvxzxzxv from the present 
proposition there are four conditions which can be applied to the values of x and v and 
their fluxions as you wish.  But on account of the first equation xv = z , it is not possible 
for the ordinates to coincide,  when the conditions in the first equation are applied 
regarding each of v and x; neither on account of the second equation can all four ordinates 

coincide, with regard to the conditions applied to all the values ;,,,x 
4
vvx

••••••

for each x and v 
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given together, and z determined by the first equation;  likewise for all
4

,,,x vvx
••••••

given at 
the same time, and z determined by the second equation; each contrary to the hypothesis. 
In the same way the fluxion of the first equation can be taken (where for

•

z  I write 1, as 
previously) and you will find that ;1x =+

••

xvv hence also it is agreed that it is not possible 
that all the ordinates coincide, when the conditions are applied regarding the values of 
all .,,,x 

••

vvx  And again by taking the fluxions of the proposed equations perhaps all the 
boundaries of the conditions are given in this way.  
 For these, just as in equations involving variables, so in incremental equations, certain 
variable quantities are liable to be defined within certain limits. Let 02 =+−

••

zxax  be an 
example of a fluxional equation.  
 

[p. 17.] 
 

Hence zxax −=
••

; thus where it is impossible for ,zax <
••

 (and thus for all its fluxions).  

The second fluxion of the same equation is ;022
42 =−+

•••

xaxxx  thus 
••

−= xxaxx 4
2
1 ; 

hence always 4
2
1 axxx <

••

 [The original has a ‘>’ sign]. And in the same manner from the 
further fluxional equations proposed, perhaps you will find  elsewhere the limits of the 
variables.   
 

LEMMA 1. 
 

 In a fluxional equation, many increments of the same variable quantity do not involve 
a general rule that can be defined, by which the extent of the increase can given, in the 
variable equation defining the relation to the other variable quantities.  
 
 In the fluxional equation ;0=+++

••••••••

zxzxnxxxx the quantities are only affected once,  
and when n = 2, x is found from a given z by a quadratic equation; but however if n = 3, x 
is only given by a cubic equation; if n = 4, x is given by a bi-quadratic [fourth power] 
equation; if n = 32

1 , x is given by an equation of the fifth dimension : then if the 

coefficients of the rest of the terms are made general, so that the equation becomes 

;0
2

=+++
•••••••

zxpzxnxmxx  I doubt whether it is possible to find the dimensions of the 
equation sought by any known rule, if indeed it is possible to find  x in terms of z by an 
equation with a finite number of terms.  
[This is the equation, modified by making the last two terms negative, that we have 
mentioned in Prop. III, to which Taylor returns in the Scholium of Prop. VIII on page 25, 
to effect a solution, by interchanging x and z according to the rules of Prop. III, as we 
have shown there.] 
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Let another equation be :  .)1(44 2222223 xxzxzx +=−
••

 In this equation x rises to the third 

degree, and 
•

x  rises to the second degree; but yet x is given from z by an equation of the 
second dimension, the root of which is 

.|21

1
2

________________

2

zaa

zx

−+

+= . Truly with the coefficients 

changed I hardly know whether it is possible to get x from z by a finite equation.  
[Thus Taylor bemoans the sad truth that there are no analytical solutions for many 
differential equations. However, he now proposes possible ways of solving differential 
equations. ] 
 

[p. 18.] 
 

PROP. VI. PROB. IV. 
 

 For many given [difference] equations, commonly involving some integral and 
incremental quantities, and for which there are several variables x, v, y, &c., which are 
to be referred to the [principal] variable z, all the values of which are given; these 
equations are to be solved, to find equations between the variables that are free from 
increments, which are to be found with undetermined coefficients, and these can then be 
adapted for the conditions of the problem.   

 
 
 

SOLUTION:  
 

 In attempting to solve some proposed difference equation,  either by multiplying or 
dividing it somehow, some other known increment of some quantity will be recognised. 
If this is the case, then instead of the proposed equation, substitute that known quantity 
that is equal to the first increment of this quantity present, or the second, or even some 
other that is in fact equal to zero ; on account of which the proposed equation, or some 
multiple or fraction of it shall be the first increment, or the second, or some other known 
quantity of this known variable.  Likewise in this way for all the proposed equations, if 
only equations involving integral quantities are found, then the solution is given by a 
finite number of terms; which can be accommodated to the conditions of the problem by 
adjusting the indeterminate coefficients in the assumed quantities.  Q.E.F. 
 But if by this arrangement the problem cannot be solved, then by the elimination of 
variables  (with the help of the given equations, and of new equations thus derived by 
Prop. 1, if it is necessary) in which case all the new equations are in terms of the same 
number of variables x, v, y etc., as well as z.  One of these equations only involves x with 
its increments (truly besides z,) and the rest involve only two variables, x and v, x and y, 
etc. (one of which is always x) with their increments (always with z understood in the 
equations). From the equation involving only x and its increments,  the value of x itself 
can be found, expressed as a power of z, with the help of some of the following 
propositions.  Then with the help of these equations, x and its increments can be 
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eliminated [p. 19.] from the equations involving only x and v, x and y, etc., with their 
increments; and through the equations in this manner the resulting values of v, y, etc, are 
sought, to be expressed in terms of the powers of z, in the same way that the value of x 
itself was found. And by this arrangement all the values of x, v, y, etc. are to be expressed 
by the powers of z. Which values are to be adapted to the conditions of the problem with 
the help of the undetermined coefficients. And if of these values some are produced in a 
finite number of terms, or in series that can be reduced to a finite expressions, truly the 
solution for this part is given by the mathematics in a finite number of terms. But where it 
is not possible for the series to be reduced to a finite number of terms, a mechanical 
solution is required, and a series is used for finding the approximate roots of x, or v, or y, 
etc.   
[Note : In all of these, the word ‘integral’ indicates that the variable does not involve 
increments or differences, but is whole ; it does not mean integral in the modern sense of 
being an integral, at least not directly.] 
 

SCHOLIUM. 
 

 The reduction of many proposed equations to integral equations in this kind of 
solution depends on the skill of analyst in finding increments (by Prop. 1.) to be acted on. 
Whereby to this end, there may be a useful quantity found from various ways of 
composition that are possible, and with the help of the other increments the integral can 
be found.  The following table is of this kind. 
 
