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____________________________________________________________ 
The Method of Increments. 

 
The Second Part. [IIa] 

 
_____________________________________________________________ 

 
[page 53] 

 
Where by some examples it is shown how this method can be applied to 
mathematical and physical problems. 
_____________________________________________________________ 
 
 

PROP. XII1. PROB. VIIII. 
 

For some given equidistant terms in  a series of quantities, to find [a general formula for] 
the sum of the intermediate terms, beyond the nearby terms, in terms of the given 
distances between each other and their distances from the given initial term.  
 

Let a, b, c, d  be the given equidistant terms, and the magnitude of another term is 
required in general from its given distance from the initial term a. 

The differences of the given terms are taken, and then the differences of  the 
differences, and thus henceforth, then a final difference is reached,  and these differences 
each have their own signs:  .)(),(),(),(),(),(

••••••••••••••••••
−=−=−=−=−=−= ababcbabacdcbcbaba  

Now write x for any term produced in the series, and for the distance of the same term 
from the initial term write z, and the increment of z, 

•
z , is equal to the given distance 

between the given terms a, b, c, d, and [the sum of] all the terms of the series can be 
expressed in general [at least in an approximation] from the equation 
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zzDzzCzBzAx +++=   Then (by Prop. 1) the difference between two values of x to the 

distance in turn from
•
z is expressed by the equation: ,32

\

zzzDzCzzBx
••••
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same way the difference of the differences is expressed by the equation: 
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[The starting-end or initial term is a, and three different differences can be formed from 

the given starting values a, b, c, and d. Assume ,3
\\\\

zzDzzCzBzAx +++=  or 
).2)((3)(

•••
−−+−++= zzzzDzzzCzBzAx  Then 

);)((3)()(
•••••

−++++++=+ zzzzDzzzzCzzBAxx and hence )(32
•••••

−++= zzzzDzCzzBx ; 

similarly, zzzzDzzzCzBxx )(3)(2
••••••••

++++=+  giving ,3.22 22 zzDzCx
••••

+= and likewise for 

.3.2 3

••••
= zDx  ] 

This equation accurately agrees with the given terms a, b, c, d themselves and then 
approximately with the intermediate and further terms. But when more terms are given [i. 
e.,  in addition to a, b,c, and d], it is understood that this approximation of the equation to 
the sum of the values of all the terms is closer, both for intermediate and more distant 
terms. Whereby if the series of given terms is continued to infinity, the equation finally 
coincides with the values of all the terms, so of the intermediate as with those further 
away. Hence if a rule is given for the equidistant terms to be formed in some series [p. 
55],  by this proposition is given [a formula] expressing the values of an infinite series, of 
all the intermediate, and finally of the whole series.   
 

EXAMPLE. 
 

Let an example of this proposition be a series of  terms where the equidistant terms are 
always in a continued geometrical ratio, and in this series a and  
a + ab are the [first] two terms at the separation

•
z ; then from the nature of this 

expression, all the terms are at the same distance .,&|1,|1,, 3
______

2
______

cbabaabaa +×+×+ [which 
we would now write as .,&)1(,)1(),1(, 32 cbababaa +++ ] and the first differences of  these 

terms are:  .&|1|,1, 2
____________

cbabbabab +×+× ; the second differences are : 
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2
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22 cbabbabab +×+×  and the third differences are :  

.&|1|,1, 2
______

3
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33 cbabbabab +×+× ; and thus henceforth. Hence, according to the idea of this 
proposition : .,&,,, 32 cabaabaabaaa ====
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from the term a, then it is given by :  .&
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• . This series coincides with 

Newton’s theorem for finding the powers of  a binomial.  
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This theorem can also be investigated in as follows :  Let 

.&| 33221
______

cazbavbxbaaba nnnnn −−− +++=+ Then multiply the series by a + b and it becomes 
1

______

| ++ nba , or according to our ‘next-term’ notion, we write  /|
______ n

ba + , equal to  

vx
cazbavbxbaa

nnnn

                       1      
.&

33221
////

+++
++++

−−−

 

[Thus, the first row increases the power of a from n to n + 1, while the second row adds 
1, x, and v to the coefficients 
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n ; by the method of increments, 1=
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nnnz = ; and so on; (where all the 

variables are taken as pure, since everything should vanish when n = 0,) hence  
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bnaba nn +−+−++=+  truly with the proper signs written for A, B, 

C, etc,  for the individual terms of the series.  
 

PROP. XIV. PROB. IX. 
For some given method of forming the terms in a series of quantities, to find the sum of 
the terms for some equidistance of the terms.   
 
If the sum x of the terms is sought, with the same term increased by one more, it becomes  

•
+ xx . Whereby with the law of the formation of the terms given, if x is made equal to the 

nearest term to be added, the sum x is given in general terms, by Prop. 10. [p. 57.] Which,  
in order that it shall become equal to the sum sought, the value of the same whole taken 
away, which is produced when the sum sought is zero.   

 
EXAMPLE I. 

 
Let an example of a series of equidistant terms be .,&3,2,, cbababaa +++  In this series 

I always write z for the final term, and bz =
•

, and the end term,
•

+ zz  is to be added next to 
the sum sought, or

/
z ; and thus 

/
zx =

•
. Hence on returning to the whole quantities,  the sum 
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))1(2( bnanx ++= in modern terms.] But this 

sum must be made equal to zero, when the initial term a is to be added on, that is , when 
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remainder 
•

•
×−−

z
azazz

2

______

/  is the sum required, that is, (with b put back in place of 
•
z ) 

.2

____________

b
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EXAMPLE II. 
In the same way, if the final term in the series is

/
zz , and this first term is that for which 

z = a, that is 
______

•
+× zaa , with the term to be added next, after the last, proving to be

///
zz , 

then 
///
zzx =

•
; and hence 

•
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•
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x 33

____________

/// . And in same way one is permitted to 

proceed to the summations of terms, in which there are more factors .&
///

czzz ×××  

[p. 58.] 
 

EXAMPLE III. 
 

The sum of the terms is to be found, the final term of which is always 
/

1
zz , and of which 

the first term is that for which z = a. In this case the term to be added to the last term of 
the sum sought is 

///

1
zz . Whereby it is accomplished that 

///

1
zzx =

•
, then by regressing to the 

whole sum, it follows that 
/

1
zzAx

•

−= . But when the next term to be added, from the start, 

is ______
1

•
+× zaa

, that is, when az =
/

, the sum sought should be equal to zero, and hence   
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•

= 1 and thus
/
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zzazx

••

−= . 

 
 COROLLARY. 

 
And hence the sum of all the terms of the series is given : 
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to infinity. For in this series continued 

indefinitely the divisor z in the final term is infinite. Hence with the term
/

1
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disappearing, the value of the sum is azx
•

= 1 .  

And in the same way one can proceed to sums of terms in which there are more divisors 
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[p. 59] 
PROP. XV. PROB. X. 

 
To find fluxions from given geometrical figures.  

 
Just how this is to be accomplished is better understood from examples, as will be 

apparent from these precepts. 
 

EXAMPLE I. 
 
 

Hence the first example in the figure ABP, where 
from the position given for the line AB, and from the 
point P, the ratio is sought of the fluxion of the line  
AB, and of distance PB. 

 
“ The line PB is moved from its own place PB to the new place Pb. In Pb, take PC = 

PB, and to AB is drawn PD thus, in order that the angle bPD is equal to the angle bBC; 
and on account of the similar triangles bBC, bPD, the increase Bb to the increase Cb, is 
as Pb to Db. Now Pb can be returned to its own former place PB, in order that the 
increases vanish, and the final ratio of evanescence, that is the final ratio Pb to Db, is that 
which is as PB to DB, for the existing right angle PDB, and therefore the fluxion of AB 
to the fluxion PB is in this ratio. 

[Thus, a point moves along AB so that the increase in length Bb in a given time has a 
corresponding increase in length of PB in the same time is bC; from the similar triangles, 
the ratio of the increases bC to Bb is equal to DB to PB. The same result follows 
analytically.] 

EXAMPLE II. 
 

The line PB revolving around the given pole P, 
cuts the two given lines AB and AE in B and E : the 
proportion of the fluxions of these lines AB and AE 
[to each other] is sought. 

The revolving line PB progresses from its own 
[initial] position PB to a new position Pb, cutting 
the line AB in the point b, [p. 60] and the line AE in 
the point e, and the line BC is drawn parallel to the 
line AE,  crossing Pb in C, and Bb is to BC as Ab is 
to Ae, and BC is to Ee as PB is to PE, and from the 
ratios taken together, Bb is to Ee as Ab × PB is to Ac × PE.  

