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The Method of Increments.

The Second Part. [11d]

LEMMA XI. [page 102]

The subtangent is given for a logarithmic curve. For if the number is y, then the

logarithm z and the subtangent c are related according to % = %

This has been explained by others in various places.

[We may note that this equation can be written in modern terms as dy/dz =y/c.

Hence the gradient at any point on the curve is proportional to the ordinate y and with the

subtangent ¢ constant. This integrates to give a function of the form y = e”'c,

or In y = z/c. Tayor fitted the base 10 logarithmic curve to his data.]
HYPOTHESIS 1.
The density of air is in proportion to the applied weight [i. e. air pressure. |

This is confirmed by experiments [i. e. Boyle's Law.]
HYPOTHESIS II.

The force of gravity varies inversely as the square of the distance from the centre of the
earth.

This is a postulate from [Newton's]| Philosophiae Naturalis Principia Mathematica.

[p. 103]
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PROP. XXVI. PROB. XXI.
To find the density of the atmosphere.

Let S be the centre of the earth , and the surfaces of
two concentric spheres centred on the earth are
represented in the air by the circles BCD and bcd,
described with centre S. The surface BCD sustains the
pressure of the column of air, the base of which is on the
same surface and with an altitude BI equal to the height
of all the air above the point B : (by Prop. 20. Book 2.
Princip. Math.) Thus the pressure at a given part BP of
the surface is as the column of air of the whole height BI
pressing on the base. Let bp = BP, and the difference of
the pressures on the bases BP and bp, is as the weight of
air pressing on the given base, with the distance Bb to be included between the altitudes
SB and Sbh. Also let SB = x, and with the distance Bb taken immeasurably small, let

Bb=x , and y the density of the air at B, and a shall be the given distance from the centre
S, at which the acceleration of gravity is taken as = 1, and the density d. Then the

quantity of air in the interval BPpb is x y (truly varying as the magnitude of the density,)
and thus the force of gravity at B is % (by Hyp. 2); the weight of air between B and b is

thus as % (that is, as the quantity of matter expressed as a weight.) Therefore by

descending towards the centre of the earth, the increment in pressure will be as aaxy.

[p. 104] But the density y is in proportion to the pressure (by Hypoth. 1.) whereby
5

yisas 4 ;Cy . Let [the constant of proportionality] ¢ be given for the curve, then
X
)'cy y a’x
y=- ,0r = =—5—
cx y cx

Let SA =a and SF :% = z [note the inversion of the abscissa about a in order that the

equation can be reduced to that of the logarithm function, for as x increases, z decreases,
and thus the graph does not represent the actual change in pressure or density with
distance from the centre of the earth.]; and erect normals to A and F proportional to d and
v; which hence can be designated by these, as AE = d and FP =y, and EP is the curve that

the point P always touches. Then % = 2, and hence, %z% . It follows that EF is the

logarithmic curve, the subtangent of which is ¢ (by Lem. 11.) And thus, in a table of
logarithms, if the logarithms [of the numbers] are taken proportional [to the abscissa] AF,
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that is from a — % , then the numbers at the locations B [i. e. the antilogs.] are as the

densities. Q.F.1.

SCHOLIUM.
If the weight of all the air above B is p (by this Prop.) then p is to p as yisto y . But

ac;;y (by this Prop.) Whereby if p = %A, [essentially the standard formula

'p = pgh' Jthat is, if p is a column of air of the same mean density y and with gravity
%, and with the altitude A, then the air at B satisfies the relation : y to y as 4 tox,

. . ) 2° 2
[or, y/x=dy/dx=y/A ;but from above, % :—a—;‘;hencedy/dx:—%,ory/A,]
cx cx

2 2
that is, as ¢ to 45* (by this Prop.) Hence c= 95 A . Thus c is given, with the altitude A
x x

found from Torricelli's experiment.
Moreover, by a certain experiment performed by Hawkesbee, the average density of the
air is agreed upon to be to the density of water as nearly 1 to 820. [p. 105.] Also the

density of water to the density of mercury is as 1 to 13%. Whereby the density of air to

the density of mercury is as 1 to 11070. Also the mean barometric height is 30 inches.
Whereby if the point B is taken on the surface of the earth, with a being taken as the

2
radius of the earth, [x = «] the altitude is A, (and hence the subtangent ¢, from ¢ = a—ZA)
X

= 332100 inches or 27675 English feet. Also the radius of the earth is 20995444,

. . . _ 27675
Whereby for the radius of the earth I write 1, giving ¢ = 55502,

or with sufficient

L
760

accuracy in the smaller numbers by ¢ =
of which the log. of 10 is 1:
Part of an English foot 0.00001569
1000 English paces 0.082856 ...
Radius of the earth 329.47....
[Thus, a scale is chosen in which the lengths of interest lie between 1 and 10,
corresponding to logs between 0 and 1. This sort of complication does not occur with
natural logarithms, which lay in future, and Taylor had to make do with a set of base 10
logs. Thus, the unit chosen is approximately equal to 12 miles, for which the part
corresponding to the English foot is 0.00001569. Thus, ¢ is approximately 0.43 on this
scale, corresponding to the 'half-thickness' # of the atmosphere, and most of the density of
the atmosphere is accomodated within a few such ¢ values. The interested reader should
compare Taylor's analysis with that of the pressure or particle density of the isothermal

atmosphere, as derived in elementary texts, see e.g. The Feynman Lectures on Physics,
Vol. I, 40-1 ;]

. Hence, with regard to common logarithms,
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It is agreed from this proposition, that the density of air extended to an infinite
distance from the centre of the earth, is a finite quantity; for that is set out by the ordinate
of the logarithm Ss continued to the centre of the earth. Hence if the elastic force of the
air is so great, so that on arriving at this level of rarefaction, the density is still
proportional to the compression, then the atmosphere of the earth truly is extended to
infinity, and the amoung of air in the system of the world will be truly infinite; as that
shall be greater than the whole infinite distance taken with the given density Ss. But
natural forces do not extend to infinity; whereby it is more probable that the elastic force
of the air, upon reaching a certain step in rarefaction, thereafter continues to decrease,
and thus the density thereafter constantly decreases in a ratio less than the smallest of
weight, and the atmosphere in agreement with that is retained within finite limits, and
these perhaps quite close.

HYPOTHESIS III.