 
 
 

Increments Integrals. 

1. .&
\\\\

czzzzdzzzczzbza ++++
••••

 .&
\\\\\\

4
1

\\\

3
1

\

2
1

1
1 czzzdzzzczzbzazA +++++  

  

2. .&
\\\\\\\\\\\\\\\\\\\\

czzzzz
zd

zzzz
zc

zzz
zb

zz
za

++++ ••••  .&
\\\\\\\\\\

4321 cA zzzz
d

zzz
c

zz
b

z
a −−−−−  

  
[p. 20.] 

 
Fluxions. Fluents. 
1. 

•

z nz±  .A1
1

1 ++±
+±

nzn  

2. ×+
••

)( zxxz λϑ 11 −− λϑ xz  λϑxz+A  

3. ×++
•••

)( zxvzvxxvz μλϑ 111 −−− μλϑ vxz  μλϑ vxz+A  

4. ×+++
••••

)( zxvyzxyvzvyxxvyz πμλϑ  
1111 −−−− πμλϑ yvxz  .A πμλϑ yvxz+  
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[Note : In the first table, the results 1. for the increments and the integral quantities follow 
in an inductive formal manner. We may illustrate the notation in the finite difference case 
by considering the difference of the quantities 

\

2
1 zbz : zzbzzzbzzbz

•••
=−−+ )()( 2

1
2
1 ;and 

\\\

3
1 zzcz : ;)()()()2)((

\

3
1

\\\

3
1

3
1 zzzczzzzczzzzzczzzzczzzcz

•••••••
=+=+−−++= etc. The results 2. 

follow in the same manner. The results 3. and 4. are of course the familiar ones for 
powers  and their derivatives.] 
 By comparing expressions with example of this kind certain problems can be solved.  
If the fluxional equation is given: .02 22 =−−

•••••••••

xxxxxxx  By comparing this equation with 

the fluxions of the third order constructed, zxvzvxxvz
•••

++ μλϑ , then it is found that 

,2,1,1 −=−== μλϑ with xxx ,,
•••

 entered in this equation in place of z, x, v in that fluxion. 

Then the fluent 2
1
. −

−•••

xxx is equal to the given quantity, (since the fluxion of this is equal 

to zero.) And, for a given quantity, 
••••

=−
−

zaxxx 2
1
. . (truly for the complete orders of the 

fluxions by the degrees of the given 
•

z .) Thus 2xxzax
••••

= ; then again by returning to the 

table of the fluents (to the example 
•

z nz± from the fluxions ) it follows that 
•••

+= zbx xza
3

3 . 
From which the equation of the fluxes of the third order  are reduced to a fluxional 
equation of only the first order.  
 In the same manner it can be shown that the equation 432 •••

= zxx , or (where I write 1 

for 
•

z ), 32 xx =
••

can be returned to the higher order. [p. 21] For by extracting the root it 

becomes 2
3

xx=
••

. Multiply the equation by 
•

x , and it is 2
3

xxxx
••••

= , then by taking the fluents 

it is .2
5

5
2

2 axx +=
•

 

 Another equation is xxx
•••

=2 : then by extracting the root it is 2
1

2
1

xxx
•••

= , that is 
2
1

2
1

xxxx
••••

= , then by taking the fluents it is ,2
3

2
3

3
2

3
2 axx +=

•

or if it pleases, .2
3

2
3

axx +=
•

 And 
in this manner by multiplications, divisions, and by the extractions  of roots, the 
expressions are to be reduced to known forms of fluxes, or the fluents themselves are to 
be found, or the equations are reduced to fluxions of lower order.  
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LECTORI. 
 
In Methodo hac Incrementorum quantitates considero ut Incrementis auctas vel 
Decrementis imminutae, & ex datis relationis Integralium quaero relationes 
Incrementorum, atque vicissim ex datis relationibus Incrementorum quaero quantitates 
ipsas Integrales.  Horum usus in rebus Mathematicis satis late patet; sed in eo maxime 
elucet, quod hinc facile deriventur omnes proprietates Fluxionum. Clarissimus Dominus 
Newtonus quantitates Mathematicas considerando ut motu perpetuo descriptas, per 
Methodum Fluxionum ex rationibus primis Incrementorum nascentium quaerit rationes 
velocitatum quibus magnitudines describuntur, & vicissim ex velocitatibus hisce (quas 
Fluxiones quantitatum vocat) quaerit magnitudines quantitatum ipsarum descriptarum. 
Hoc idem, sed minus generaliter, secere alii (ut Veteres in Methodo exhaustionum, 
Cavellerius & Wallisius in Methodis summatoriis.) Veteres investigando magnitudines 
figurarum inscripserunt & circumscripserunt figuras ex partibus finitis & cognitis 
constantes, & partium istarum numerum auxerunt & magnitudinem minuerunt, donec 
differentia inter earum summam & figuram quaesitum esset minor quavis data. 
Caballeius & Recentiores contemplarunt partes istas ut in infinitum diminutas. Sed hi 
omnes, contemplando eneses quantitatum per additiones partium, non satis consuluerunt 
severae isti αχρβεια Geometrarum. Partes enim, ut Methodus sit accurata, deberent 
esse primae nascentes; at nullae sunt ejusmodi partes in rerum Natura, sunt tantum 
rationes primae partium nascentium.; Ergo Newtonus missis partium magnitudinibus, 
missis & earum summis, rationes ultimas partium evanescentium, & primas nascentium 
introduxit, & in his rationibus Analysin suam fundavit. Sumptis itaque rationibus primis 
Incrementorum nascentium, vel ultimis evanescentium, accommodantur omnes 
Conclusiones Methodi Incrementorum ad Methodum Fluxionum, Incrementis jam 
evanescentibus, & Integralibus in fluentes conversis. Et hoc pacto vitatur omnis 
consideratio quantitatum infinite (seu, ut aliqui loqui ament, indefinite) parvarum. Nam 
in Methodo Fluxionum, ut Conclusiones sint verae & omnino accuratae, partes seu 
incrementa concipienda sunt, non ut perexigua, seu infinite parva, sed ut revera nulla: 
Rationes enim primae non sunt nisi in ipso momento ubi quantitates nasci incipiunt; ubi 
semel nascuntur jam desinunt esse primae. Similiter & rationes ultimae non sunt, nisi ubi 
quantitates jam evanescunt & fiunt nullae. Facilioris tamen conceptus gratia possunt pro 
Fluxionibus sumi augmenta illa nascentia, quae Newtonus momenta vocat, atque 
designat litera o Fluxionibus apposita. Et in hac modo concipiendi facilius cernitur 
relatio inter Methodum hanc Incrementorum & Methodum Fluxionum. Quapropter etiam 
in Propositionibus nonnullis generalibus spectantibus ad Incrementa quavis in genere, 
vel finitae magnitudenis, vel infinite parva, exempla damus in Fluxionibus, vice tamen 
Fluxionum sumendo momenta. 
 