[Bb/BC = Ab/Ae, and BC/Ee = PB/PE; hence Bb/Ee = (Ab × PB)/(Ac × PE).] 
 Now the line Pb can return to its previous position PB, and the vanishing increase Bb is 

to the vanishing increase Ee as AB × PB to AE × PE, thus the fluxion of the line AB to 
the fluxion of the line AE is in this ratio. 
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Thus, on the revolving line PB, any curved lines you please, cut at the points B & E at 
the given positions, and the moving lines AB and AE are now tangents to these curves in 
the section with the points B & E; the ratio of the fluxion of the curve to which AB is the 
tangent to the fluxion of the curve that has AE as tangent is as AB × PB to AE ×PE. 
Since this also is the case if the line PB is always a tangent from any given position to a 
curve with a movable point P.” 

These two examples from the works of Newton are required. 
 

EXAMPLE III. 
 

AB is any curve in the position given, and from some point B of this curve the line BD 
is drawn cutting the line ED in the position given at the angle given at D; the fluxion of 
the abscissa ED is sought, of the ordinate DB, and of the curve AB. 
The ordinate BD can be moved from its 
place BD to the new position bd, and BF 
is drawn parallel to ED, and crossing bd 
in F, and through the points b and B, bB 
is drawn crossing ED in c, and from the 
point B the tangent is drawn [p. 61] 
crossing ED and db in C and G. Then on 
account of the similar triangles BFb and 
cDB, BF : Fb : Bb : : cD : DB : cB.  
[i. e. BF = k.cD, Fb = k.DB, and Bb = 
k.cB for some constant k.] Now the ordinate bd can be returned to its first position BD, 
and since the line cB is now coincident with the tangent CB, the vanishing abscissa ED 
and the ordinate DB of the curve AB are increased between themselves, as the sides of 
the vanishing triangle BFG, or of the triangle CDB similar to that; therefore the flexions 
of the lines ED, DB, and of the curve AB are in this ratio. And if the angle BDE is right, 
with the normal BP drawn to the curve crossing ED in P, on account of the similar 
triangles BFG and BDP, the same flexions will be between these sides as the sides of the 
triangle BDP. 

Hence from a given ratio the tangents can be drawn for any proposed curve, the 
proportion will be given of the fluxion of the abscissa, of the ordinate, and of the curve ; 
and in turn from the given proportion of the fluxion of the abscissa, and of the ordinate,  
the proportion will be given between the sub-tangent CD, the ordinate DB, and the 
tangent itself CB; as from the proportion between the ordinate BD, the subnormal DP, 
and the normal BP. Moreover the proportion of the fluxion is given (per Prop. 1.) from 
the defining equation, and the relation between the abscissa ED and the ordinate DB. 
Whereby through such a proportion the tangents and normals can be drawn for all curves.   

 
 
 
 
 
 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 79 
Part IIa.Translated with Notes by Ian Bruce. 

EXAMPLE IV. 
 

If some curve AB is given, and the proposition is to 
find the radius of curvature at the point B, that is,  
the radius of the circle with the same curvature as 
that which the curve AB has at the point B.  

Draw three equidistant ordinates BD, bd, b1d1, 
cutting the given line ED at right angles at D, d, and 
d1; and draw BC and bc parallel to ED, crossing bd, 
and b1d1 at C and c; and draw Bb meeting b1d1 in y, 
[p. 62.] and a circle with centre S passes through 
these three points B, b, b1, crossing DB and d1b1 
[extended]in F and f, and draw the diameter BG, and FG.  Moreover, the abscissa ED = z, 
with the ordinate DB = x, and with the [arc length of the ] curve AB = v. Then just as in 
the Method of Increments it follows that 
 Dd = 

•
z  (=dd1= BC = bc) ; Cb = 

•
x (= cy) & yb1 = 

••
x .  

Also let Bb = (by = ) 
•
u . Then from the nature of the 

circle [for both products are equal to the length of the 
tangent squared from y to the circumference, from 
similar triangles]:  

 ybyByfyb ×=×1 , that is 
••

••
×

= x
uu

yf
2

. But with the 

coincidence of the points B, b, and b1, the vanishing arc 
for the circle Bbb1 and of the curve AB is in common, 
therefore in this case a circle with centre S is described 
with the same curvature as the curve at the point B.  
Hence the increments vanish, and now with yf  coinciding with BF, and by making 

••

••

••

•• =
x
vv

x
uu

, then  BF = ••

••

x
vv2 . [Note that the passage to the limit involves increments 

becoming differentials.] 
But from the coincident points B and b, BF is to BG, as BC is to Bb, that is, as

•

z  to 
•

v . 

[  2BF and BG
BF

••

••

•

•

==
x

vv
v
z ]. Hence BG = •••

•

xz
v

3

2 , and the radius of curvature BS = •••

•

xz
v

3

.  

[In modern terms, it is easy to show that this is equivalent to the curvature of the function 

y = y(x); )//())/(1( 222/32 dxyddxdy+ , where .)( and;; 2/322
3

2 dydxvydxdxz +===
••••

] 
If  p is the [length of the]normal to the curve intercepted between the point B and the 

axis ED, then x
zpv
•

•

=  (by Ex. 3.) [in which p = BP, x = BD, and the angle DBP is θ; or 

from the extra diagram, 
p
x

v
z == •

•

θcos ]   

z

x
v
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Hence the radius of curvature is also : BS = .
3

2
3

••

•

xx

zp   

And these are made for z flowing uniformly. But if you want to find an expression for 
the same radius of curvature where v flows uniformly, through the equation 

••••••

+= zzxxvv  

[p.63.] (hitherto with z the uniform fluent) it was 
••••••

= xxvv 22 , that is •

•••
••

=
x
vvx , and hence BS 

= •••

••

zv
xv

2

. Now since v becomes the uniform fluent, for 
••

v  write •

•••
••

−=
z
vzv , or by ignoring the 

sign, as it only indicates 
•

z  to decrease with the increase of ED, when the curve is convex 

towards the axis, as is shown in this diagram, BS = ••

••

z
xv . An example of the use of this 

proposition arises in some conic section,  by considering   222 dadzax −= ; where d is the 
semi-parameter to the semi-axes a, in which z is taken as the abscissa.[ This is the 
hyperbola 1

)/( 2

2

2

2
=−

aad
x

a
z ] Then with the uniform fluent z, 

••

= zazxax 22 , and thus 

ax
zdzx
•

•

= : and again by taking fluxions [and substituting]: 

.3

2
2

33

2
22

2
22

22 x
zd

xa
zazdzxda

xa
zzdxaaxzzdx

•••••••
••

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=−=−=  Hence  

 BS = 2

3

3

2
3

d
p

xx

zp −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=••

•

; where the sign – only indicates that the centre S falls below the 

point B, that we have asked for above B. Hence on the whole conic section, the radius of 
curvature is the fourth proportional from the semi-parameter to whatever axis, and with 
the normal to the curve ending on the same axis. Whereby the radius of curvature to the 
extremity of the axis is equal to the semi-diameter to the same axis.  For a is the semi-
axis to the end of which the radius of curvature is sought, and d  the semi-parameter of 
the same; and p is the ratio of the normal end to the curve to the other axis. [p.64]  But in 
the vertex of the diameter a , p = a; whereby in this case the radius of curvature is d. 
Moreover this expression for the radius of curvature in 
conic sections was first found by the most distinguished 
Newton. 

Now the remaining description for a conic section is 
able to determine the same radius of curvature by 
geometry from the following construction.   

Let ABC be some given conic section, and the radius 
of curvature is sought at the point B. Draw the tangent 
BT, and the BS perpendicular to it, and BC is drawn 
parallel to either of the axes, and  the angle CBA is made equal to the angle CBT, and BA 
crosses the curve again at A. Then bisect AB in D, and erect the perpendicular DS 
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crossing BS in S, then S is the centre of the circle of  osculation. The demonstration of 
this is very easy. [For these latter examples, it seems appropriate to refer the interested 
reader to an older text, such as Elements of Analytical Geometry, Gibson & Pinkerton 
(1911). The Mathematical Works of Isaac Newton, Vol.1,in the Sources of Science series 
(1964),  also deals with the radius of curvature of conics and special curves, in a slightly 
different way from Taylor’s presentation.] 

 
PROP. XVI. PROBLEM XI. 

 
To square all curves. 