Rays of light are agreed upon to consist of small corpuscles, and the refraction of
light is by the mutual attraction between the corpuscles and the bodies in the refracting
medium, and this attraction decreases greatly with the ratio of the distances between the
bodies to such an extent that it is not perceptible, except when they are nearly in
contact,;and the refraction is in proportion to the density of the refracting body for the
remaining parts of the rays. [p. 106.]

All this is abundantly proven in Newton's book on Optics.

LEMMA XII.

If there are many similar media, constructed from distinct parallel planes in turn, and
in which the forces of attraction are barely sensitive to change with distance, then the
velocity of a corpuscles travelling through the media, when it reaches a different medium,
will not have changed, and if it is not be transmitted as before, then it is directly incident
with its first velocity on the forces of attraction of the new medium, and now it changes
direction.

[It is an experimental fact that refraction only occurs at the surface between media, and
there is no further effect on the ray on being transmitted through the medium, apart from
dispersion and absorption, setting any optical activity aside : a puzzling fact for an
investigator such as Newton trying to pin the phenomenon down to dynamic interactions
between particles. The electo-magnetic theory of the nature of light lay some 150 years
into the future with Maxwell's equations, and the best that could be done at the time had
of course already been accomplished by Huygens, who had understood and solved the
problem in terms of waves in a phenomenological manner, many years previously......

Thus, Taylor's work here is interesting more from a mathematical perspective, as he
shows how the calculus can be extended to solve difficult problems ; in the present case,
however, the physics is quite wrong. Light beams do not fall out of the sky under the
influence of gravity, and Taylor should have known that!]
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Any two contiguous media are distinguished by
parallel planes and represented by the parallel lines AB,
CD, and EF; the normal GHbg is drawn to these crossing
AB and CD in H and /4. Hence take HG & hg equal to
the distances in which the attraction of the medium
18 : ¥ ABDOC is defined and begins. Then since the action of

: = the media is uniform, some motion is added to the body
entering from G towards M, only the same contrary
action being taken by the same medium arriving at g,
and the same eventuates for the light body passing through the rest of the media. It
remains therefore that all the change of the motion when the body reaches g, arises only
from the action of the medium CDEF, in which it now changes direction.

.

COROLLARIUM.

Hence the motion of light in some medium is always the same, either that which it had
in the first medium, or passing through another medium, (by Hypoth. 3).

LEMMA XIII.

If'in the given distances of mediums, the attractive forces are as the densities of these,
then the speeed of light is in the square root ratio of the densities. [p. 107.]

Let AB be the surface of adjacent media at the parts F.
Draw EAF normal to AB, and at the point C on the line EA
erect the normal CD proportional to the force of attraction
of the medium at C; let EDBFE be the whole area
described by the ordinate CD. Then the increment in the
square of the velocity of the particle crossing through the
whole region of attraction of the medium EF, as the whole
area EDBF (by Prop. 39 & 40 Lib. 1. Princip. Math.) But
since by hypothesis, the attractions in the given distances
are as the densities of the mediums, hence the whole areas EDBFE are as the same
densities; and thus the increment of the square of the velocities is as the density of the
medium. And thus if the square of the given velocity in vacuo, before entering into the
interval EF, is to the incrementum of the same in passing through this interval, as the
given quantity to the density in one case, is always the same square of the given
velocities given in vacuo to the increment of this kind, as likewise given to the density :
and thus jointly the square of the velocity after passing through the space EF is to the
square of the velocity given in vacuo, as the density added to the given density to the
given density; and hence the velocities are themselves in this ratio of the square root ; and
thus the velocity in the medium is always in the square root ratio of the density in
addition to what is given. Q.E.D.

[A basic error in this kind of analysis, which is that on entering a denser medium, and
therefore being attracted more, the corpuscles should speed up : but in actuality, the light
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slows down with the increased refractive index, an effect that is accomodated using
Huygens' wave theory.]

COROLLARY.
Al B

Hence in the in passage of light through a medium of unequal
density, such as the atmosphere of the earth, the accelerating
force is as the fluxion of the density applied to the fluxion of the
distance between the distances. For let Aa be a line in the
direction of which the density is variable, and the ordinates AB, ab are as the accelerating
forces at A and g, and let Bb be the curve that the point B describes. Then the area ABba
is as the increment of the square of the velocity of the particle going from A to a, (by
Prop. 39 Lib. 1. Princip. Math.) that is, as the increment [p. 108.] of the density (by this
Lemma). Whereby with the distance Aa diminished indefinitely, the accelerating force
AB is as the fluxion of the applied density to Aa, that is, to the fluxion of the distance
between the densities. [i. . the force varies as dn/dx, where n is the density and x the
abscissa.]

ad

SCHOLIUM.

In an experiment performed by Hawkesbee [a person attached to the Royal Society who
did experiments of the fellows], it was found that the sine of the angle of refraction of
light incident from a vacuum on air at the surface of the earth, to the sine of the angle of
incidence is as 999736 ad 1000000. Hence the velocity of light in vacuo to the velocity of
light in air at the surface of the earth is in this ratio (by Prop. 95 Book 1. Princip. Math.)
Therefore the quantity 1 is given, and the density of air on the surface of the earth is
represented by d : then (by this Lemma) we have :

1:4v1+d ::999736:1000000 , and thus d =
0.00052828.
In general, if the density of the air is designated by
" v, and the right angled triangle ABC is set up, the
' A M B base of which AB is to the hypothenuse AC, as the
. ' sine of the angle of refraction to the sine of the angle

of incidence from the vacuum, for the given base AB the perpendicular BC will be as \/;
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PROP. XXVII. PROB. XXIlI.
To find the refraction of the light rays passing through the atmosphere of the earth.

Let S be the centre of the earth, ABC
’ F/ B the radius of a curved light ray, that
touches the lines AG; BG in A and B,
and these tangents mutually cross each
other in G, and the perpendiculars sD
and SQ are sent to the tangents, and SA
and SB are drawn; and at A the normal
of SA, AE is drawn crossing SD in E,
and A is a given fixed point on the ray,
and B is a variable point. Let SA =a,

SD=b,SE=1(= %) SB=x, d is the

density at A, y the density at B.
[p. 109.]

The curvature of the ray hangs from the attractive refracting force of the air, (by
Hypoth. 3) which is always directed towards the air of greater density, that is it bends
towards the centre of the earth, (by Prop. 26.) Hence this curve is a kind of trajectory
generated by centripetal forces.