 
_______________________________________________________________________ 
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________________________________________________________ 
_____________________________________________________________ 

Methodus Incrementorum. 
 

Pars Prima. 
 

Ubi traduntur Praecepta, cum Methodi Incrementorum in genere, tum 
Methodi Fluxionum. 
_____________________________________________________________ 
 

INTRODUCTIO. 
Quantitates indeterminatas in his considero ut Incrementis perpetuo auctas, vel Decrentis 
diminutas. Indeterminatas ipsas Integrales designo literis z, x, v, &c. earumque 
Incrementa, seu partes mox addendas designo iisdem literis a parte inferiori punctatis  

,,,
•••
vxz   &c. Quorum Incrementorum Incrementa, seu Integralium ipsarum Incrementa 

designo iisdem literis bis punctis ,,
••••••
vxz , &c. Quorum Incrementorum Incrementa, seu 

Integralium Incrementa secunda designo iisdem literis punctis ,,
QQQ
vxz , & sic porro. Quin 

etiam majoris generalitatis gratia, vice punctorum nonnunquam scribo characteres 
punctorum numeros designantes : Sic si n sit 3, per 

n
x  , vel 

3
x , designatur 

Q
x ; si n sit o, per 

n
x , vel 

o
x designatur ipsa Integralis x ; si n sit -1, per 

n
x , seu 

1−
x designatur quantitas cujus 

Incrementorum primum est x ; & sic de caeteris. Saepe etiam in hoc Tractatu quantitatis 
ejusdem variabilis valores aliquot successivos designo per eandem literam lineolis 
insignitam; nempe praesentem valorem designando per literam simplicem, praecedentes 
per accentus graves suprascriptos, & subsequentes per lineolas subscriptas. Sic exempli 

gratia sunt 
\\\

   xxxxx ,,,,
\\\

, ejusdem quantitas valores quinque successivi, quorum est x valor 

praesents, sunt 
\\\

 & xx valores praecedens, atque 
\\\

& xx valores subsequentes.  

II. Fluxiones, quae sunt in ratione prima Incrementorum nascentium, vel ultima 
evanescentium, designantur punctis indicibus Incrementorum ad literarum partes 
superiores transpositis : Sic est 

•

x Fluxio prima ipsius x ; 
••

x est ejusdem Fluxio secundo 

secunda; 
∴
x Fluxio tertia; & sic porro. Fluentes etiam nonnumquam designantur per 

lineolas (similes accentus acuti) literis suprascriptas : Sic 
/
x designat fluentem ipsius x, 

seu quantitatem cujus Fluxio prima est x ; 
//

x designat fluentem ipsius x, seu quantitatem 
cujus Fluxio secunda est x ; & sic porro. Et hae lineolae in indicibus fluentum vim habent 
punctorum (ut ita dicam) negativorum in indicibus Fluxionum : Sic si sit n = 2, & 
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n
x designet 

••

x , mutato signo designantur 
//
x per 

n

x
−

. Porro fluentes quantitatum 
compositarum designantur nonnumquam per quantitates ipsas parallelogrammis inclusas; 
sic designat  xz2 fluentem ipsius xz2. 
 

PROP. 1. PROB. I. 
Data Aequatione quantitates variabiles involvente invenire Incrementa. 
 
In Aequatione proposita vice quantitatis cujusvis variabilis scribe eandem quantitatem 
proprio Incremento auctam, & resultabit Aequatio nova; unde ablata Aequatione priori, 
residuum erit Aequatio, per quam dabitur relatio Incrementorium. 
 Exempli gratia sit Aequatio 03223 =−+− bzaxvx , ubi a & b sunt quantitates 
determinatae & immutabiles. Itaque pro x, v, & z scriptis 

•••
+++ zzvvxx  & ,, , prodit 

Aequatio nova 
;02233 32222223223 =−++−−−−−−+++

•••••••••••
bzazavxvvxvxvxvxxvxxxxxx unde subducta 

Aequatione priori, residuum ;02233 2222322 =+−−−−−++
•••••••••••
zavxvvxvxvxvxxxxxx sit 

Aequatio, cujus ope dantur relationes Incrementorum. 
 In hac Solutione, si pro Incrementis nascentibus scribatur nihil, & pro earum 
rationibus primis substituantur rationes Fluxionum, eo pacto dabuntur relationes 
Fluxionum. Et potest operatio simul & semel perfici, ab initio neglectis terminis, cum 
Aequationis propositae, tum & ob Incrementa nascentia evanescentibus, omnino ut 
docetur in Regula Newtoniana, quae haec est ;  
  "Multiplicetur omnis Aequationis terminus per indicem 
  "dignitatis quantitatis cujusque fluentis quam involvit, & 
  "in singulis multiplicationibus mutetur dignitatis latus  
  "in Fluxionem suam; & aggregatum factorum sub pro- 
  "priis signis erit Aequatio nova, per quam definitur  
  "relatio Fluxionum. 

 
EXPLICATIO. 

 "Sunto a, b, c, d, &c. quantitates determinatae & immutabiles, & proponatur Aequatio 
"quaevis quantitates fluentes z, y, x, &c. involvens, uti 03223 =−+− bzaxyx . 
"Multiplicentur termini primo per indices dignitatum x, & in singulis multiplicationibus 

"pro dignitatis latere, seu x unius dimensionis, scribatur 
•

x , & summa factorum 

"erit 223 yxxx
••

−  . Idem fiat in y, & prodibit yyx
•

− 2 . Idem fiat in z, & prodibit 
•

za2 . 
"Ponatur summa factorum aequalis nihilo, & habebitur Aequatio 

" .023 222 =+−−
•••

zayyxyxxx  



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 26 
Part 1A.Translated with Notes by Ian Bruce. 