 
 

Let AB be a curve to be squared, the abscissa of 
which is CD, and the ordinate DB. The ordinate 
may be moved from its own place BD to a new 
place bd; and the area BDdb is the increase in the 
area corresponding to the increase of the abscissa  
Dd. [p. 65] The ordinate bd can then be returned to 
its previous location BD, and the greatest area BDdb 
equal to BD × Dd; whereby if the abscissa CD is z, 
and the ordinate BD is called y, the fluxion of the 
area is equal to yz

•

. Thus with the fluent of yz
•

found (per Prop. 10) if the fluent arising 
from the abscissa CE can be taken away by the fluent arising from the abscissa CD, or 
with the unknown constant in the expression of the fluent being determined,  by making 
the fluent arising from the abscissa CE equal to zero, the given area FEDB is described 
by the motion of the ordinate from EF to DB. 

 
 

EXAMPLE I. 
Let the abscissa from the given point C to the end position CD = z, and with the 

ordinate DB = y, [in the same diagram] and with some line taken for unity, let 1−= nzy . 

Then the fluxion for the area is equal to 1−
•

nzz , the fluent of which is An
zn

+ .  Let some 

given abscissa be CE = a, then with the fluent An
an

+ taken from the fluent An
z n

+ , (or by 

making An
an

+ = 0, and thus n
aA

n
−= ) then n

a
n
z nn

− is equal to the area next to the 

abscissa ED.  
When n is a negative number, as now 1−−= nzy , the area EFBD = n

a
n

z nn

−
−

−
−−

, that is 

nn nzna
11 − . If now the abscissa z is made infinite,  with the term nnz

1 vanishing, then the 

area  EFBD becomes equal to nna
1 , adjoining to the abscissa beyond the ordinate EF 

produced to infinity. And always when the sign of the fluent is opposite to the sign of the 
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fluxion, the area is expressed by the fluent for the abscissa produced beyond, adjoining 
the ordinate. For in contrast it is shown that the fluent becomes smaller as the abscissa is 
increased, and vice versa. [p. 66] 

 
 EXAMPLE II. 

 
 

Let ABCb be the curve to be squared, of 
which the abscissa AD is considered to be z, 
and the ordinate DB of this to be applied is 

2
1

_________
2

______

|21 zzz −×− . The fluxion of the area for 

this curve is 
2
1

_________
2

______

|21 zzzz −×−
•

. The fluent of 
this, taken free from any correcting constants, 

is 
2
3

_________
2

3
1 |2| zz − . Moreover this fluent is equal to zero either when z = 0, or when z = 2. Thus 

on the axis AD with AE taken equal to 2, the area bounded by this fluent is expressed 
either [by referring] to the point A or to the point E. When z < 1, (or AC, with the point C 
considered to lie between A and E) in the first case the area is ADB, in the second case it 
is the difference between the areas CbEC and CDBC. But when z (=Ad) > 1, in the first 
case the area is the difference between the areas ABCA and CdbC; in the second case it is 
the area dbEd. 

The positions of areas of this kind are gathered together from the signs of the ordinates 
of the expressions and the areas. In the present case, by considering z < 1, both the 
ordinates and the areas are positive; whereby with the abscissa z increased, the area 
sought is increased; which hence is either ABD, or the difference between the areas  
CEbC and CBDC. But when z > 1, the ordinate and the area having opposite signs, for in 

this case the expression for the ordinate 
2
1

_________
2

______

|21 zzz −×− is a negative quantity, for the 

expression of the area is 
2
3

_________
2

3
1 |2| zz − always considered to be positive; hence with the  

increase of the abscissa z, thus the area expressed is decreased, either the difference 
between the areas ABC and CDb, or by the area dEb. Moreover the sign of the area dEb 
is positive since as it is adjacent to the abscissa dE, as for a negative ordinate db [p. 67.] 
[Taylor presents the curve )1( 222 xxy −= , if C is made the origin rather than A; he 
confronts the difficulty of finding the area between the axis and the positive roots of his 
expression for this curve, by considering the positive section ABC and the negative 
section CbE, with origin at A. It is of interest to note that he chooses as origin the point A 
rather than C, indicating that at this time there was still a reluctance to use negative 
numbers.] 
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LEMMA III. 
 

If the figure corresponding to some line ABCD is such 
that, as constructed from the whole line, it has is a 
maximum or minimum, which is greater or lesser than  
the figure assumes when some other line of a similar 
form is put in place; also the figure formed from any 
such  part of the same line BCD will be either greater or 
lesser than that assumed by some other figure, if some other line BcD is put in place of 
BCD.  

For if the part constructed corresponding to the line BcD is greater or lesser than the 
part corresponding to the line BCD; then jointly the whole makes a total greater or lesser 
corresponding to the line ABcDE, which is greater or lesser than that corresponding to 
the line ABCDE, which is contrary to the hypothesis.  

[Thus, the curve passes through a maximum or a minimum according to some condition 
placed on the curve; any other shorter interval containing the max. or min. behaves in the 
same way. This lemma is the lead-in to an extended set of results relating the behavior of 
a curve at a turning point to the curvature of the arc at such a point.] 

 
LEMMA IV. 

 
On the line AB in the given position, four equidistant 

points are taken A, B, C, D, etc. and the normals BE, 
CF, DG are erected; the lines AE, EF, FG are drawn 
through the four ends E, F, G, and FH is drawn parallel 
to AB crossing  DG in H, and EI is drawn parallel to AD 
crossing  FC in I. From the given points A & G, and 
from the sum of the lines AE, EF, FG, the ratio of the 
fluxions of the lines BE and  GH is sought, when the 
whole figure vanishes, and AEFG becomes the element of a curve.   

[We imagine that the figure is composed of infinitesimal lengths: AB, BC, and CD are 
fixed increments (corresponding to

•

z ), as also is AG, 
the sum of the arc lengths, but BE and AE, EI and IF, 
and FH and GH are variables. It is required to find the 
ratio 

••

ac : ] 
 Let BE = a, IF = b, HG = c, AE = d, EF = e, FG = f. 

Then on account of the given sums 
,and)( fedDGcba ++=++ by taking [p. 68] fluxions, 

),(or ,0
••••••

−−==++ cabcba likewise .0=++
•••

fed  But on 
account of the given AB, EI, FH, and the right angles at B, I, and H, it follows 

that ),(, e
cbab

e
bbed

aad
•••

•
•

• −−=== ; and .f
ccf
•

•

= [Thus, etc., giving;222
••

=+= aaddABad ] 

 

c 
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Whereby ,0=+−−
••••

f
cc

e
cb

e
ab

d
aa  that is e

b
f
c

d
a

e
bac −−

••

:::: . But when AEFG is the 

element of a curve, if  x is the ordinate and v the element of [length of] the curve :  then  
;2,,,2,,
••••••••••••••••••••

++=+==++=+== vvvfvvevdxxxcxxbxa  and thus 

;
2
2:::: •••

•••

••••••

••••••

•

•

•••

•••
••

+
+−

++
++−

+
+

vv
xx

vvv
xxx

v
x

vv
xxac or, if y is written for •

•

v
x , then .::::

••••••

+ yyyac  For if 

,y
v
x =•

•

then ,
•

•••

•••

+=
+
+ yy

vv
xx and .2

2
2 •••

••••••

••••••

++=
++
++ yyy

vvv
xxx  

[These last ratios correspond to the sines of the angles of the three incremental arcs: 
they are read from the diagram rather than calculated.] 

 
PROP. XVII. PROBLEM. XII. 

 
With the line DE put in place, and with the perpendicular DA drawn, a  curve ABC is 

cut at the point A, the ordinate of this curve is the perpendicular BE; abc is another 
curve, and the perpendicular ordinate of this curve Eb is composed in some manner from 
the common abscissa DE, along with the ordinate BE [p. 69.], and from the arc AB. The 
form of the curve abc is sought from the curve ABC, when the area DabE is to be the 
maximum of all possible areas described by the ordinates bE in this manner, from the 
given base DF, with the ordinates DA and FC, and the length of the curve intercepted 
ABC. 

[The theorem establishes in a general way how a 
curve abc with a turning point can be made from a 
given section ABC of another curve, from its 
coordinates z and x, and the arc length v.  A fluctional 
equation is established and solved under four 
conditions. The the curve abc has a maximum value 
somewhere on DF, and it is establised that the slope of 
abc rises and falls on opposite sides of the turning 
point.] 