Moreover the velocity of the light at A to the velocity of the light at B is

asv1+d to,/1+y (by Lem. 13.) Since this is

SQ:SD::v1+d :\/1+ y (by Cor. 1.Prop. 1 Lib. 1. Princip. Math.) [from the

conservation of angular momentum of the corpuscle about S; we have already
commented on the inappropriate use of this sort of mechanical model.] Hence

_ Al+d _[2 1d g2 . . R
SQ= oy b, and thus BQ=_/x Iy b” . Hence, when the point B is at an infinite
distance, with y vanishing, and thus as it can be safely ignored, the perpendicular to the

tangent now can be made to the asymptote, =+/1+d x b . That asymptote PH, crossing
the tangents AG and BG in F and H, is considered to be perpendicular to SP.

The tangent BG is moved into a new place bg nearby crossing the perpendicular SQ at
q. Then the angle gBG arises from the fluxion of the angle FGH or of the angle FHG; that
is, with the increase in x, the increment of the angle [p. 110] HGF and the decrease of the
angle FHG, on account of the given fixed angle at F. And for the radius considered to be

1, the proportional arc for the angle arising QBg is%. Moreover the flux Qg of

QB

SQ(= YL p): Since Qg = —%)‘/—;Hdl ; that isQq = ayxld 4 p (as y= “a'yx by Prop.
vty I+y|? 2cex’ x1+y? ox
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26.) Hence 8% that is the fluxion of the angle FGH =

2byx\/l+ 2by;c
2¢x’ ><1-&-y|2‘lx2 }i“’bz 2cx ><1+y><,l”" ‘b’

Thus the fluent of this expression is found by the method of inverse fluxions, and will
give the angle FGB. But the angle GBS is given by the value of the perpendicular SQ);
and the angle SDG is right; thus the angle DSB is given. Thus, from the given distance
SB (= x), with the density in B (= y), and the angle SAD, the position of the line SB is
given; and the point B; that is, the figure of the refracted ray ABC is given. Q.E.1I

azby;c

But this fluxion cannot be reduced to a fluent in a finite number of

207 4d w2 1.2
2ex”x1+yxq {4 x"~b

terms. Whereby a series is sought for the computation of atmospheric refraction in
astronomical usage, which is suitable for the calculation to be carried out by an
approximation. Therefore so that this fluxion can be rewritten in the simplest possibe

terms, for x write 44 | and the fluxion becomes :
Z

ik .t i.e. (with the sign ignored) St

[ > * [
2c><1-0—y><1l%——b2 2c><l+yx1l}i—;{‘;—;—zz 2c><l+yx‘l}i—;{tt—zz

considering [p. 111.] y = y_ . But on the surface of the earth, where y = d, this fluxion is

, also by

yez

2¢+2cdxAtt—zz
from this form by less than one part in a thousand. Whereby by ignoring small parts of

; and at an infinite disance (where the fluxion also vanishes,) it will differ

this kind, it is possible with care to take ——2"*—— for the fluxion itself. Thus by
2¢+2cdxAtt—zz

setting aside 55— +2 3507 » | seek the fluent of \/ftz_i with the help of Prop. 11, as follows.

For +tt—zz writex, and x = _T and the proposed fluxion is either % i or — yx

Also, y ==—. Thus following Prop. 11. let y= yz s==, w=z= —>*. Then by taking

the ﬂux1ons, and these by continued applicaton to

v.vwehaveézi+i:£ ;:3z3+3i:3ttz ';:1524+182 3 _ 151z L3 and
’ WBox 3 W3 7 RGN S

so on. Moreover it can be agreed from the form of the terms, that if # is the distance of

some term s, s, s , &c., from the first term s, then s can be expressed (that is s, if 7 is

1, :9., if n is 2, &c.) either by a series of the form :
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n+l n—1 n-3 n->5

— z z V4 V4 : .
s=A per +B = +C x2” —~+D 205 + &c., or by a series [p. 112.] of the form :
-5 . :
s=ttxA 22 +B-Z) C Z D Z + &c. Moreover, I investigate the
+ x2 - 3 =5

coefficients A, B, C, D, &c. in the first of these series in this manner, for by our notation

explained in the introduction, the values of the coefficients before n are called n, n, n,

&c., and n, n, n, & c. are the values of the same after n. By taking the fluxions of the
i

series, first in x, then in z, and the terms being continually produced by application to w,

will be [the original text, written is a slightly different manner, is included for

comparison]:

f 1/1+1 ,/1_1
s=2n+1A ZZrH—l +[2n—-1B+ n+1 A] 22n_1
X X
n—-5
+[2n-5D+ n—-3 C] > _5+&c.
x/
by : =:+I+ B R + C -3
— — 20 e T 2N z
=m 4+ 1 AGh 2044 Tan—1 .........._____; “;’;"':"+
s’+#+1A ' +u—T1B) IS
+2n._. DZ
At g
-+ "'BC)x

Hence the new A is 2n+1A. Hence it is agreed that A is to be formed by the
continued multiplication of the terms 1, 3, 5, 7, &c. the last and largest of which is 2n — 1.
In what follows, write m in place of 2n—1,and A=mA.

Likewise for the second term B=mB+nA . If it is possibe for B to be produced from
Q Q
A by multiplication and division, let B = %A. Then B = 7 A =g mA. Hence eliminating

B & B from the first equation, and with A set to zero at the same time, then

"/1_(/2 _mQ + n, that is e + "?Q _mQ + n. In order that this equation can be reduced to
RORTPTETRTR TR
mQ .0 m
the simplest terms, I put [p. 113.] R = mT’ that is R % Hence it becomes

/

m m
T =n. But R is the new value of %, and hence Q =n, and by summing the

/
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nn
quantities Q = 5 + p. But B should be equal to 0 when n = 0; and thus p =0, and

nn nn mn
Q=-~-—-. Hence B=Z—A. Hence B=—-B.

2 2m / n
. . L Q Q .