" Ad eundem modum si Aequatio esset 032223 =−−+− byaxaxyx produceret 

" 023 2222 =−+−−
•

•••

yaxayyxyxxx . Ubi si Fluxion 2yax − tollere velis, pone 

2yax − = z, & erit 22 zyax =− , & (per hanc Prop.) zzyyxa
•••

=− 22 , seu 
•••

=− zz
yyxa

2
2 , 

hoc est 2

2

2
2

yax
yax

yyxa −=
−

−
••

. Et unde .023
2

22

2

 222 =+−−
−

−
••••

yax

yyaxayyxyxxx   

 Per operationem repetitam pergitur ad Incrementa, ut & ad Fluxions secundas, tertias, 
& sequentes. Sit Aequatio 0=− avxz . Tum per operationem primam erit 

0=−++
•••••
vaxzzxzx . In hac Aequatione pro 

•••
vvzzxx ,,,,, scriptis 

••••••••••••
++++++ vvvvzzzzxxxx ,,,,, , & subducta Aequatione, per operationem secundam fiet 

0222 =−+++++
••••••••••••••••••
vazxzxzxzxzxzx . Sic in Fluxionibus proposita eadem 

Aequatone, fiet per operationem primam 0=−+
•••

vazxzx , per  

secundam 0=−+
•••

vazxzx , per  secundam 02 =−++
••••••••

vazxzxzx . Et sic pergere licet ad 
Incrementa, & ad Fluxiones tertias, quartas, & sequentes. 
 Sed ubi hoc modo pergitur ad Incrementa, vel ad Fluxiones secundas, tertias, & 
sequentes, convenit quantitatem aliquam considerare ut uniformiter crescentem, & pro 
ejus Increments, vel Fluxionibus, secunda, tertia, & sequentibus scribere nihil. Sic in 
Aequatione modo proposita 0=− avxz , [p. 5] uniformiter crescente z, erit per 
operationem secundam 022 =−++

•••••••••
vazxzxzx . Et in Fluxionibus proposita eadem 

Aequatione, erit per operationem secundam 02 =−+
••••••

vazxzx , per tertiam 

03 =−+
∴••• ∴
vazxzx . Et in hoc casu potest commode pro Fluxione data 

•

z  scribi 1. Hoc 

pacto Aequationes praedictae sunt 03,02,0 =−+=−+=−+
∴∴•••••••••

vazxxvazxxvaxzx . 
 

PROP. II. PROB. II. 
In Aequatione incrementali variabiles quotvis involvente, vice omnium 
istarum variabilium substituere totidem novas per eadem Incrementa in 
ordine inverso crescentes.  
 
Sit x quaevis variabilium in Aequatione proposita, & v nova variabilis in ejus locum 
substituenda; ita ut dum augetur x, minuatur v per eadem Incrementa. Tum si sit n index 
infimi Incrementi in Aequatione proposita, satisfiet Problemati pro 

•••
xxx ,, , &c. scribendo 

sequentes ipsorum valores; ubi est d quantitas determinata ad libitum sumpta, 
.&..... 3

2
2

1
2

1 cvnvnvnvdx nnn −−−−−=
•
•••••

−−−  
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.&...1..11 3
3

2
2

_____

2
2

__________
cvnvnvnvx nnn +−+−+−+=

••
•••••••••

−−−  

.&.. 2
3

1
2

1
2

__________

cvvvx nnn −−−−=
•••••••••••

−−−  

 

.&3
_____

cvnvx +−−−=
•••••••••

 & sic porro. [p. 6] 

 
DEMONSTRATIO. 

 
 
                     A.                     B. 
 
     

••••••
+++−−−−−−−−− vvvvx 33.1  

     
••••

++−−−−−−+ vvvxx 22   .2  
     

••••
+−−−++ vvxxx     22.3  

     vxxxx      33.4
••••••

+++  

 
 
Sit verbi gratia n = 3, & in tabulis A & B exhibeantur quatuor valores correspondentes  
ipsorum x & v in contrario ordine crescentium; qui peradditionem Incrementorum facile 
colliguntur. Tum quoniam ex Hypothesi Incrementa correspondentia in utraque tabula 
sunt semper aequalia, debitur summa suorum quorumvis valorum correspondentium x & 
v in his tabulis. Quare si summa ista data sit d, erit  

••••••
−−−−=−−−−−−−−− vvvvdx 33  

••••
−−−=−−−−−−++ vvvdxx 22  

••••
−−=−−−++ vvdxxx 22  

vdxxxx −=+++
••••••

33  
 
Tum sumendo Differentias harum Aequationum sit  
 

•••••••
++=−−−−−− vvvx 2  

••••••
+=−−−+ vvxx        

•••••••
=−++ vxxx     2  

 
Et tum sumendo Differentias harum Aequationes sit  
 

•••••••
−−=−−− vvx        

•••••••
−=+ vxx      
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[p. 7] Denique sumendo Differentias harum Aequationum sit 
••••••

= vx    . 
Sed hi valores ipsorum ,,,

••••••
xxx  iidem sunt, ac in solutione jubentur; & eadem est 

argumentatio ubi est n alterius cujusvis valoris. Quare pro singulis x, & suis Incrementis 
substituendo hujusmodi valores, recte solvitur Problema.  Q.E.D. 
 

COROL. 
 Ob Incrementa evanescentia in Fluxionibus Solutio, sit simplicior, existente  

••
••

••
••••••••••••••

−==−==−= vxvxvxvxvdx ,,,, , & sic porro. 
 

SCHOLIUM. 
 

 Possunt equidem Aequationes incrementales pro lubitu transformari ope Aequationum 
assumptarum. Sic se feceris  x = vv, capiendo Incrementa (per Prop. I) erit  

••••
+= vvvvx 2 ; 

•••••••••••
++= vvvvvvx 42 ; & sic porro ; unde transformabitur Aequatio pro ,,,

••••••
xxx  

&c. substituendo hos ipsorum valores. Idem fiet si fit x = d - v. Sed in hoc casu quoniam 
est 

••
−= vx , erit v quantitatas negativa; quare quantitas substituta v non erit  quantitas 

revera increscens in Aequatione transforma, sed decrescens, existente v ipsius 
Decdremento proxime auferendo. Proinde si cupis Aequationem ita transforma sint v 
descrescant crescentibus x, & tamen in Aequatione transforma sint v ipsarum vera 
Incrementa, ut sunt x vera Incrementa ipsius x, procedendum erit per hanc 
Propositionem. [p. 8] 
 

PROP. III. PROB. III. 
Aequationem fluxionalem, in qua sunt fluents tantum duae z & x, quarum z 
fluit uniformiter, ita transformare ut fluat x uniformiter. 
 