The abscissa DE = z, the ordinate BE = x, the 
[length of the] curve AB = v, and the ordinate Eb = 
P. By Lem. 3 the same property is agreed upon for 
any part of the same given curve. Therefore the 
point A is the end of the ordinate BE for the present 
figure, and AEFG is a small part of the curve 
sought, and with P considered to be the ordinate bE 
pertaining to the point A (see figure for Lem. 4 , 
[repeated here opp.]), let 

/

P  be the similar ordinate pertaining to the point E, and 
with

//

P the third ordinate bE pertaining to the point F [Thus, the line bE sweeps through 
the length DF, and the end point traces out the part of the curve shown on the second 
small diagram, along AG]. Then the small [incremental] part of the area DabE 
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corresponding to the small part of the curve AEFG is 
///

PzPzPz
•••

++ [i. e. three incremental 
rectangles, where 

///

and,, PPP represent three successive ordinate values of Eb necessary to 
define the curvature], which since it must be an extreme value, the fluxion of this is zero 
(by the method of max. and min.) [ 0..

///

=++
•••

PzPzPzei (*); note the different method of 
treating the turning point of the variable, as the function notation was not yer in use.] 
Moreover, the fluxions are to be estimated only from the motions of the points E and F up 
and down. Hence by considering  

•••

Pandz equal to zero in the equations [obtained from the 
fluxion of (*)], on account of the absence of the motion of the points A, B, C, D, it 
follows that the fluxion is given by ,0

///

=+
••••

PzPz that is .0
///

=+
••

PP  
[i. e. the gradients at the points E and F are equal and opposite.] 
In the generation of these points, .

••••

++= vSxRzQP  (**). [That is, the motion of 
a general point P on ABC is now considered, that would now be expressed as the total 
derivative of the function P = P(z, x, v), or 

../././
•••

++=++= vSxRzQdvdvdPdxdxdPdzdzdPdP ]  
Then for the values of the constants Q, R, and S pertaining to the points E and F,  by 

writing Q, R, S, and 
///

,, SRQ  for those, and with [the appropriate]
•••

vxz and,,  written for the 

values of 
///

&
••

PP  for the motions of the ends of EB and FC, as thus designated in Lemma 

4, 
•••

+= dSaRP
/

, and   
•••

−−= fScRP
////

, or with 
••

fd &  replaced by the values d
aa
•

 and f
cc
•

; 

d
aaSaRP
•

••

+=
/

, and [p. 70.] f
ccScRP
•

••

−−=
////

.   

[That is, for 0
///

=+
••

PP  for the abc curve, the same ratio as for the ABC curve is used with 
a sign inversion, and the increments are taken from the fixed ends A and G: we now 

proceed without the sign inversion]  Hence: f
cSRd

aSRac
//

:::: ++
••

. But, (by Lem. 4) 

.::::
••••••

+ yyyac  Whereby (as in that lemma, for d
a or •

•

v
x  I write y, and thus also 

.2
•••

++= yyyf
c ) the ratio here becomes : .:::2:

________________
// •••••••

+++×++ yyyyyySRSyR For 
//

 and SR write 
••

++ S S and R R , and the ratio becomes  

,:::22:
••••••••••••••

+++++++++ yyyySySySySySSyRRSyR and on dividing  
[in this context this means taking 1 from both sides of a ratio and simplifying; in this case 
R + Sy and 

•

y  are removed from the left and right denominators of the ratio,] 

,:::22:
•••••••••••••

++++++ yyySySySySySRSyR or (in the first consequence, rejecting the 
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evanescent
•••••••

ySySyS &,2, ),  
••••••

+++ yyySySRSyR :::2:   that is 

,02 =−++−
••••••••••

yySyySyySyRyR (***)This equation of the fluxions cannot be reduced  

[i. e. resolved]; whereby with the values of 
•••

yyy ,,  written in terms of
••••••••••••

vvvxxx ,, and,, : the 

expression becomes .023
222

=+−+++−
•••••••••••••••••••••••••••••••

vxxSvxxSvxSvxxSvvxRvxRvvR  

[Recall from Lemma 4, that ,y
v
x =•

•

 ,
•

•••

•••

+=
+
+ yy

vv
xx and .2

2
2 •••

••••••

••••••

++=
++
++ yyy

vvv
xxx  

It is useful now to show from these equations that .3

2

•

•
•

=
v

zy  For  

;
)()(

)()(
••••

••••••

••••

••••••••

•

•

•••

•••
•

+
−=

+

+−+=−
+
+=

vvv
xvvx

vvv

xvvvxx

v
x

vv
xxy since 

••••••••••

=+= zvzxvvxx  and , from,
222

 is 

considered constant, then on substituting 
••••••

= vxxv / , we find 

./1 and ,~)(  toleading;/
33

2

3

22

2

2

ρ==
+

−=
+

−=
•

•••

•

•

•

•••

•••••

••••
•

••••

•••••••
•

v

zx
z

y

v

zx

vxxv

xvxy
xxv

vxxvxy  In addition, we can relate 

these differentials to modern notation. Note initially that for a well-behaved function y = 
f(x) (not italic) in an interval, we can write tanψ = dy/dx for a point in the interval, and 

that y
v
x =•

•

(italic) in this notation is sinψ = dy/ds, where we choose to write the modern 

variables in non-italics in their usual meaning. It follows that
••

zy/  for Taylor’s italic y,  is 
equal to our dxddxd /.cos/)(sin ψψψ = ; now, 222 xy/x/.sec dddd =ψψ , and 

hence
.sec

xy/x/ 2

22

ψ
ψ dddd = , giving 2/32

22
223

))x/y(1(
.x/yx/y.cos/

dd
ddddzy

+
==

••

ψ . Thus, 
••

zy/  is the 

inverse of the radius of curvature ρ at any point where these quantities are defined, and 
••

y  
can be evaluated in the same way.]  
 
And with the help of this equation, together with the equation [from the given curve 
ABC, from which x and v are measured for a common z with the curve abc,]

••••••

+= zzxxvv , 
(truly for 

••

S,S,R,R , with the values of these expressed by z, x, v, and the fluxions of the 
expressions) the fluents x, and v are given (by Prop. 6). Moreover in the resolution of 
these equations there are four undetermined coefficients, (by Prop. 15) two of which are 
determined by making v = 0, and x = AD for the point D, and the remaining two are 
determined by making v equal to  the length ABC, and x = FC for the point C [in the 
main diagram again].  
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COROLLARY I. 

If the arc v does not enter into the equation for the value of the ordinate P,  by 
considering S = 0 [see (**), then from (***)], 0yRyR =−

••••

.When this equation is 

compared with the fluxion of n : 2 . Schol. Prop. 6, [p. 71.] it is found that •
•

=
z
a

y

R  / . [Note 

that R, which is really dxdP /  evaluated at the points stated, is inversely proportional to 

the curvature ρ, and thus 
••••

= zyxP // = 1/ρ, and where a = 
•

x  .] Where I write 3

2

•

•••

v

xz  for 
/

y
•

 

[as evaluated above] to give the value ..R
3

a
xz

v =•••

•

 But •••

•

xz
v

3

 is equal to the radius of 

curvature (by Prop. 15, Ex.4) whereby in this case the radius of curvature [of the ABC 
curve] is equal to .R

a  

COROLL. II. 
With the same equations in place, if in the expression for the ordinate P, z also is absent, 

then the equation becomes 
••

= PR x , [
••

= aRP
/

 above with S = 0;]from which it is agreed on 

substituting for R from corollary 1 that the equation becomes ..P
3

a
xxz

v =••••

•
•

 In place of 
•••

xx  

write the value of 
•••

vv  itself, [i. e. 0=
••

z ], and hence it becomes .P
2−•••••

= vvaz   Hence on 

taking fluents, .•

•

−=
v
zabP From which arrangement, in this case the first problem 

concerning fluxions is recalled.  
Also the problem can be solved by the quadrature of the curve. For the value of P does 

not involve any variables except x. Hence the equation is ,P
•••

−= vvbza and thus 

,|P|P
__________

22
2

_______2
2

_______2
2

••••

+×−=−= xzbvbza  that is 

.
PP2

Por ,PPP2
222

_______
_______

222

bba
xbzxbbbaz
−−+

×−
=×−=−−+

•
•••

 Also .
PP2

 
222 bba

xav
−−+

=
•

•

 

Hence by integrating, the curves z and v are given of which the common abscissa is  x, [p. 

72.]  and the ordinates are 
222 PP2

P)(
bba

xbz
−−+

−= & 
222 PP2 bba

axv
−−+

= .  

[Thus, for a given small interval, for known points a and b chosen in the interval, linear 
equations for the curve and the arc length can be found in terms of P considered as 
constant, a, and b.] 
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COROLLARY III. 
If in the expression for the ordinate P, x is missing, then by considering R = 0, the 

equation becomes ,02 =−+
••••••

yySyySyyS  From which equation collated with the 

equation for the fluxion n : 3 . Schol. Prop. 6, it is found that  •• =
zy

2 ayS . [This can be 

integrated by parts or by inspection, and the result checked by differentiation, and the 
constant is assumed as above, to give the appropriate curvature.]  

