
Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 37 
Part 1B. Translated with Notes by Ian Bruce. 

PROP. VII. THEOR. III. 
 

 There are two variable quantities z & x, of which z is regularly increased by the given 
increment
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DEMONSTRATION:  
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The successive values of this quantity are to be collected together by addition x, 

•
+ xx , 

•••
++ xxx 2 , 

••••••
+++ xxxx 33 , etc., as it is apparent from the operation expressed in the 

adjoining table. But the numerical x coefficients of the terms .c&,,,
•••
xxx are formed in the 

same way from these values, and these are the coefficients of the corresponding terms in 
the power of the binomial. And (by a Theorem of Newton) if the index of the power is  n, 
the coefficients are .etc,,,,1 3
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which z has increased to z + v, x has increased to become .c&3
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COROLL. I. 

 
And with .c&,,,,
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xxxz  remaining the same, by changing the sign of v, in the time in 

which z has decreased to z – v, in the same time x has decreased to 
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COROLLARY II. 
If for the evanescent increments, the fluxions of the proportionals themselves are 

written, now with all the .c&,,,,,
///

///

vvvvv equal to the time z uniformly flows to become  

 z + v , and x becomes,  .c&3
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which z decreases to z – v, x decreases to become : .c&3
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[Note : Newton’s notation for fluents and their fluxions, where the lines slope the 
other way,  are now used rather than Taylor’s own notation for the analogous case of a 
string of finite differences in this and similar cases. This is, of course, what is now called 
Taylor’s Theorem, as becomes apparent by writing the expansion in modern terms. If we 
set z = 0 initially for convenience, and introduce the function f(z) rather than x, which by 
common usage now means something else for us, then the expansion is equivalent to 

....)0('')0(')0()( !2
2 +++= fvffvf v  It appears to have been found by Stirling originally, and 

publicised by Maclaurin.] 
 

[p. 24] 
PROP. VIII. PROB. V. 

 
For a given [incremental]equation involving the increments of some other variable x 

besides the uniformly increasing z; the value of x is to be found for a given z by a series 
of an infinite number of terms.   

By the first Proposition whereby all the increments of a proposed equation are to be 
given to infinity. Then if 

n
x  is the smallest of the increments of x in a proposed equation 

given by these equations [recall Taylor’s usage of increment size discussed earlier],  then 
all the increments less than 

n
x  are given by the superior increment 

n
x  itself. 

Let .&,,,,&, ccccca
••••••

be certain corresponding values of .c&,,,,&,
••••••

xxxxz and by the 
same equations all the following terms etccc
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 given are expressed by the terms 

preceding 
n
c itself.  Thus if for z , a + v is written, x is given by 
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v ccccx (per Prop. 7.) Where the coefficients of the terms  

.c,,,, etcccc
••••••

the number of which is n, give all the conditions of the problem.  
  
 

SCHOLIUM. 
 

When x has been made from some whole number of positive powers of z itself,  with 
the vanishing of the smaller increments after a certain number of terms, the series is thus 
interrupted and comes to an end. Let 01=+−

•
xzx  be a given equation & let 1=

•
z . Then 
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by taking an increment, the equation becomes .0=+
••••
xzx  [p. 25] [Note that is involves 

replacing .expression original away the  takingand , by   and ,by   ,by  
••••••

+++ xxxzzzxxx ] 
But this can only happen if ;0=

••
x otherwise z can indeed be determined by the equation z 

+ 1= 0. Hence if  a + v is written for z, and 
•
cc & are themselves the values of 

•
xx &  when 

v = 0, then always vccx
•

+= , that is, (for
•
c  I write the value of this found from the 

proposed equation [for which a
c

z
xx 11 −− ==

•
]) vcx a

c 1−+= , that is (when for v I write the 

value z – a of this) zx a
c 11 −+= .  