Solvitur Problema pro ,,,
••
•••••••

xxx   &c. substituendo sequentes ipsorum valores, nempe 

.&,,  ,
3

33

2

2 15103 cxxx
z

xzxzzzxzz

z

xzxz

z

xz z

•

••••••••••••
••
••

••
••

•

•••••
•••

•

•••••
−+−+− ==−=  

 
DEMONSTRATIO. 

 
Sunto A, B, C, D, E, &c. quantitates ex x datis  compositae, & sint 

,,,,
••••••••

==== xEDxDCxCBxBA et sic porro. Tum si ponatur z = A, erit ,
••

= Az  & (fluente 

uniformiter z) ,)(0 2
•••••••

+=+= xCxBxBxB ,3)2(0 32
••••••••••••••••••

++=+++= xDxxCxBxCxxCxBxB  
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,6340 422
••••••••••

••
••

++++= xExxDxCxxCxB &c. porro (per Prop. I.) Sed ubi fluit uniformiter x, & 

fluit inequaliter z, sunt •

••
••

•

•••

•

••

•

•

====
432

,,,
x

z

x

z

x

z

x

z EDCB , &c. Itaque pro B, C, D, E, 

&c. scriptis his ipsorum valoribus, invenientur ipsorum ,,,
••
•••••••

xxx etc, valores, ut supra 
exhibentur. Quibus proinde in Aequatione substitutis, deinde fluet x uniformiter, atque z 
inequaliter. Q.E.D. 
 

[p. 9] 
 
 
 
 
 

SCHOLIUM. 
Et eodem modo transformari potest Aequatio, quae plures fluentes involvit v, y, &c. 
praeter z & x; modo nullius v, y, &c. Fluxio ultra primam in Aequatione involatur. Quare 
si in Aequatione, quam per hanc Propositionem transformare velis, sint quaedam ipsorum 
v, y, &c. Fluxiones secundae, tertiae, & sequentes, primum eliminandae sunt Fluxiones 
istae ope Aequationum datarum, & deinde precedet transformatio per hanc Propositionem 
facta.  
 

PROP. IV. THEOR. I. 
Data Aequatione praeter variabilem z, cujus valores omnes dantur, involvente alterius 
variabilis x Incrementa aliquot, 

21
,,

++ mmm
xxx &c. quarum prima sit 

m
x , & ultima 

nm
x
+

, (ubi 

etiam desse possunt z, & omnia Incrementa  
21

,
++ mm
xx , &c. inter 

m
x  & 

nm
x
+

media ;) atque 

datis praeterea m + n conditionibus spectantibus ad m + n datos valores z, & ad totidem 
valores correspondentes quovis modo sumptos inter valores ipsorum x,  

•••
xx, , &c. in 

infinitum ; ita tamen ut non plures quam n valores sumantur ipsius 
m
x , vel 

1+m
x , vel 

cuiusvis Incrementi inferiora; vel inter plura Incrementa 
21

,,
++ mmm
xxx , & inferiora;  nec 

plures quam n + 1 valores sumantur ipsius 
1−m

x ; nec plures quam n + 2 valores sumantur 

ipsius
2−m

x ; atque sic deinceps; dabuntur omnes valores ipsius x ex datis omnibus 

valoribus z. 
[p. 10.] 

 
DEMONSTRATIO. 

 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 30 
Part 1A.Translated with Notes by Ian Bruce. 

 Per Aequationem datam datur 
nm

x
+

expressa per z & per Incrementa 
21

,,
++ mmm
xxx , &c. 

ipso 
nm

x
+

superiora. Unde (per Prop. 1.) dabitur proximum Incrementum 
1++nm

x per easdem 

quantitaties expressum; deinde (per eandem Propositionem) dabitur proximum 
Incrementum 

2++nm
x per easdem quantitates expressum; & operationibus in infinitum 

continuatis dabuntur omnia Incrementa ipso 
nm

x
+

inferia expressa per eadem quantitates z, 

& per Incrementa 
21

,,
++ mmm
xxx , &c. ipso 

nm
x
+

 superiora. Si itaque sint a, & c,
•••
cc, , &c. 

ipsorum z, & x,
•••
xx, , &c. certi quidam valores correspondentes, dabuntur omnia 

21
,,

+++++ nmnmnm
ccc , &c. in infinitum expressa per a, & 

21
,,

++ mmm
ccc , &c. ipso 

nm
c
+

superiora. 

Unde per additionem continuam dabuntur omnes valores ipsius 
m
x in tabula ante 

continuata. Et pro 
o
z  & x substitutis novis variabilis (Per Prop. 2) eodem modo dabuntur 

omnes valores 
m
x  in tabula retro continuata. Deinde per additionem & subductionem 

continuam dabuntur omnes valores Incrementi proxime superioris 
1−m

x , expressi per 

easdem quantitates, & per 
1−m

c : Et deinde eodem modo dabuntur omnes valores 

Incrementi adhuc superioris 
2−m

x expressi per easdem quantitaties & per 
2−m

c . Et sic 

pergendo dabuntur tandem omnes valores [p. 11.] ipsius x expressi per a & per terminos 
c,

•••
cc, , &c. ipso 

2+m
c superiores. Sed terminorum c,

•••
cc, , &c. ante 

2+m
c numerus est m + n . 

Quare per conditiones numero m + n determinabuntur omnes c,
•••
cc, , &c. adeoque 

dabuntur omnes x. Q.E.D. Sed quoniam valores ipsorum 
21

,,
++ mmm
xxx , &c. includant 

terminos tantum  
21

,,
++ mmm
ccc , &c., quorum numerus est tantum n ; ergo nequeunt plures 

quam n conditiones applicari ad valores Incrementi 
m
x & inferiorum. Item quoniam 

valores ipsius 
1−m

x includantur terminos tantum 
11

,,
+− mmm
ccc , &c. quorum numerus est 

tantum n + 1, nequeunt plures conditiones quam n + 1 applicari ad valores Incrementi 

1−m
x : Et similia est argumentio in caeteris. Unde per hoc Theorema recte determinantur 

data, & eorum conditiones, in Aequationibus duas tantum Integrales & eorum Incrementa 
involventibus. 
  