That is (for y and 
•

y the values •

•

v
x and 3

2

•

•••

v

xz are written) S .
3

2

2

a
xz

v

v

x =× •••

•

•

•

 Hence in this case 

the radius of curvature  (
•••

•

=
xz

v
2

3

) is equal to .2

2

•

•

xS

va  

 
COROLLARY IV. 

 With the same equations in place, if z is missing as well in the expression for P then 

,
••

= vSP then ,P
2/

a
xz
x =•••

•

 that is .P
2−•••••

= xxza Hence by regressing to fluents, then  

P .•

•

−=
x
zab  Thus also in this case the problem is recalled to the first set of fluxion 

problems. Also the problem can be solved by the quadratures [integrations] of the curves. 
For in this case the value of P is not entered into by any variables except v. [p. 72.] Hence 

the equation is ,P
•••

−= xxbza and hence ,|P|P
__________

22
2

_______2
2

_______2
2

••••

−×−=−= zvbxbza that is : 

.
PP2

P
222

_______

+−+
×−=

•
•

bba
vbz Also, .

PP2 222 +−+
=

•
•

bba
vax  Thus by quadrature, the curves, of 

which the common abscissa is v, are given and the ordinates give z and x:   

222222 PP2
 and,

PP2
P)v(

+−++−+

−

bba
av

bba
b ,  

[There is an algebraic mistake in the original denominators which has been corrected.  
 Note that the original thought of expressing the curve abc in terms of the ABC curve 
has not been carried through, but is alluded to in the last corollary.] 

 
COROLLARY V. 

And hence in turn, for a given curve ABC, the nature of the extreme value [turning 
point] becomes known. For if the ordinate bE is sought which is composed from the 

powers of the ordinate BE, then it is given by the equation P ,•

•

−=
v
zab (Cor. 2). And if the 

ordinate bE is sought which is composed from the powers v, it is found from the equation  

P .•

•

−=
x
zab (Cor. 4). 
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[The rest of the book is devoted to applied mathematics, which we start in IIb.] 

____________________________________________________ 
METHODUS INCREMENTORUM. 

 
Pars Secunda.  

[page 53] 
 
 

Ubi Exemplis aliquot ostenditur quomodo haec Methodus sit applicanda ad 
Problemata Mathematica & Physica. 
_____________________________________________________________ 
 
 

PROP. XII1. PROB. VIIII. 
 

Datis aliquot terminis aequidistantibus in Serie quantitatum, invenire terminos 
intermedios, & ulteriores quam proxime ex datis eorum distantiis alterutro termino 
extremo dato. 
 

Sunto a, b, c, d, termini aequidistantes dati, & requiratur terminus alius aliquis ex data 
sua distantia a termino extremo a. 

Sumantur terminorum datorum differentiae, deinde differentiarum differentiae, & sic 
porro, donec perventum sit ad differentiam ultimam, & sint differentiae illae sub propriis 
signis .)(),(),(),(),(),(

••••••••••••••••••
−=−=−=−=−=−= ababcbabacdcbcbaba  Jam pro quolibet 

termino seriei in genere scribe x, & pro ejusdem termini distantia a termino a scribe z, & 
sit ipsius z incrementum

•
z aequale distantiae datae inter terminos datos a, b, c, d, atque 

omnes terminos seriei in genere exprimi per aequationem .3
\\\\

zzDzzCzBzAx +++=   Tum 
(per Prop. 1) differentia inter duos valores ipsius x ad distantiam ab invicem

•
z exprimetur 

per aequationem ,32
\

zzzDzCzzBx
••••

++=  & hujusmodi differentiarum differentiae 

exprimentur per aequationem ,3.22 22 zzDzCx
••••

+=  & differentia tertia per aequationem 

.3.2 3

••••
= zDx  Sed ubi est z = 0, sunt x = a, ;;;

••••••••••••
=== axaxax  unde per has aequationes 

sunt A = a, ;
••

= azB
•••

= azC 22 , ,3.2 3

••••
= azD  adeoque ,

3.2
,

2
,, 32

\

•

•••

•

••

•

• ====
z

a
D

z

a
Cz

a
BaA & 

exinde .
3.22

\\\

3

\

2

\

zzz
z

a
zz

z

a
zz

a
ax

•

•••

•

••

•

• +++=  Q.E.I. 

Haec aequatio convenit accurate cum ipsis terminis datis a, b, c,d, & quam proxime 
cum intermediis & ulteribus. Sed quo plures termini dentur, constat eo propius 
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accessuram hanc aequationem ad valores omnium terminorum, tum intermediorum, tum 
& ulteriorum. Quare si series terminorum datorum continuetur in infinitum, aequatio 
tandem coincidet accurate cum valoribus terminotum omnium, cum intermediorum, tum 
ulteriorum. Proinde si detur lex [p. 55] formandi terminos aequidistantes in serie aliqua, 
per hanc propositione dabitur series infinita exprimens valores omnium terminorum 
intermediorum etiam & ulteriorum totius seriei.  
 

 
EXEMPLUM. 

 
Sit hujus rei exemplum in serie terminorum, ubi termini aequidistantes semper sunt in 

ratione continua Geometrica, in hac serie sint a & a + ab termini duo ad distantiam z; 
tum ex natura hujus progressionis erunt omnes termini ad eandem distantiam 

.,&|1,|1,, 3
______

2
______

cbabaabaa +×+×+ differentiae primae hujusmodi terminorum erunt 

.&|1|,1, 2
____________

cbabbabab +×+× ; differentiae secundae erunt .&|1|,1, 2
____________

22 cbabbabab +×+× ; 

differentiae tertiae erunt  .&|1|,1, 2
______

3
______

33 cbabbabab +×+× ; et sic porro. Unde ad mentem 
hujus Propositionis erunt .,&,,, 32 cabaabaabaaa ====

••••••
adeoque si z sit distantia alicuius 

termini x a termino a erit .&
3.2.12.11 3

\\\
3

2

\
2

c
z
zzzab

z
zzab

z
abzax ++++=

•••

 Sed in hoc casu est 

x
z

ba
x |1

______

+= , unde sit c
z
zzzb

z
zzb

z
bzb x

z

&
3.2.12.111|1 3

\\\
3

2

\
2______

++++=+
•••

. Coincidit haec series cum 

Theoremate Newtoniano pro inventione dignitatis Binomii.  
Quod Theorema etiam investigari potest ad hunc modum. Sit 

.&| 33221
______

cazbavbxbaaba nnnnn −−− +++=+ Tum ducta serie in a + b erit 1
______

| ++ nba , vel jucta 

notationem /|
______ n

ba + aequale  

vx
cazbavbxbaa

nnnn

                       1      
.&

33221
////

+++
++++

−−−

 

Unde existente 1=
•
n ;per Methodum Incrementorum erit 1=

•
x , adeoque 1

nx = ; 

),( nxv ==
•

adeoque )2.1(  ;2.1

\\

nnvznnv ===
•

 adeoque, 3.2.1

\\\

nnnz = ; & sic porro; (ubi sumuntur 

omnes integrales pure, quoniam debent omnes evanescere ubi est n = 0,) unde sit  

.&2.12.11| 33
\\\

22
\

1
______

cabnnnabnnbanaba nnnnn −−− +++=+ , hoc 

est .&3
2B2

1A1|
______

cCa
bn

a
bn

a
bnaba nn +−+−++=+  nempe pro singulis terminis seriei cum 

propriis signis scriptis A, B, C, &c. 
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PROP. XIV. PROB. IX. 
Data ratione formandi terminos in series quantitatum , invenire aggregatum terminorum 
quotvis aequidistantium.  
 
Si sit x summa quaesita, eadem aucta termino amplius uno erit 

•
+ xx . Quare data lege 

formandi terminos si fiat x aequalia terminos si fiat x aequalis termino proxime addendo, 
dabitur integralis x in terminis generalibus, per Prop. 10. [p. 57.] Quae ut fiat aequalis 
summae quaesitae, demendus est valor ejusdem integralis, qui prodit quando debet 
summa quaesita esse nihil.  

 
EXEMP. I. 