The third term is (/Z=mC+nB. I put C:EB’ and C:ﬁ]/S,that 18
Omn n\/lQ \ Qmn mn }/;/lQ mn
WB:TB-FI’IB, or R + }’lRQ: +7’l Put —% R R thatlS
L der that - But 22 i th lue of 1
T— 7 inorder tha iR S Q—n u B is the new value o 7 Hence

nnnm ' r;m

R = mnn and thus; Q nnn hence; Q =- 7 . Thus, C=""LB,andC=—"C.

dm n

The fourth term is D = mD + nC. Thus in the same way it is found that

W
AL

mn

D =21"C,and D = —~. Moreover from the terms now put in place the manner in which
6m n

the rest are formed can be agreed upon. Hence if now for all the terms with their signs A,

AR\

# nn
B, C, &c can be written, and s=135.2n-12— 4+~ XA 4 NAXX B | &

2t 2mzz 4mZ
that is :
n+1
s=13.5..2n— 122 —+-ntla %A+”_—”_2x%B+wx%C+&c.
X 2x2n-1 4x2n-3 6x2n—->5

And in the same way the coefficients in the other series can be found, as

_135.. 2n—11tz" 1+n—l.n—2xxA+n—3.n—4xxB+n—5.n—6xxC+&C'

2n+1 - - -
2x2n—1zz 4x2n—3zz 6x2n—5zz

I
For indeed if now for the distance m of any term s, s, s , &c. from the term s, for n |

m
write —m , s can also be expressed by the same series. Moreover in this case the

coefficient of the first term can be found, as we did in in Prop. 12. For it ought to be
2n—1, thatis, - 2m — 1, the largest of the factors of 1, 3, 5, 7, &c. in that coefficient.
Thus here it is possibe to write the coefficient :

2n—1....53.1.-1.-3.=5.&c. o =2m—=1-2m-3.-2m-5.&c.
153 5&e thatis, == =3 5. T &
happens that it is possibe to find » negative numbers, and m positive numbers between

. Moreover it

the numbers 1, 2, 3, &c. and all the factors —2m —1.—2m —3.—2m —5.& c. to be carried
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in the similar factors in the denominatorin [p. 115]. Thus it remains that in this case the

coefficient of the first term is 1-3-5 —om_1’ and

rg: 7 +—m+l.—m%A+—m—l.—m—Z.xxB_,_&c. or
1-3.-5..=2m+1x2" 2 2m -1 4.-2m-3.zz

:’: 2! +—m+1.m%A+—m—l.m+2.xxB+—m—3.m+4.xxC+&c.
1.-3.-5..—2m+1z2"" 22m+1 4.2m+3.zz 6.2m+5.2z

that is by the first series. Indeed this series is more suitable for ﬁnding the fluents

S, S, s & c., while the other is suited for finding the fluxions s s s &c.

Again, r= yz ,and y = % Thus by taking pure fluents,

r=cy,r= czy,f = c3y,&c. , likewise by taking the fluxions, » =y ,; =% ="

Hence with the signs observed, from these values of
/i / imem

sss&csss&crrr&crrr&c the angle

_ 1 _ e _ 24 .. . .
FHG (= 2c+2ca]><rs rs+ rs &c.) 3T 2ed multiplied by this series :
z
X
2 11
3
c3y><3t—lsz
4 135tz°  1x°
—cyx 22He g LAA
7 5,2
&ec.

[p. 116.] and the angle FGH

(20+120d X — rs+rs rs&c —P)isequal to

1

e ed multiplied by this series :

yXXx
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Where P is the value of the same series emerging from z, x, y at the point A.
Also, another series can be found for the angle FGH; truly thus by correcting the

I

156

fluents r,r, r,&c.as all vanish at the point A, where z = a. In order that this can happen,

putz=a-v, hencez = —a , and the fluxion of the angle FHG is V)): z by e 1

+2cd
Hence, by putting s = é (as before) , F=v y, by considering w=—v , and y =— Zy .

Thus, r=—c y , and hence r = c¢d — ¢y, (since d is the value of y at the point A, ) and

hence, r = c*d — cdv — czy, and hence

- 2 2,3
r=c’d —czdv+%—c3y,r =c*d —c3dv+%—c4y, and so on.
. 1 .
Thus the angle FGH is equal to et 20d multiplied by
_ Zz
cd —cy x >
—c%d —1—cdv+c2y><t—t3
X
2
+c3d—czdv+—0dv —cSyx:;ti
2,72 3 2 2
_ 4 3, _cdvt | cdv 4. 135tz 1 x°
cd+cdv 5 +—2.3 +c yx—x7 +522A
&c.
[p. 117.] And hence the sum of the angles FHG and FGH, that is the angle GFH is equal
1 .
to e oed multiplied by
cd x =
X

—czal+cdv><t—t3
X

2
+3d — Py + € 3tz
2 P

252 3 2 2
_t g Bgy_ccdve | cdvt (135027 | 1 X7 A
2 2.6 x! 5,2

& c.
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When the angle SAD is small enouth, it is convenient to find the angle GFH by this
series. But when the angle SAD is too large, the angle FGH is found from the othere
series.

Other series can be found for the angle FGH, by Prop. 7. For let Q be the fluent of

ﬂ, that is of x y. Then by that Proposition, in which the time x is x £ v, it becomes

Q=Q+= gv + (.22 v+ Q. 3 Vv + &e. truly for a uniformly flowing x. Thus if for x the
X 2x 2.3x

value is taken at some other given point I, and x — v the value of the same at A, & x + v
the value of the same [ @, then the value of the fluent at the point A will be

Q+gv+ (.22 vy Q.
X 2x 2.3x

3 v? + &c. and the value at the point o will be

Q- gv + (.22 v Q 3 v? + &c. Withe the value of which taken from the other value,
X

2x  23x
2
the remainder is the fluent part adjoining the line A, ; and thus, if SB = %, the angle is
[p. 118.] = B - Qu Jer3 * +Lv5 + &c. Moreover in this case for x I
c+cd x .3 .5
23x 23.45x
write 1, that is z = f, & y= _c_)zcy Hence by considering Q = y,
_Y X _u
Q- cz? e T
G x| 3w T 1452 g
24 cc oz z L2 T
SCHOLIUM.
. . . 242yxcxSBeub. .. . . . )
The radius of curvature of this curve is : 7 xSQXSA quad.’ which is at the point A :
%%{‘{:(—SCSSA; and when the angle SAD is right, it is%c. Which from the values

of ¢ and d (Schol. Prop. 26. & Schol. Lem. 13.) as around 5 SA, by considering SA to be
the radius of the earth. Hence the curvature of a horizontal ray of light, to the surface of
the earth, is to the curvature of the great circle of the earth, as 1 to 5. Moreover the speed
of light is to the speed of maximum rotation of a body under gravity in the great circle of
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the earth is as around 40000 ad 1. Hence the refractive force of the air to the force of
gravity at the surface of the earth is around 320000000 to 1. For in the given inclination
of the trajectory to the direction of the centripetal force, these forces are in the ratio
composed from the bending and squaring of the velocities.