[p. 12.] 
 

PROP. V. THEOR. II. 
Datis duabus  Aequationes,  praeter z, cujus valores omnes dantur, involventibus ipsorum 
v & x Incrementa aliquot, quarum suprema in utraque Aequatione sint 

p
v  & 

π
x , & infima 
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in una Aequatione sint 
ap

v
+

 & 
απ +

x , & infima  in altera Aequatione sint  
bp

v
+

 & 
βπ +

x ; si 

sit m numerorum a + β & α + b maximus, dabuntur omnes v per conditiones numero m + 
p spectantes ad m + p valores ipsius z, & ad totidem valores respondentes ipsorum 

•••
vvv ,, &  

21
,,

++ πππ
xxx , &c. atque dabantur omnes x per conditiones numero m + π 

spectantes ad m + π valores ipsius z, & ad totidem valores respondentes isporum 
•••
xxx ,, & 

21
,,

++ ppp
vvv , &c. Ita quidem ut conditionum numerus non amplius m applicari 

possit ad valores Incrementorum 
p
v  & 

π
x ,& inferiorum, reliquis conditionibus 

applicandis ad valores 
•••
xxx ,, , &c. 

•••
vvv ,, &c. ipsis 

π
x  &

p
v  superiorum juxta leges 

valorum Incrementorum ipsa 
m
x superiorum in Propositione quarta, hoc est, ut ad 

minimum unus valor sit ipsius x, duo valores sint ipsorum x &
•
x , tres valores sint 

ipsorum 
•••
xxx ,, ; & sic de 

•••
vvv ,, , &c. atque deinceps.  

[p. 13.] 
 
 

DEMONSTRATIO. 
 
 Nam per Aequationes datas, & per Aequationes novas inde derivatas (per Prop. 1) 
eliminato v cum suis Incrementis, dabitur Aequatio praeter z involvens tantum 
Incrementa ipsius x, quorum supremum est 

π
x , & infinum est 

m
x
+π

. Et proxime ante 

inventam Aequationem istam dabitur Aequatio praeter z & ipsius x Incrementa 
π
x  & 

inferiora, involvens tantum 
p
v . Unde dabitur 

p
v  expressum per z, & per ipsius x 

Incrementa 
π
x  &  inferiora. Sed si sint a,  & c,

•••
cc, , &c. ipsorum z, & x,

•••
xx, , &c., valores 

quidam correspondentes, dabantur omnia Incrementa 
π
x  & inferiora impressa per a, & pr 

ipsorum 
21

,,
++ πππ
ccc , &c. numerum m (per Prop. 4). Quare etiam dabantur omnia 

p
v per 

eadem quantitaties expressa. Unde si sint d,
•••

dd , , &c. ipsorum v,
•••
vv, , &c.valores ipsius z 

valori a respondes, & continetur series d,
•••

dd , , &c. usque 
1−p

d inclusive, ut sit terminorum 

numerus p, dabantur omnes v expressa per quantitaties d,
•••

dd , , &c & 
21

,,
++ πππ
ccc ; &c. 

quorum omnium numeros est m + p. Exprimentur autem omnes valores ipsius x per 
quantitaties c,

•••
cc, , &c. quarum numerus est m + π. Quare determinatis omnibus c,

•••
cc, , 

&c. per conditiones numero m + π spectantes ad valores x & suorum Incrementorum, 
deinde determinabuntur omnes d,

•••
dd , , &c per alias conditiones numero p spectantes ad 
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valores v,
•••
vv, , &c. vel determinatis omnibus d,

•••
dd , , &c & aliquot ex terminis  

21
,,

++ πππ
ccc ; &c. per conditiones spectantes ad valores v,

•••
vv, , &c. reliqui terminorum  

 
c,

•••
cc, , &c. determinatur per conditiones spectantes ad valores  x,

•••
xx, , &c. Unde per 

conditiones m + p dabantur omnes v, & per conditiones m + π dabantur omnes x, 
(Q.E.D.) & per conditiones omnino m +p +π dabuntur omnes, cum v, tum x. Quomodo 
autem conditiones applicandae sint ad valores v & x, & suorum incrementorum ipsis 

p
v & 

π
x  superiorum, satis constat ex Propositione quarta.  

 
SCHOLIUM. 

 
 Ad eundem modum per eliminationes variabilium etiam pergere licet ad inventionem 
conditionum, quibus astringi possunt tres, vel quatuor, vel plures Aequationes 
incrementales involventes tres, vel, vel plures variabiles praeter z, cujus valores omnes 
dantur.  
 Sit Aequatio .03

4
2 =+−

••
bxzxz  In hac Aequatione ad mentem Propositionis quartae est 

••
x  idem ac 

m
x , atque 

4
x  idem ac 

π+m
x ; unde sunt m = 2, & n = 2. Quare per conditiones 

quatuor dabuntur omnes x, ex datis omnibus z. Et quoniam est
••
x  primum omnium

•••
xxx ,, ; 

&c. quae in Aequatione occurrunt, ad minimum duae conditiones applicationae sunt ad 
valores ipsorum x &

•
x  ; ita , ut vel una conditio applicetur ad valorem x, & alia ad 

valorem 
•
x , vel utraque applicetur ad valorem π. Reliquae autem conditiones possunt pro 

lubitu applicari ad valores omnium 
•••
xxx ,, ; &c.in infinitum; ita, ut vel una conditio 

applicetur ad unum ex istis terminis, & alia ad alium, vel etiam ut  omnes conditiones 
applicentur ad diversos valores ejusem termini.  

[p. 15.] 
 Sint duae Aequatones .0 & ,0 =−=+−

••••••••••••
vzxvvx  In his Aequationibus ad mentem hujus 

Propositionis est p = 1, π = 2, a = 2, α = 0, b = 1, β = 1. Unde sit 
,1&3 =+=+ baβα adeoque;  

m = 3 .6 & ,5,4atque)( =++=+=++= ππβα pmmpm Proinde per quatuor conditiones 
dabuntur omnes valores v, per quinque dabuntur omnes x, & per sex conditiones dabuntur 
omnes cum x, tum v, duae ad valores x & 

•
x , reliquis tribus utcunque applicandis ad 

valores Incrementorum 
•••
xv, , & inferiorum. 