 
Sit exemplum in serie terminorum aequidistantium, .,&3,2,, cbababaa +++  In hac serie 

pro termino ultimo semper scripto z, erit bz =
•

, atque terminus summae quaesitae 
proxime addendus erit 

•
+ zz , vel 

/
z ; adeoque erit 

/
zx =

•
. Unde regrediendo ad integrales 

erit A2
/ +=
•
z
zz

x . Debet autem haec summa aequari nihilo, quando terminus proxime 

addendus est a, hoc est, quando est az =
•

, adeoque & 
•

−= zaz ; adeoque a summa 

A2
/ +
•
z
zz

, ablata summa A2

______

+
×−

•

•

z
aza

, residium 
•

•
×−−

z
azazz

2

______

/  erit summa quaesta, hoc est, 

(pro
•
z  restituto b) .2

____________

b
ababzzx ×−−+×=  

 
 

EXEMP. II. 
Ad eundem modum si terminus ultimus sit 

/
zz , atque terminus primus is sit in quo est z = 

a, hoc est 
______

•
+× zaa , termino post ultimum proxime addendo existente 

///
zz , erit 

///
zzx =

•
; 

adeoque 
•

••

•

+××−
−= z

zaaza
z
zzz

x 33

____________

/// . Et ad eundem modum pergere licet ad summationes 

terminorum, in quibus sunt plures factores .&
///

czzz ×××  

[p. 58.] 
EXEMP. III. 

 
Inveniendum sit aggregatum terminorum, quorum ultimus semper est  

/

1
zz , & quorum 

primus is est in quo est z = a. In hoc casu terminus summae quaesitae proxime addendus 
est 

///

1
zz . Quare facta 

///

1
zzx =

•
,deinde regrediendo ad integrales erit 

/

1
zzAx

•

−= . Sed ubi 
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terminus proxime addendus est ______
1

•
+× zaa

, hoc est, ubi est z = a, debet summa quaesita 

aequari nihilo; unde sit  azA
•

= 1 adeoque 
/

11
zzazx

••

−= . 

  
COROLLARIUM. 

 
Et hinc datur summa omnium terminorum .&3.2

1
2.

1
.

1 czazazazazaa +
++

+
++

+
+

in 

infinitum. Nam in hac serie in infinitum continuata in termino ultimo est divisor z 
infinitus. Proinde evanescente termino 

/

1
zz

•

in valore x sit azx
•

= 1 . 

 Et ad eundem modum pergere licet ad summas terminorum in quibus sunt plures 
divisores .,&,,

///
czzz  

 
[p. 59] 

PROP. XV. PROB. X. 
 

Invenire Fluxiones in  datis Figuris Geometricis.  
 

Hoc quomodo sit faciendum exemplis melius, quam praeceptis patebit. 
 

EXEMP. I. 
 
 

Sit ergo primum exemplum in figura ABP, ubi datis 
positione recta AB, & puncto P, quaeritur ratio 
fluxionum rectae AB, & distantiae PB. 

 
“ Progrediatur recta PB de loco suo PB in locum 

novum Pb. In Pb capiatur PC = PB, & ad AB ducatur PD sic, ut angulus bPD aequalis sit 
angulo bBC; & ob similitudinem triangulorum bBC, bPD, erit augmentum Bb ad 
augmentum Cb, ut Pb ad Db. Redeat jam Pb in 
locum suum priorem PB, ut augmenta illa 
evanescant, & evanescentium ratio ultima, id est 
ratio ultima Pb ad Db, ea erit quae est PB ad DB, 
existente angulo PDB recto, & propterea in hac 
ratione est fluxio ipsius AB ad fluxionem ipsius 
PB. 

EXEMP. II. 
 

Recta PB circa datum polum P revolvens secet 
alias duas positione datas rectas AB & AE in B & 
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E : quaeritur proportio fluxionum rectarum illarum AB & AE. 
Progrediatur recta revolvans PB de loco suo PB in locum novum Pb ; rectas AB ,[p. 60] 

AE in punctis b & e secantem, & rectae AE parallela BC ducatur ipsi Pb occurrens in C, 
& erit Bb ad BC ut Ab ad Ae, & BC ad Ee ut PB ad PE, & conjunctis rationibus Bb ad Ee 
ut Ab × PB ad Ac × PE. Redeat jam linea Pb in locum suum priorem PB, & augmentum 
evanscens Bb erit ad augmentum evanescens Ee ut AB × PB ad AE × PE, ideoque in hac 
ratione est fluxio rectae AB ad fluxionem rectae AE. 

Hinc in recta revolvens PB lineas quasvis curvas, positione datas secet in punctis B & 
E, & rectae jam mobiles AB, AE curvas illas tangant in sectionum punctis B & E; erit 
fluxio curvae quam recta AB tangit ad fluxionem curvae quam recta AE tangit ut AB × 
PB ad AE × PE. Id quod etiam eveniet si recta PB curvam aliquam positione datam 
perpetuo tangat mobile P.” 

Petuntur haec duo exempla ex Newtonianis. 
 

EXEMP. III. 
 

Sit AB curva quaevis positione data, & ab ejus puncto quovis B ducatur recta BD 
secans rectam positione datam ED in angulo dato in D; quaeritur proportio fluxionum, 
abscissae ED, ordinatae DB, & curvae AB. 

 
 

 
 
 
 
 
 
 
 
 

Moveatur ordinata BD de loco suo BD in locum novum bd, & ducatur BF parallela ED, 
& occurrens bd in F, & per puncta b & B, ducatur bB occurrens ED in c, & ad punctum B 
ducatur tangens [p. 61] occurrens ED, db in C & G. Tum ob similia triangula BFb, cDB, 
erit BF : Fb : Bb : : cD : DB : cB. Redeat jam ordinata bd in locum suum priorem BD, & 
recta cB jam coincidente cum tangente CB, erunt augmenta nascentia abscissae ED, 
ordinatae DB, & ipsius curvae AB inter se, ut latera trianguli nascentis BFG, vel ei 
similis trianguli CDB; ideoque in hac ratione erunt fluxiones rectarum ED, DB, & curvae 
AB. Et si angulus BDE sit rectus, ducta ad curvam normali BP occurrens ED in P, ob 
similia BFG, BDP, erunt eaedem fluxiones inter se ut latera trianguli BDP. 

Hinc data ratione ducendi tangentes ad curvam aliquam propositam, dabitur proportio 
fluxionum abscissae, ordinatae, & ipsius curvae; atque vicissum ex data proportione 
fluxionum abscissae & ordinatae, dabitur proportio inter subtangentem CD, ordinatum 
DB, & ipsam tangentem CB; ut & proportio inter ordinatam BD, subnormalem DP, & 
normalem BP. Data autem aequatione definiente relationem inter abscissam ED, & 
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ordinatam DB, datur proportio fluxionum (per Prop. 1.) Quare per istam proportionem 
duci possunt tangentes & normales ad omnes curvas.  

 
EXEMP. IV. 

 
Sit curva quavis AB, & propositum sit invenire 

radium curvaturae in puncto B, hoc est, radium 
circuli cujus curvature eadem sit, quae curvae AB in 
puncto B.  

Duc ordinatas tres aequidistantes BD, bd, b1d1, 
secantes rectam positione datam ED ad angulos 
rectos in D, d, d1, & ipsi ED parallalas duc BC, bc, 
occurrens bd, b1d1, in C & c, & duc Bb occurrentem 
b1d1 in y, [p. 62.] & per puncta tria B, b, b1, transeat 
circulus cujus centrum sit S, occurrens DB & d1b1 in 
F & f, & duc diametrum BG, atque FG. Sint autem 
abscissa ED =

•
z , ordinata DB = x, & curva AB = v. Tum juxta Methodum Incrementorum 

erit Dd = 
•
z  (=dd1= BC = bc) ; Cb = 

•
x (= cy) & yb1 = 

••
x . Sit etiam  

Bb = (by = ) 
•
u . Tum ex natura circuli erit ybyByfyb ×=×1 , hoc est 

••

••
×

= x
uu

yf . Sed 

coincidentibus punctis B, b, b1, erit arcus evanescens Bbb1 circulo & curvae AB 
communis, ideoque in hoc casu erit circulus centro S descriptus curvae AB aequicurvus 
in B. Evanescant itaque incrementa, & jam coincidentu  yf cum ipso BF, & facto 

••

••

••

•• =
x
vv

x
uu

, erit BF = ••

••

x
vv2 . Sed coincidentibus punctis B & b, est BF ad BG, ut BC ad BA, 

hoc est, ut 
•

z  ad 
•

v . Unde sit BG = •••

•

xz
v

3

2 , & radius curvaturae BS = •••

•

xz
v

3

. 

Si sit p ad curvam normalis intercepta inter punctum B & axem ED, erit x
zpv
•

•

=  (per Ex. 