The End.

METHODUS INCREMENTORUM.

Pars Secunda I1d.
[p. 102]

LEMMA XI.
In Curva Logarithmica subtangens datur. Et si sit numerus y, Logarithmus z &

Subtangens illa c, erit 2 = %

Hoc ab aliis passim demonstratur.

HYPOTHESIS I.

Densitas Aeris est oneri imposito proportionalis.

Hoc Experimentis confirmatur.
HYPOTHESIS II.

Vis Graitatis est reciprocis in duplica ratione distantiarum a Centro Terrae.

Demonstratur hoc a priori inter Philosophiae Naturalis Principia Mathematica.

[p. 103]
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PROP. XXVI. PROB. XXI.

Invenire Densitatem Atmospherae.

Sit S centrum Terrae, & per circulos BCD, bcd centro
S descriptos, repraesentur superficies duae sphaericae
ipsi Terrae concentricae in Aere descriptae. Tum
superficies BCD sustinebit pressionem columnae Aeris,
cujus basis est eadem superficies atque altitudo
aequatur altitudini BI totius Aeris supra punctum B :
(per Prop. 20. Lib. 2. Princip. Math.) Pressio itaque in
superficiei datam partem BP est ut columna Aeris totius
altitudinis BI datae basi insistentis. Sit itaque; bp = BP,
atque erit differentia pressionum in bases BP & bp, ut
pondus aeris datae basi insistentis, inclusi inter
altitudines SB & Sb. Sit itaque SB = x, atque imminuta

distantia Bb in infinitum, sit Bb = x, & y densitas Aeris
in B, & sit a data distantia a centro S, ad quam distantiam sit gravitas = 1 & densitas d.

Tum quantitas aeris in spatio BPpb erit ut x y (nempe ut magnitudo in densitatem,) atque

vis gravitatis in B erit % (per Hyp. 2) adeoque; pondus aeris inter B & b erit ut

aaxy

(hoc est, ut quantitatis materiae in gravitatem.) Descendendo ergo versus centrum

aaxy

Terrae, erit incrementum pressionis ut . [p. 104] Sed est densitas y pressioni

azxy

x2

proportionalis (per Hypoth. 1.) quare est j/ut . Sit ergo c linea data, atq; erit

5 . .
X
y,seuZ = 4 X ;
cx Y cx

©a

y = -
Sit SA=a & SF :% =z, atq; ad A & F erige normales ipsis d & y proportionales;

quae proinde per eas designari possunt, ut sit AE =d, & FP =y, & sit EP curva quam

Y

X_g , adeoque; ; :f . Unde est curva EP

punctum P perpetuo tangit. Tum erit %

Logarithmica, cujus subtangens est ¢ (per Lem. 11.) Adeoque; si in tabula

Logarithmorum sumantur Logarithmi proporionales ipsis AF, hoc est ipsis a — ‘;—a ,

Numeri erunt ut densitates in locus B. Q.E.1.
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SCHOLIUM.
Si Aeris totius pondus supra B sit p (per hanc Prop.) erit p ad p ut yad y . Sed est

aaxy

(per hanc Prop.) Quare si sit p = %A, hoc est, si p sit columna Aeris
ejusdem densitatis y & gravitatis % ac Aer in B, & altitudinis A, erit yadyut 4adx,

2 2
hoc est, ut cad 4=* (per hanc Prop.) Unde sit c= %5 A . Inventa itaque; altitudina A
X X
per Experimentum 7orricellianum, dabitur c.
Sed per Experimentum quoddam ab Hankesbeio factum, constat Aeris densitaatem

mediorem esse ad densitatem Aquae ut 1 ad 820 sere. [p. 105.] Est etiam densitas Aequae
ad densitatem Mercurii ut 1 ad 13% . Quare est densitas Aeris ad densitatem Mercurii ut 1

ad 11070. Altitudo etiam Barometeri mediocris est 30 unc. Quare si punctum B sumatur
in superficie Terrae, existente a radio Terrae, erit altitudo A, (adeoque; subtangens c) =
332100 unc. vel 27675 ped. Anglic. Est etiam Radius Terrae pedum 20995444. Quare pro

27675 . . . . . 1
70995447 ° vel satis accurate in numeris minoribus 760 - Et

hinc respectu Logarithmorum communium, in quibus est 1 Log. ipsius 10, est

Pes Anglicanus partium  0.00001569

Mille passus Anglican 0.082856 ...

Radius Terrae 329.47.....

Ex hac Propositione constat, Aeris densitatem, etiam ad distantiam infinitam a Centro
Terrae, esse quantitatis finitae; nam exponitur ea per Logarithmicae ordinatam Ss ad
Centrum Terrae. Proinde si Aeris vis elastica tanta sit, ut ad hunc gradum raritatis
pervento etiam adhuc sit densitas compressioni proportionalis, Atmosphaera Terrae vere
in infinitum extenditur, atque erit quantitas Aeris in toto Systemate Mundano verre
infinita; utpote quae major sit quam totum spatium infinitum ductum in datam densitatem
Ss. Sed vires naturales non in infinitum extenduntur ; quare plusquam probabile est, Aeris
vim elasticam, postquam ad certum gradum raritatis perventum est, subinde continuo
languescere, adeoque densitatem subinde decrescere in ratione continuo minori quam
ponderis imminuti, atque Atmosphaeram eo pacto revocari intra limites finitos, eosque
fortasse satis arctos.

Radio Terrae scripto 1, erit ¢ =

HYPOTHESIS III.

Radii Lucis constant ex particualis corporeis, atque Refractio Lucis sit per
attractionem mutuam Lucis & Mediorum refringentium, atque haec Attractio decrescit in
tam magna ratione distantiarum a corporibus, ut non sit sensibilis, nisi in ipso sere
contactu;estque caeteris partibus, ut corporum densitas. [p. 106.]

Haec omnia abunde comprobantur in Libro Opticorum Newtoni.
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LEMMA XII.