 For series produced in this way, after a certain number of terms, by observation from 
analogy, generally the coefficients can be found for as far as I wish to calculate beyond.  
And sometimes series can be found that can be compared with known series, which are 
produced from known finite expressions : whereby by substituting these finite 
expressions in place of the series, from which arrangement integrals are given by a finite 
number of terms. Let a fluctional equation be 
 

,02=−−+
••••••

xxxxnzx where for 
•

z is written 1. Hence nxz
xxx +

+
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••

=
2

or (for z + nx I write y). And 
by continued calculation it is found [Recall that this fluxional equation was used as a 
model in discussing Prop. III earlier. Here Taylor solves the fluxional equation by using a 
known formula for the higher differences; he was unable to find such a formula for the 
other equation.] 
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(for a + nc I write p [in place if y]) by this Prop. [Coroll. II with .1=
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z ] : 
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numbers n, 1, 2 – n, 3 – 2n, &c. are produced by the continued subtraction of the number  
n – 1. Whereby let  p = n – 1, and the series is :  
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1 1)1(.& 1 . Thus put p = n – 1, [p. 26] that is 

make  a = n – 1 – nc, and x is given by the finite equation :  

;1)1(
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12

2)1( 1 vcvccvccx n
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−
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2

−
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••
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= n
ccc , and v = z – n +1 + nc; and c & 

•

c are unknowns that are to be determined by the two conditions of the problem.  Again in 
this equation x and z emerge interchanged between themselves as z and x in the equation 

,0=+++
••••••••

zxzxnxxxx  that we added in Lem. 1. Truly in that order in finding this finite 
expression (indeed with the transformation sought there in vain) to be transformed  by the 
third Proposition. The amount of use of this proposition can also be agreed upon from 
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this example.  But with the fluent z moving uniformly, where in the proposed equation, 
fluxions of the second, third order, or depending on x itself, if by this proposition you 
wish to find the value of z itself from the given x, the equation will be transformed in the 
same way.   
 Occasionally by other transformations finite expressions can be found. Let 

2223 )1(44
••

+=− xzxx  be an equation (also that we added in Lem. 1.) Put λθ yvx = , then 

by substituting this value x, and thus with the resultant value of the fluction 
•

x , by seeking 
the most simple form of the equation to be determined by the indices θ and λ, and the  
value of one of v or y. 

Hence therefore let 11
____________

−−×+=
•• λθλϑ yvvyyvx , and (by substitution) 

222
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2
______

22233 ||144 −−••

+×+=− λθλθλθ λϑ yvvyyvzyvyv . I put λ = - 2 and  

2
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2 |vyyzyv
•

−=− ϑθ  , that is .21 22222 yvzvyyzvv +−+= ϑθ  And then put 1=ϑ , in order 
that ,12 vz =+ϑ by which arrangement the equation can be divided by v [p. 27] 
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•

yvzy from which is found vy =2 , and 
thus 1)( 1 == −vyx ; which is indeed a singular solution of the problem. But if we make 

0=
••

y , then for z and y and
•

y , with the concurrent values written as 
•

aao  and,, , it is found 

that aaa −=
•

1 , and thus zaaay −+= 1 (by this Proposition) and hence 
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 As often as the value of this given z can be made equal to zero, and without the 
number of terms of the series made infinite, a series is produced in the simpler form 
rising by powers of z. And in this case the series can be assumed in general terms to be 
expressing the value of x; in which the coefficients are later determined by comparison of 
the terms,  to the standard of the following example.   
 Let the equation be .02 =−−

•••

xzxx Put .&EDCBA 432 czzzzx +++++=  Then on 
taking the fluxions,  the equations are : .&E4D3C2B 32 czzzx ++++=

•

 and 
.&E12D6C2 2 czzx +++=

••

 From which with the values of 
•••

xxx ,,  written in the equation, 
and with the terms arranged according to the powers of z :  

    series.][- 0. .&        2C      B         

]series; 2[ 0,  .&        2C    2B2A

]series; [ 0, .&E12D6C2   2

zxc

xc
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•
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−=−−−
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 In this equation (the quantity z is not to be 

determined by some affected equation of some other rules of analysis, which in this case 
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is absurd, since by hypothesis z is a variable quantity, and can always be taken as you 
please)  
[p. 28.] all the terms ought to vanish by themselves, by the values of the coefficients A, 
B, C, &c. Hence through the first term,  C = A, by the second D = 2