3.) Unde sit etiam radius curvaturae BS = .
3

2
3

••

•

xx

zp   

Et haec fiunt fluente uniformiter z. Sed si cupis invenire expressionem ejusdem radii ubi 
fluit uniformiter v, per aequationem 

••••••

+= zzxxvv  [p.63.] (adhuc fluente uniformiter z) fiet 
••••••

= xxvv 22 , hoc est •

•••
••

=
x
vvx , & inde BS = •••

••

zv
xv

2

. Jam ut fluat uniformiter v, pro 
••

v  scribe 

•

•••
••

−=
z
vzx , vel neglecto signo quod solum indicat ipsum 

•

z decrescere crecente ED, quando 

curva est versus axem convexa, ut in hoc schemate exhibetur, BS = ••

••

z
xv .  
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Sit hujus rei exemplum in quavis sectione conica, existente  222 dadzax −= ; ubi est d 
semi-parameter ad semi-axem a, in quo sumitur abscissa z. Tum fluente uniformiter z, erit 

••

= zazxax 22 , adeoque ax
zdzx
•

•

−= : atque iterum capiendo fluxiones 

.3

2
2

33

2
22

2
22

22 x
zd

xa
zazdxxda

xa
zzdxazzdx

•••••••
••

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=−=−=  Unde sit BS = 2

3

3

3
3

d
p

xx

zp −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=••

•

; ubi 

signum – tantum indicat centrum  S cadere infra punctum B, quod nos quaesivimus supra 
B. Ergo in omni sectione conica est radius curvaturae quartum proportionale 
semiparametro ad utrumvis axem, & ad curvam normali terminatae ad eundem axem. 
Quare ad extremitatem axis est radius curvaturae aequalis ipsi semiparametro ad eundem 
axem. Sit enim a semi-axis ad cujus extremitatem quaeritur radius curvaturae, & d 
ejusdem semi-parameter; & sit p ad curvam normalis terminata ad axem alterum, (cujus 

semiparameter est .
2
3

2
3

d
a ) Tum erit radius curvaturae .3

3

a
dp=  [p.64]  Sed in vertice diametri 

a est p = a; quare in hoc casu est radius curvaturae d. Hanc autem expressionem radii 
curvaturae in conisectionibus primus invenit clarissimus Newtonus. 

Caeterum descripta jam sectione conica, potest idem radius determinari Geometrice per 
constructionem sequentem.  

Sit ABC data sectio conica, & quaeratur radius 
curvaturae ad punctum B. Duc tangentem BT, eique 
perpendicularem BS, & ducantur BC parallela alterutri 
axium, atque fiat angulus CBA aequalis angulo CBT, & 
occurrat BA consectioni in A. Tum bisecta AB in D, & 
erecta perpendiculari DS occurrente BS in S, erit S 
centrum circuli osculatori. Hujus demonstratio est 
perfacilis. 

 
 

PROP. XVI. PROB. XI. 
 

Curvas omnes quadrare. 
 

 
Sit AB curva quadranda, cujus abscissa est CD, & 
ordinata DB. Moveatur ordinata de loco suo BD in 
locum novum bd atque; spatium BDdb erit 
augmentum areae respondens abscissae augmento 
Dd. [p. 65] Redeat ordinata bd in locum suum 
priorem BD, atque erit ultimo spatium BDdb 
aequale BD × Dd; quare si abscissa CD sit z, & 
ordinata BD dicatur y, erit fluxio areae aequalis yz

•

. 

Inventa itaque fluente ipsius yz
•

(per Prop. 10) si dematur fluens proveniens per abscissam 
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CE a fluente proveniente per abscissam CD, vel invariabilis incognita in expressione 
fluentis determinetur faciendo fluentem provenientem per abscissam CE aequalem nihilo, 
dabitur area FEDB descripta per motum ordinatae de EF in DB. 

 
EXEMP. I. 

Sit abscissa ad datum punctum C terminata CD = z, & ordinata DB = y, atque sumpta 
aliqua linea pro unitate sit 1−= nzy . Tum erit fluxio areae aequalis 1−

•
nzz , cujus fluens est 

An
zn

+ . Sit data aliqua abscissa CE = a, tum dempta fluenta  An
an

+  a fluente An
zn

+ , 

(vel facto An
an

+ = 0, unde fiat 
n
aA

n
−= ) erit 

n
a

n
z nn

−  aequale areae adjacenti ad 

abscissam ED.  
Ubi est n numerus negativus, ut sit 1−−= nzy , erit area EFBD = n

a
n

z nn

−
−

−
−−

, hoc est 

nn nzna
11 − . Si jam fiat abscissa z infinita, evanescente termino nnz

1 fiet area EFBD 

adjacens abscissae ultra ordinatam EF in infinitum productae aequalis nna
1  . Et semper 

ubi fluens signum contrarium est signo fluxionis, areae per fluentem expressa adjacet 
abscissae ultra ordinatam productae. Nam contrarietas monstrat fluentem minui dum 
augetur abscissa, & vice versa. [p. 66] 

 
 EXEMP. II. 

 
 

Sit curva quadranda ABCb, cujus abscissa 
AD existente z, ejus ordinatim applicata DB 

est 
2
1

_________
2

______

|21 zzz −×− . Fluxio areae in hac curva 

est 
2
1

_________
2

______

|21 zzzz −×−
•

. Cujus fluens, pure 

sumpta absque correctione, est 
2
3

_________
2

3
1 |2| zz − . 

Est autem haec fluens aequalis nihilo, vel ubi z = 0, vel ubi z = 2. Itaque in axe AD 
sumpto AE = 2, terminatur area per hanc fluentem expressa, vel ad punctum A vel ad 
punctum E. Ubi est z < 1, (vel AC, existente puncto C medio inter A & E) in primo casu 
est area ADB, in secundo casu est differentia inter areas CbEC atque CDBC. Sed ubi est z 
(=Ad) > 1, in primo casu est area differentia inter areas ABCA, atque CdbC; in secundo 
casu est area dbEd. 

Positiones hujusmodi arearum colliguntur ex signis expressionum ordinatae, atque 
areae. Sic in casu praesenti, existente z < 1, tam ordinata quam area sunt affirmativae; 
quare aucta abscissa z, augetur area quaesita; quae proinde est, vel ABD, vel differentia 
inter areas CEbC atque CBDC. Sed ubi est z > 1, ordinata, atque area signa habens 

contraria, nam in hoc casu expressio ordinatae 
2
1

_________
2

______

|21 zzz −×− est quantitas negativa, 
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expressione areae 
2
3

_________
2

3
1 |2| zz − semper existents affirmativa; unde crescente abscissae z 

decrescit area adeoque exprimitur, vel differentiam inter areas ABC & CDb, vel per 
aream dEb. Areae autem dEb signum est affirmativum quoniam adjacet tam abscissae dE, 
quam ordinatae db negativis. [p. 67.] 

LEMMA III. 
 

Si lineae alicujus ABCDE figura talis sit, ut factum 
aliquod toti lineae respondens majus sit, vel minus, 
quam simile factum ubi linea aliam induit figuram; 
etiam lineae ejusdem partis cujusvis BCD figura a 
talis erit, ut ei respondens facti pars major sit, vel 
minor, quam si pars illa BCD aliam quamvis induat 
figuram BcD.  

Nam si facta pars respondens lineae BcD major sit, vel minor, quam simile factum 
respondens lineae BCD; tum conjunctim erit erit totum factum respondens lineae ABcDE 
majus, vel minus, quam simile respondens Lineae ABCDE, contra hypothesin.  

 
 

LEMMA IV. 
 
In recta AB positione data sumantur puncta 

quatuor aequidistantia A, B, C,D, &c erigantur 
normales BE, CF, DG, per quarum terminos E, 
F, G ducantur rectae AE, EF, FG, & ducatur FH 
parallela ipsi AB occurrens DG in H, EI 
parallela ipsi AD, & occurrens FC in I. Datis 
punctis A & G, & summa rectarum AE, EF, FG, 
quaeritur ratio fluxionum linearum BE, GH, 
quando figura tota evanescit & sit AEFG elementum curvae.  

Sunto BE = a, IF = b, HG = c, AE = d, EF = e, FG = f. Tum ob datas summas 
,&)( fedDGcba ++=++ capiendo [p. 68] fluxiones erit 

),est (hoc ,0
••••••

−−==++ cabcba item .0=++
•••

fed  Sed ob datas AB, EI, FH, & ob angulos 

rectos in B, I, & H, sunt ),(, e
cbab

e
bbed

aad
•••

•
•

• −−=== atque; .f
ccf
•

•

= Quare est 

,0=+−−
••••

f
cc

e
cb

e
ab

d
aa  hoc est e

b
f
c

d
a

e
bac −− :::: . Sed ubi AEFG est elementum curvae, 

si sit ordinata x & curva v, erit 
;2,,,2,,
••••••••••••••••••••

++=+==++=+== vvvfvvevdxxxcxxbxa adeoque

c 
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;
2
2:::: •••

•••

••••••

••••••

•

•

•••

•••
••

+
+−

++
++−

+
+

vv
xx

vvv
xxx

v
x

vv
xxac vel si pro ••

••

v
x scribatur y, erit .::::

••••••

+ yyyac  Nam si 

,y
v
x =•

•

erit ,
•

•••

•••

+=
+
+ yy

vv
xx atque .2

2
2 •••

••••••

••••••

++=
++
++ yyy

vvv
xxx  

 
 

PROP. XVII. PROB. XII. 
 