 Sint Aequationes fluxionales duae .0z & ,0
42222 =−−=−−

••••••••••

xxxxzvzxv  Tum ad 
mentem hujus Propositionis erunt 
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;&,,,,,
4
xxvvxxvvxxvv

bpap
======

++++

••••••

βπαπππ
,4,5,4sit  unde ;3,4,4,2,1,0 ,0,1adeoque =+=+==+=+====== παββαπ mpmmbabap

atque .5=++ πpm  Dabuntur ergo omnes v & x ex datis omnibus z per conditiones 
omnino quinque; quarum ad minimum una pertinet ad valorem ipsius v, reliquae possunt 
utcunque applicari ad valorem ipsius v, reliquae possunt utcunque applicari ad valores 
ipsorum v, x, & Fluxionum suarum. Proinde si curvae duae sint describendae, quarum 
ordinatae sint v & x, & abscissa communis z, descripta curva cujus ordinata est v per 
quinque puncta datal vel per quatuor puncta & secante quintam ordinatam in angulo dato; 
vel in genere quae transeat per unum punctum datum, & quatuor ordinias positione datas 
fecet vel in punctis, vel in angulis datis, vel in earum extremitatibus habeat curvaturam 
datam, vel symptomata quadam curvaturae pendentia a valoribus Fluxionum 

•••••

vv, , & 
inferiorum; dabantur omnia puncta utriusque curvae. Vel etiam si describatur altera 
curva, cujus ordinata est x; ita, ut quatuor ordinatas vel secet in punctis datis, vel alias  

[p. 16.] 
secet in punctis, alias in angulis datis; vel in earum extremitatibus curvaturas datas 
habeaat, vel habeat ulla quaevis symptomata curvaturae pendentia a Fluxionibus tertiis, 
quartis, & inferioribus; dabuntur omnia puncta utriusque curvae ex dato praeterea uno 
valore v. Et modo detur una conditio respiciens valorem v, conditiones reliquae poterunt 
pro lubitu distribui inter valores ordinatarum x & v, & Fluxionum suarum.  
 Porro in his casibus possunt duo vel plures dati valores z interse aequari, vel (quod 
idem est in Geometria)  possunt duae vel plures ex ordinatis positione datis coincidere. 
Sed hoc pendet a certis conditionibus petendis ex natura Aequationum quarumvis 

propositarum. Sic propositis duabus Aequationibus ,0x & zv
4
=−+=

••••••

vvxzx per hanc 
propositionem erunt conditiones quatuor, quae possunt prolubitu applicari ad valores x & 
v, & Fluxionum suarum.  Sed ob Aequationem primam xv = z non possunt coincidere 
ordinatae, quibus applicantur conditiones spectantes ad valores utriusque v & x; nec ob 
Aequationem secundam possunt coincidere omnes quatuor ordinatae, quibus applicantur 

conditiones spectantes ad valores omnium ;,,,x 
4
vvx

••••••

nam datis simul utrisque x & v 

determinatur z per Aequationem primam; & datis simul omnibus ,,,,x 
4
vvx

••••••

item 
determinatur z per Aequationem secundam; utrumque contra Hypothesin. Eodem modo 
capeindo Fluxionem Aeqationis primae (pro 

•

z  scripto 1 ut prius) invenies 
;1x =+

••

xvv unde etiam constat non posse coincidere omnes ordinatas, quibus applicantur 

conditiones spectantes ad valores omnium .,,,x 
••

vvx  Et iterum capiendo Fluxiones 
Aequationum propositarum forsan dabuntur alii limites hujusmodi conditionum.  
 Ad haec, ut in Aequationibus integrales tantum involventibus, sic in Aequationibus 
incrementalibus,  quantitates variables sunt certis limitibus obnoxiae. Sit exemplum in 
Aequatione fluxionali .02 =+−

••

zxax  
[p. 17.] 
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Hinc est zxax −=
••

; unde erit 
••

x  (adeoque & omnes ipsius Fluxiones) impossibilis ubi 

est .zx <
••

 Ejusdem Aequationis Fluxio secunda est ;022
42 =−+

•••

xaxxx  unde 

sit
••

−= xxaxx 4
2
1 ; erit ergo semper 4

2
1 axxx >

••

. Et eodem modo per ulteriores Fluxiones 
Aequationis  propositae forsan invenies alio limites variabilium.  
 

LEMMA 1. 
 

 In Aequatione plura ejusdem quantitatis variabilis Incrementa involva per nullam 
regulam generalem certo definiri potest ad quot dimensi ascendat quantitaties illa in 
Aequatione integrali definiente ejus relatio ad alias quantitates variabiles. 
 
 In Aequatione fluxionali ;0=+++

••••••••

zxzxnxxxx quantitates sunt semel tantum affectae, 
&  ubi est n = 2, datur x ex dato z per Aequationem quadraticam; sed tamen si fiat n = 3, 
non dabitur x, nisi per Aequationem cubicam; si n = 4, non dabitur x, nisi per 
Aequationem biquadraticam; si n = 32

1 , non dabitur x, nisi per Aequationem quinque 

dimension : Deinde si terminorum reliquorum coefficientes fiant generales, ut sit 

;0
2

=+++
••••••••

zxpzxnxmxx dubito an dimensiones Aequationis quaesitae per ullam certam 
legem definiri possint, si quidem omnino dari potest x ex dato z per Aequationem 

terminorum numero finitam. Sit alia Aequatio .|44 222
_________2223

1 xzxzx z+=−
••

 In hac 

Aequatione ascendit x ad tertiam dignitatem, & ascendit 
•

x  ad secundam; attamen datur x 
ex data z per Aequationem duarum dimensionum, cujus radix est 

.|21

1
2

________________

2

zaa

zx

−+

+= . 

Mutatis vero coefficientibus haud certo scio an dari possit x ex dato z per Aequationem 
finitam. 

[p. 18.] 
 

PROP. VI. PROB. IV. 
 

Datis tot  Aequationibus,  quantitates integrales & Incrementa utcunque promiscue 
involentibus, quot sunt variabiles x, v, y, &c. ad z referendae, cujus valores omnes 
dantur; invenire relationes Integralium per Aequationes ab Incrementis liberas, quae per 
coefficientes invariabiles indeterminatas adaptari possint ad conditiones Problematis per 
has Aequationes solvendi. 
 