Si sint Media plura similaria, planis parallelis ab invicem distincta, quorum vires
attractiones sunt tantum in distantiis minimis sensibiles; corporis per Media ista
transeuntis velocitas, ubi in Medium aliquod pervenerit, eadem erit, ac si per Media jam
praeterita non transiisset, sed cum prima sua velocitate directe incidisset in vires
attractrices istius Medii, in quo jam versatur.

Distinguantur duo quaevis Media contigua planis per
rectas parallelas AB, CD, EF repraesentatis, atq; ducatur
istis normalis GHbg occurrens AB & CD in H & b.
Sume hinc inde HG & hg aequalis distantiis in quibus
incipit ac definit attractio Medii ABDC. Tum quoniam
Mediorum actio est uniformis, quantum motus additur
corpori pergenti de G versus M, tantum aufertur per
contrariam actionem ejusdem medii eodem perveniente
in g; atque idem eveniet in transitu corporis per media
reliqua. Restat ergo ut omnis mutatio motus ubi corpus pervenerit in g, oriatur ex sola
actione medii CDEF, in quo jam versatur.

COROLLARIUM.

Hinc motus Lucis in Medio aliquo idem est, sive illud primum inciderit, sive per alia
Media jam transierit, (per Hypoth. 3).

LEMMA XIII.

Si in datis distantiis Mediorum Vires attractices sunt ut ipsorum Densitates, erit Lucis
velocitas in Medio in dimidiata ratione densitatis Medii quantitate data auctae. [p. 107.]

Sit AB superficies Medii jacentis ad partes F. Duc EAF
ipsi AB normalem, atque ad punctum C in recta EA erige
normalem CD proportionalem Medii vi attractrici in C, atq;
sit EDBFE area tota quam describit ordinata CD. Tum erit
incrementum quadrati velocitatis particulae transeuntis per
totam regionem attractionis Medii EF, ut spatium totum
EDBF (per Prop. 39 & 40 Lib. 1. Princip. Math.) Sed
quoniam, ex hypothesi, Attractiones in datis distantiis sunt
ut Densitates Mediorum, ergo sunt areae integraec EDBFE
ut eaedem densitates; adeoque incrementum quadrati velocitatis est ut Medii densitas. Si
itaque quadratum velocitatis datae in vacuo, ante ingressum in spatium EF, sit ad
incrementorum ejusdem in transitu per hoc spatium, ut data quantitas ad densitatem in
uno casu, erit semper quadratum velocitatis datae in vacuo ad ejusmodi incrementum, ut
idem Datum ad densitatem : adeoque conjunctim quadratum velocitatis post transitum per
spatium EF erit ad quadratum velocitatis datae in vacuo, ut densitas plus dato ad datum;
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& proinde ipsae velocitates erunt in hac ratione dimidiata ; adeoque velocitas in Medio
est semper in dimidiata ratione densitatis plus dato. Q.E.D.

COROLLARIUM.
Hinc in transitu Lucis per Medium inaequaliter densum,
qualis est Atmosphaera Terrae, Vis acceleratrix est ut fluxio A B
densitatis applicata ad fluxionem distantiae inter densitates.
Nam sit Aa linea in cujus directione variatur densitas, & sint a

ordinatac AB, ab ut vires acceleratrices in A & a, & sit Bb

curva quam describit punctum B. Tum erit area ABba ut

incrementum quadrati velocitatis particulae pergentis de A in a, (per Prop. 39 Lib. 1.
Princip. Math.) hoc est, ut incrementum [p. 108.] densitatis (per hoc Lemma). Quare
imminuta distantia Aa in infinitum, erit vis acceleratrix AB ut fluxio densitatis applicata
ad Aa, hoc est, ad fluxionem distantiae inter densitates.

SCHOLIUM.

Per experimentiam ab Haukesbeio factam, est sinus refractionis Radii Lucis a vacuo
incidentis in Aerem ad superficiem Terrae, ad sinum incidentiae ut 999736 ad 1000000.
Ergo in hac ratione est Lucis velocitas in vacuo ad ejusdem velocitatem in Aere ad
superficem Terrae (per Prop. 95 Lib. 1. Princip. Math.) Sit ergo 1 quantitas data, atque
repraesentetur densitas Aeris ad superficiem Terrae per d : tum (per hoc Lemma) erit

1:4/1+4+d ::999736:1000000 , adeoque; d =
0.00052828.
Et in genere, si Aeris densitas designetur pery, &
: constituatur triangulum rectangulum ABC, cujus
' A M B basis AB sit ad hypothenusam AC, ut sinus
- ' refractionis ad sinum incidentiae a vacuo,data basi

AB erit perpendiculum BC ut \/;

PROP. XXVII. PROB. XXIlI.

Invenire Refractionem Lucis per Atmospheram Terrae transeuntis.

Sit S centrum Terrae, ABC Radius Lucis incurvatus, quem tangant rectae AG; BG in A
& B, sibi mutuo occurrentes in G, atque ad tangentes dimittantur perpendiculares sD, SQ,

& ducantur SA, SB; atque ad A ducatur ipsi SA normalis AE occurrens SD in E, & sit A
punctum in Radio datum, B punctum variable. Et sint SA =a, SD=5, SE=¢ (= "7" ,) SB
= x, d densitas in A, y densitas in B. [p. 109.]
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Curva Radii pendet ab Aeris vi
refringente attractrice, (per Hypoth. 3)
quae semper dirigitur versus majorem
densitatem, hoc est versus Centrum
Terrae, (per Prop. 26.) Est ergo haec
Curva de genere Trajectoriarum
genitarum per vires Centripetas.

Est autem velocitas Lucis in A ad

velocitatem in B utv1+d ad 1+ y
(per Lem. 13.) Quare est
SQ:SD::v1+d :\/1+ y (per Cor.

1.Prop. 1 Lib. 1. Princip. Math.) Unde

est SQ = ‘/\/E b, adeoque

BQ= x? - sz Et hinc, ubi punctum B est infinite distans, poene evanescente y, ita

ut tuto negligi possit, erit perpendicularis ad tangentem jam factam Asymptoton,

=+/1+d xb. Sit Asymptotos illa PH, occurrens tangentibus AG, BG in F & H, existente
eidem perpendiculari SP.

Moveatur tangens BG in locum novum proximum bg occurrentem perpendiculari SQ in
g. Tum erit angulus nascens gBG fluxio anguli EGH vel anguli FHG; hoc est, crescente x,
incrementum anguli [p. 110] HGF & decrementum anguli FHG; ob datum angulum ad F.