Detur positione recta DE, & ducta perpendiculari DA, 
per punctum A transeat curva ABC cujus ordinata 
perpendicularis est BE; atque sit abc alia curva cujus 
ordinata perpendicularis Eb quovis modo dato componitur 
ex abscissa communi DE, ordinata BE [p. 69.] , & curva 
AB. Quaeritur forma curvae ABC, quando area DabE est 
omnium arearum per ordinatas bE hoc modo provenientes 
descriptarum maxima, ex data basi DF,ordinatis DA, FC, 
& longitudine curvae interceptae ABC. 

 
Sit abscissa DE = z, ordinata BE = x, curva AB = v, atque ordinata Eb = P. Per Lem. 3 

eadem proprietas convenit curvae particulae cuivis datae. Sit ergo (vid. fig. Lem. 4) 
punctum A extremitas ordinatae BE in praesenti figura, atque sit AEFG particula curvae 
quaesita, & existente P ordinata bE pertinente ad punctum A, sit 

/

P  similis ordinata 
pertinens ad punctum E, atque

//

P tertia ordinata bE pertinens ad punctum F. Tum areae 
DabE particula respondends curvae particulae AEFG erit 

// ••••

++ PzPzzP , quae cum debeat 
esse extrema, ejus fluxio erit nihil (per method. maximorum & minorum.) Fluxiones 
autem sunt aestimandae per motus punctorum tantum E & F sursum & deorsum. Unde 
existentibus 

•••

P&z aequalibus nihilo, ob defectum motus punctorum A, B, C, D, erit 

.0
///

=+
••••

PzPz  
Sit in genere .

••••

++= vSxRzQP  Tum pro Q, R, & S pertinentibus ad puncta E & F 

scriptis Q, R, S, & ;,,
///

SRQ atque pro ,,,
•••

vxz in valoribus ipsorum 
///

&
••

PP  scriptis motibus 

punctum E, B, F, & C, prout designantur in Lemmate 4 erit  
•••

−−= fScRP
////

, vel pro
••

fd &  

scriptis ipsorum valoribus d
aa
•

atque 
f
cc
•

; d
aaSaRP
•

••

+=
/

, atque [p. 70.] 
f
ccScRP
•

••

−−=
////

. 

Unde sit f
cSRd

aSRac
//

:::: ++
••

. Sed (per Lem. 4) .::::
••••••

+ yyyac  Quare (ut in Lemmate 

isto, pro d
a vel •

•

v
x  scripto y, ut sit etiam .2

•••

++= yyyf
c ) erit 

.:::2:
________________

// ••••••

+++×++ yyyyyySRSyR Pro 
//

SR+ scribe 
••

++ S S atque R R , atque fiet 
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,:::22:
••••••••••••••

+++++++++ yyyySySySySySSyRRSyR atque dividendo 

,:::22:
•••••••••••••

++++++ yyySySySySySRSyR vel (in primo consequente rejectis 

evanescentibus
•••••••

ySySyS &,2, )  ,:::2:
••••••

+++ yyySySRSyR hoc est 

,02 =−++−
••••••••••

yySyySyySyRyR Est haec aequatio fluxionalis irreducibilis; quare 

pro
•••

yyy ,,  ,scriptis eorum valoribus per 
••••••••••••

vvvxxx ,,&,, expressis fiet 

.023
222

=+−+++−
•••••••••••••••••••••••••••••••

vxxSvxxSvxSvxxSvvxRvxRvvR Et ope hujus aequationis, una cum 

aequatione 
••••••

+= zzxxvv , (nempe pro 
••

S,S,R,R ,scriptis eorum valoribus per z, x, v, & 
eorum fluxiones expressis) dabuntur fluentes x, & v (per Prop. 6). In resolutione autem 
harum aequationum erunt quatuor coefficients indeterminati, (per Prop. 5) quorum duo 
determinantur faciendo v = 0, & x = AD ad punctum D, atque reliqui duo determinantur 
faciendo v = datae longitudini ABC, & x = FC ad punctum C.  

COROLL. I. 
Si curva v non ingreditur valorme ordinatae P, existente S = 0, erit .0yRyR =−

••••

Qau 

aequatione comparata cum fluxione n : 2 . Schol. Prop. 6, [p. 71.] invenetur •• =
zy
aR . Ubi 

pro 
/

y
•

scripto ipsius valore ,3

2

•

•••

v

xz  fiet ..R
3

a
xz

v =•••

•

 Sed est •••

•

xz
v

3

 aequale radio curvaturae (per 

Prop. 15, Ex.4) quare in hoc casu est radius curvaturae aequalis .R
a  

COROLL. II. 
Iisdem positis, si in expressione ordinatae P desit etiam z, erit 

•

= PRx , quo pacto 

fiet ..P
3

a
xxz

v =••••

•
•

 Vice 
•••

xx  scribe ipsius valorem 
•••

vv , atque hinc fiet .P
2−•••••

= vvaz Unde 

capiendo fluentes erit .•

•

−=
v
zabP   Quo pacto in hoc casu revocatur Problema ad 

fluxiones primas.  
Solvi etiam potest per quadraturam curvarum. Nam in valore ipsius P nulla involvitur 

variabilis nisi x. Est ergo ,P
•••

−= vvbza adeoque ,|P|P
__________

22
2

_______2
2

_______2
2

••••

+×−=−= xzbvbza  hoc est 

.
PP2

Por ,PPP2
222

_______
_______

222

bba
xbzxbbbaz
−−+

×−
=×−=−−+

•
•••

 Etiam .
PP2

 
222 bba

xav
−−+

=
•

•

 

Ergo quadrando curvas quarum [p. 72.] abscissa communis est x,  & ordinatae sunt 

222 PP2
P)(

bba
xb

−−+

− & ,
PP2 222 bba

ax
−−+

dabuntur z & v.  
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COROLL. III. 
Si in expressione ordinatae P defit x, existente R = 0, erit ,02 =−+

••••••

yySyySyyS  Qua 

aequatione collata cum fluxione n : 3 . Schol. Prop. 6. Invenietur •• =
zy

2 ayS , hoc est (pro y 

&  
•

y scriptis suis valoribus •

•

v
x atque 3

2

•

•••

v

xz ) S .
3

2

2

a
xz

v

v

x =× •••

•

•

•

 Unde in casu erit radius 

curvature (
•••

•

=
xz

v
2

3

) aequalis .2

2

•

•

xS

va  

 
COROLL. IV. 

 

 Iisdem positis, si praeterea desit z in expressione ipsius P ut sit ,vSP
••

= ,P
2/

a
xz
z =•••

•

 hoc 

est .P
2−••••

= xxza Unde regrediendo ad fluentes sit P .•

•

−=
x
zab Adeoque etiam in hoc casu 

revocatur Problema fluxiones primas.  
 Solve etiam potest per quadraturam curvarum. Nam in hoc casu valorem ipsius P nulla 
ingreditur variabilis nisi v. Ergo est [p. 72.] ,P

•••

−= xxbza adeoque 

,|P|P
__________

22
2

_______2
2

_______2
2

••••

−×−=−= zvbxbza hoc est .
PP2

P
222

_______

+−+
×−=

•
•

bba
vbz Etiam 

.
PP2 222 +−+

=
•

•

bba
vax  Itaque quadrando curvas, quarum abscissa communis est b, & 

ordinatae sunt 
222222 PP2

 and,
PP2

P)v(
+−++−+

−

bba
av

bba
b dabuntur z & x.  

 
COROLL. V. 

Et hinc vice versa, data curva ABC, innotescit cujusmodi factum sit extremum in hac 
curva. Nam si quaeritur ordinata bE quae componatur ex dignitatibus ordinatae BE, 

dabitur per aequationem P ,•

•

−=
x
zab (Cor. 2). Et si quaeritur ordinata bE quae 

componatur ex dignitatibus v, invenietur per aequationem P .•

•

−=
x
zab (Cor. 4). 

 