SOLUTIO:  
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 Tenta num aliqua Aequatio proposita, vel ejus multiplex, vel submultiplex aliqua sit 
cogitum aliquod Incrementum quantitatis alicujus congnitae. Hoc si sit, vice istius 
Aequationis propositae substitue quantitatem illam cognitam factam aequalem quantitati 
cujus Incrementum primum, vel secundum vel aliud quoddam est nihil; prout Aequatio 
proposita,vel ejus multiplex, vel submultiplex sit Incrementum primum, vel secundum, 
vel aliud quoddam quantitatis istius cognitae. Hoc idem facto in omnibus Aequationibus 
propositis, si Aequationes inventae integrales tantum involvunt, dabitur Solutio in 
terminis numero finitis; quae per coefficientes indeterminatos in quantitatibus assumptis 
accommodabitur ad conditiones Problematis. Q.E.F. 
 Sed si hoc pacto Problema solvi nequit, per eliminationes variabilium (ope 
Aequationum datarum, & novarum Aequationum inde derivatarum per Prop. 1, si opus 
est) quare tot novus Aequationes quot sunt variabiles x,v, y &c. praeter z, quarum una 
involvat tantum x cum suis Incrementis (nempe praeter z, ) reliquae involvant duas 
tantum variables x & v, x & y, &c. (quarum una sit semper x) cum suis Incrementis (in 
omnibus Aequationibus semper subintellecto z). Per Aequationem involventum tantum x 
cum suis Incrementis quare valorem ipsius x, expressum per dignitates ipsius z, ope 
Propositionis alicujus sequentis. Deinde ope hujus Aequationis eliminentur x cum suis 
Incrementis ab Aequationibus involventibus tantum x & v, x & y, &c. cum suis 
incrementis; & per aequationes hoc modo resultantes quaerantur valores ipsorum v, y, 
&c. expressi per dignitates ipsius x, eodem modo quo quaerebatur valor ipsius x. Atque 
hoc pacto dabantur omnes x, v, y, &c. expressi per dignitates ipsius z. Qui valores 
accommodabuntur ad conditiones Problematis ope coefficientium adhuc 
indeterminatorum. Et si horum valorum aliqui prodeunt in terminis numero finitis, vel in 
seriebus quae ad expressiones finitas reduci possunt, ex hac parte dabitur solutio ver 
Mathematica in terminis numero finitis. Sed ubi Series ad terminos finitos reduci nequet, 
solutio pro Mechanica est habenda, atque, seriei usus erit in inventione radicis quaesitae 
x, vel v, vel y, &c. per approximationes.  
 
 

[p. 19.] 
 

SCHOLIUM. 
 

 Reductio aequationum propositarum ad aequationes integrales in hac solutione 
plurimum pendet a solertia Analystae in inventione incrementorum (per Prop. 1.) 
exercitati. Quare in hunc finem utile est quantitatum variis modiis compositarum possunt, 
quoties opus est alicujus incrementi integralem invenire. Hujus generis est sequens 
tabella. 
 
Incrementa Integrales. 

1. .&
\\\\

czzzzdzzzczzbaz ++++
•••

 .&
\\\\\\

4
1

\\\

3
1

\

2
1

1
1 czzzdzzzczzbzazA +++++  

  

2. .&
\\\\\\\\\\\\\\\\\\\\

czzzzz
zd

zzzz
zc

zzz
zb

zz
za

++++ ••••  .&
\\\\\\\\\\

4321 cA zzzz
d

zzz
c

zz
b

z
a −−−−−  
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 [p. 20.] 
 
 

Fluxiones. Fluentes. 
1. 

•

z nz±  .A1
1

1 ++±
+±

nzn  

2. ×+
••

)( zxxz λϑ 11 −− λϑ xz  λϑxz+A  

3. ×++
•••

)( zxvzvxxvz μλϑ 111 −−− μλϑ vxz  μλϑ vxz+A  

4. ×+++
••••

)( zxvyzxyvzvyxxvyz πμλϑ 1111 −−−− πμλϑ yvxz  .A πμλϑ yvxz+  
 

 Comparando expressiones cum hujusmodi exemplis solvuntur quaedam Problemata. 
Sit aequatio .02 22 =−−

•••••••••

xxxxxxx  Comparando hanc aequationem cum fluxionis tertiae 

factore zxvzvxxvz
•••

++ μλϑ , invenitur ,2,1,1 −=−== μλϑ ipsis xxx ,,
•••

in hac aequatione 

subeuntibus vices ipsorum z, x, v, in fluxione ista. Unde sit fluens 2
1
. −

−•••

xxx aequalis 
quantitati datae, (quoniam est ipsius fluxio aequalis nihilo.) Sit atque, a quantitas data, 

atque,  erit 
••••

=−
−

zaxxx 2
1
. . (nempe completis ordinibus fluxionum per dignitates fluxiones 

datae 
•

z .) Hinc sit 3xxzax
••••

= ; unde iterum regrediendo ad fluentes (ad exemplum 

fluxionis 
•

z nz±  ) sit 
•••

+= zbx xza
3

3 . Quo pacto jam revocatur aequatio fluxionalis ordinis 
tertii ad aequationem fluxionalem ordinis tantum primi. 
 Ad eundem modum potest aequatio 432 •••

= zxx , vel (pro 
•

z scribo 1) 32 xx =
••

revocari ad 

ordinem superorem. [p. 21] Nam extrahendo radicem sit 2
3

xx=
••

. Duc aequationem in
•

x , 

atque sit 2
3

xxxx
••••

= , unde capeindo fluentes sit .2
5

5
2

2 axx +=
•

 

 Sit alia aequatio xxx
•••

=2 : tum extracta radice sit 2
1

2
1

xxx
•••

= , hoc est 2
1

2
1

xxxx
••••

= , unde 

capiendo fluentes sit ,2
3

2
3

3
2

3
2 axx +=

•

vel si placet .2
3

2
3

axx +=
•

 Et hoc modo per 
multiplicationes, divisiones, & extractiones radicum reducendo expressiones ad formas 
fluxorum cognitarum, vel inveniuntur ipsae fluentes, vel revocantur aequationes ad 
fluxionum ordines superiores.  
 
 

 