Atque radio existente 1, arcus proportionalis angulo nascenti QBg est 8](]3 Est autem Qq
fluxio ipsius SQ(= Y4 b) quare est Qg = V” ;hoc est Qg =4 2yxivd 22N p; (ob
J1+ 1+y|2 2¢x’ ><1+y|2
_- Qq : : _
y= QB , hoc est fluxio anguli FGH

2by)c\/l+ vel azby;c

2¢x’ ><l+y| A X 21+”b2 Zszxme}%’,xz—bz

Inventa itaque fluente hujus expressionis per Methodum Inversum Fluxionum, dabitur
angulus FGB. Sed datur angulus GBS per valorem perpendicularis SQ, atq; est angulus
SDG rectus; unde dabitur angulus DSB. Adeoque; ex data distantia SB (= x), densitate in
B (=), & angulos SAD, dabitur positio rectaec SB, adeoq; punctum B; hoc est, dabitur
figura Radii refracti ABC. Q.E.I

azby;c

Sed haec flucio ad fluentem in terminis numero finitis irreducibilis

2¢x? xﬂ;xd{j—fxz -b*
est. Quare ad computandam Atmosphaerae refractionem in usus Astronomicos,
quaerenda est series, quae sit apta ad calculum instituendum per approximationes. Ergo ut

fluxio haec revocetur ad terminos quantum fieri potest simplicissimos, pro x scribe 44
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atque fluxio fiet

—yzz yez

-b ; .
i existente

, vel , h.e. (neglecto signo)
2ex1+yx Ldat_p? 2ex1+yx ‘*“4 -z’ 2ex1+yx ll%itt—zz

I+y ZZ l+y
y_

. . Sed ad superficiem Terrae, ubi est y = d, est haic fluxio

[p. 111.] etiam y:

yzz

2c+2cdxA/tt—zz

forma minus parte millesima. Quare neglectis istiusmodi minutiis, pro Fluxione illa tuto

; & ad distantiam infinitam (ubi etiam fluxio ipsa evanescit,) differt ab hac

yzz

. Seposito itaque coefficiente dato fluentem ipsius

sumi potest ,
2¢+2cdxAtt—zz 2¢ 2 2e+2ed

yzz
ft—zz

quaero ope Propositionis undecimae, ut sequitur.

Pro +/tt —zz scribe z, atque erit x == ; Z | & Fluxio proposita erit % vel etiam

— yx. Estetiam y=% Itaque secundum Prop. 11.sit v=yz, s ==, w=z==7* Tum

capiendo fluxiones, easque continuo applicando ad

werits =2 Lo 532 3z 3wz ¢ st st 3 asu? s & sic porro.
5 3Ty~ 35" 57 37 5> 7 st 37 5 p
X X X X X X X X X

Hinc autem per formationes terminorum constat, quod si sit # distantia termini alicujus

s,s, s, &c. atermino primo s, exprimetur s, (hoc est s, si nsit 1, s, sinsit 2, &c.)

vel per seriem hujus formae, s=A 22 + B Z ot C Z 3+ D Z s +&c. vel [p.
+1

112.] per seriem hujus formae, s=1txA ZZn + B Z C Z 5 D Z s +&e.
X
Coefficientes autem A, B, C, D, &c. in harum serierum prima investigo ad hunc modum,

W

\ WA
juxta notationem autem nostram sint z, n, n, &c. valores ipsius n praecedens, &

n, n, n, & c. ejusdem valores subsequentes, ut in introductione explicavimus. Capiendo
i

fluxiones seriei, primo in x, deinde in z, & terminos prodeuntes continuo applicando ad
" n+l n—1
« z! — z! — — =3
s=2n+1A i +[2n—-1B+ n+1 A] P +[2n-3C+ n-1 B]xzn_3
x ! x !
r/t—5
+[2n-5D+ n-3C] 5 - + &c

x /

w, erit,

Hinc novum A erit 2n+1A. Unde constat ipsium A formari per continuam
multiplicationem terminorum 1, 3, 5, 7, &c. quorum ultimus & maximus sit 2z — 1. In
sequentibus autem vice 2n — 1 scribe m, atque A=mA..
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Item per terminum secundum est B=mB + nA. Si fieri potest ut B producatur ab A
Q
per multiplicationem & divisionem, sit B = %A. Tumssit B=4A =5 mA. Unde
/ /

climinatis B & B ab aequatione priori, & simul evanescente A, erit

R/ S R/ R/ R ’ . p. .

/ /

m nn
— novus valor ipsius 2%, indeque Q = n, & sumendo integrales Q =---+ p. Sed
/

R R 2
nn
debet esse B = 0 ubi n = 0; adeoque; est p = 0, atque Q—— Unde sit B= ﬂA' Et
. mn
hinc B=—~B.
/  n
. . L Q . Q
Per terminum tertium estQ:mC+nB. Pono C=EB,&Slt(;=ﬁB,hOC est
Omn }/;/lQ \ Qmn mn mQ \ mn
/ / _ / i — _m
B” B——R B+nB, seu nl/? +nRQ R +n. Pone —% R =R , hoc est,
R = R ,ut fia Q—n edes 1/3 novus valor ipsius z - Undesi
nnnm .
R = mnn , adeoque; Q = nnn indeque; Q =- q . Unde sit
AN I’;’ll’l
C:ﬂB,atque(/Z:T“C.
4m n

W

Per terminum quartum est D = m D + nC. Unde ad eundem modum invenitur

W
AL

mn

D =L C, atque D = — . Ex terminis autem jam appositis satis constat modus formandi
6m n

caeteros. Un de si jam pro totis terminis cum suis signis scribantur A, B, C, &c. erit

AR

i nn
s=135.2n—12—— L XX A ANXXE | &,

2ntl 2mzz 4mZ

hoc est

§=135.. 00120 4 n+ln xxp n=ln=2, xxg, n=3n-4, xxc, g
x2ntl zz zz zz

2x2n—1 4x2n-3 6x2n—5
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Et ad eundem modum inveniuntur coefficientes in serie altera, ut

g = 1.3.5....2;1n:11.tt.z”_1 yn=1n=2xx A , n=3.n—-4xxg, n=5.n—0xX, g
. 2x2n—1zz 4x2n—-3zz 6x2n—5zz

I

Quinetiam si jam sit m distantia termini alicujus s, s, s, &c. a termino s, pro z scripto

m
—m exprimetur etiam s per eadem series. In hoc autem casu inveniendus est coefficiens

termini primi, ut fecimus in Proportione duodecima. Debet enim esse 2n — 1, hoc est - 2m
— 1, maximus factorum 1, 3, 5, 7, &c. in coeffiente illo. Et hic coefficiens sic scribi potest

2n-1..53.1.-1.-3.-5.&¢. M. 2m—3.—2m=5.&c. 1.
1.3..5.&e. hoc est, 1-3.-5-7&c. - Incidente

autem » inter numeros negativos, adeoque; & m inter numeros affirmativos 1, 2, 3, &c.

omnes factores —2m —1.—2m —3.—2m —5.& c. in numeratore tolluntur per similes
factores [p. 115] in denominatore. Unde relinquitur ut in isto casu sit coefficiens termini

primi gl atgs s

s = " pmmtlomxx s —m=lom=2xXp . g vel
N=3=5 S 2m M 2 a1 4.-2m—3.zz

7;1 _ x> " —ml.mﬁA_'_ —?l.m.xxB_F —W&nm.xxc_'_&c'
N=3=5 w12 2 2mel 423m+3.2z 6.0m+5.22

hoc est per seriem priorem. Et haec series quidem est praestantior ad inveniendas
/ " 1

fluentes s, s, s, & c. altera autem ad inveniendas fluxiones s, s, s, & c.

Porroest r=yz,atque y= % Unde sumendo fluentes purae sit

/ " .. ooe
r=cy,r= czy,r = c3y,&c. item sumendo fluxiones, » =y ,r = Z, r= lz,&c. Unde
c
C
/ Y/ / /i .

observatis signis, per hos valores ipsorum s, s, s, &c.s, s, s, &c,r,r,r,&c,r,r, r,&c.

sit angulus FHG (= m Xrs— ;/"s+ I/"S— &c.) = m in hanc seriem,
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z
cy X<
Y X
~tpx L

X
c3yx3ttsz

X

T2 c40 2 2
—c4y>< 1. .57ttz +%x_2A

X z

&ec.

[p. 116.] atque angulus FGH
# _ o / Vi oo_ eee // _ .
(2C ~5ed rs+rs—rs&c.— P)aequalis

1

——— in hanc seriem
2¢+2cd

yXXx

Ubi est P valor ejusdem seriei prodiens per ipsorum z, x, y in puncto A.
Potest etiam alia series inveniri pro angulo FGH; nempe ita corrigendo Fluentes

I

r,r, r,&c.ut omnes evanescant in puncto A, ubi est z = a. Ut hoc fiat pone z = a — v,

Lo . . . VYyZ. 1 oo 1
unde sit z = —a, & fluxio anguli FHG sit oo Posito itaque; s p (ut

prius) erit » =v y, existente w = —v, atque; y = % . Unde sit » = —c y, adeoque

167

r = cd — ¢y, (quoniam est d valor ipsius y in puncto A, ) indeque r=c’d—cdv—c* v, &

. 2 2,3
inde r :c3d—czdv+%—c3y,r :c4d—c3dv+%—c4y, & sic porro.
1

Unde sit angulus FGH aequalis 3t 20g I
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— Zz
cd cyx =

14

—cza’—i-cafv+c2y><—3
X

2
c3d—czdv+—0dzv —c3y><?’t%
X

_Ad e Bdv— cdv +cdv +cyxl35ttz

1x%
2 2.3 g5 2A

&ec.

[p. 117.] Et hinc sit summa angulorum FHG, FGH, hoc est angulus GFH aequalis

1 )
2¢+2cd m

cd x <
X

—czal+cdv><t—t3
X

2
Ad — Py + = 3tz
2 P

3
_ 4 3 cdv? | cdv 1.3.5ttz l
c'd+cidv— > tThé = +s

x°
—2A
&ec.

Ubi angulus SAD est satis parvus, commode invenitur angulus GFH per hanc seriem.

Sed ubi est angulus SAD nimis magnus, quaerendus est angulus FGH per seriem alteram.
Potest & alia series inveniri pro angulo FGH, per Propositionem septimam. Sit enim Q

fluens ipsius — Zny , hoc est ipsius x y. Tum per Propositionem illam, quo tempore x sit

xxtv fiet Q=Qx—= Q vt Q v + Q = v+ &e. nempe fluente uniformiter x. Unde si

X 2x 23x
pro x sumatur ipsius valor in puncto aliquo dato I, & sit x — v ejusdem valor in A, & x + v

ijusdem valor 1 @, valor fluentis in puncto A erit Q + gv + Q2 v+ Q 3 vV +&e &

X 2x 23x

valor fluentis in puncto a erit Q —gv + Q2 v Q 3 v? + &c. Quo valore dempto a

X 2x 23x
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2
valore altero, residium erit Fluentis pars adjacens rectae A, ; adeoque; si sit SB = SA”

Sa ’
erit angulus [p. 118.] = +1 o Q *t Q.3 viEy Q = v> + &c. In hoc casu autem
2.3x 2.3.45x
pro ).cscripto 1, est z= f , & )'/: _C)ch . Unde existente Q =y, fiunt
2
=Y Xt
Q- cz? e T

[ xt e | 3w S 1+5x e
24 cc oz z 72
SCHOLIUM.
. 2+2yxcxSBcub. .
In hac Curva Radius Curvaturae est 7 xSQxSA quad.’ quod in puncto A est
%—SCSSA & ubi angulus SAD est rectus, est 2 +a’2d c. Quod per valores ¢ & d

(Schol. Prop.26. & Schol. Lem. 13.) est 5 SA, circiter, existente SA Radio Terrae.
Proinde curvatura Radii Luminis horixontalis, ad superficiem Terrae, est ad curvatruam
Circuli maximi Terrae, ut 1 ad 5. Velocitas autem Luminis est ad velocitatem Corporis
revolventis in Circulo maximo Terrae, cum vi Gravitatis, circiter ut 40000 ad 1. Unde est
Aeris vis refrangens ad vim Gravitatis in superficie Terrae circiter ut 320000000 ad 1.
Nam in data inclinatione Trajectoriarum ad directionem Virium centripetarum, Vires illae
sunt in ratione composita Flexurarum & quadratorum Velocitatum.

FINIS.