1  B, by the third E = 

3
1 C = 3

1 A, and thus henceforth; hence .&ABABA 4
4
13

3
12 czzzzx +++++=   

 When you wish to proceed by this method through the assumption of some general 
form of series, it is often difficult to find that form,  especially if for the coefficients you 
desire there is a need for indeterminates to be left, as advised by the conditions of the 
problem. Newton sought certain particular series by the extractions of roots from affected 
equation, and he elaborates on the method, of finding the forms of series of this kind, by 
arranging the terms in parallelograms. We explain this method in the following 
proposition (made easier to understand in this way). 
 
 

PROP. IX. PROB. VI. 
 

For a given fluxional equation involving only two fluents z and x and their fluxions, 
and for which z flows uniformly with fluxion 1; it is required to find the forms of the 
series by which it is possible to express the value of x in terms of the increase in powers 
of z.   
 The form of the general series sought is .&CBA 2 czzz +++ ++ ηϑηϑϑ , and in a given 
special case the degrees of the indices ηϑ &  are to be determined. The series should be of 
such a kind that, with all the terms of the proposed equation converted into [associated] 
series, then with the values of x and its fluxions substituted for in terms of this series and 
with its fluxions in turn expressed by series,  it should come about that all the terms of the 
series can be disposed of between each other in the following manner :  for, by 
comparison of the terms of the same degree z , the coefficients A, B, C, D, &c  can be 
determined, either all of them, or some number of them. [p. 29] In order to do this, there 
are two requirements.  In the first place, it is necessary that the indices of the powers of z, 
in the series, that have arisen by substitution from the terms of the proposed equation, 
should all lie in the same series of an arithmetical progression; for if there are always 
solitary terms present, then either nothing can be determined from them, or all the 
coefficients are made zero.  In the second place, it is also required,  for a series arising in 
this way, that the indices of at least two of the first terms should be equal to each other, 
so that the first coefficient A can be determined [from a simple equation independent of 
the other coefficients] : for the coefficient A cannot be given by a solitary term at the start 
of the equation,  for a comparison of the terms cannot be set up in order, or perhaps some 
other quantity is given in the equation from which A is equal to zero, by which it can be 
agreed that the changed order of the series can be found.   
 From these premises, if a general term of some proposed equation is given,  along with 

a separate [numerical] coefficient, by .& cxxxxz δγβαμ ••••••

, then the first term of the 
series arising from this term, (also supposed to have a separate numerical coefficient) will 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 42 
Part 1B. Translated with Notes by Ian Bruce. 

be of the form .&32]&[ ccz −−−−×+++++ δγβϑδγβαμ , and if π is written in general for the index of 
this first term, then this series solution with separate numerical coefficients has the form 

.&.......................... 32 czzzz ηπηπηππ +++ , thus as all the members of the series originate from 
terms of the equation raised to the power of z to the π. [i. e. πz is a common factor.]  This 
is easily understood from a little attention to the formation of the fluxions of the 
series .&CBA 2 czzz +++ ++ ηϑηϑϑ , and to the generation of the series from the terms of the 
proposed equation by the multiplications of the fluxions of this kind in turn. Hence, as 
now has been said,  all the indices π fall in the same series in arithmetical progression, 
with a common difference η, and at least two values of indices π at the start of the 
transformed equation should be equal to each other.  For which either everything is the 
smallest if η is positive, or everything is greatest if η is negative. Hence, by running 
through all the terms of the proposed equation, the number π is found for the individual 
terms,  .&32]&[ cc −−−−×+++++ δγβϑδγβαμ  [p. 30] (for .&c++++ δγβα  I write 

y, & for c&32 −−−− δγβμ , I write v, ) or .vy +ϑ  Then ,vy +ϑ & ,
\\

vy +ϑ  are two 
numbers of this kind.  
[Note that y is the sum of all the indices of x and of all its derivatives in a given term of 
the equation, while v is the sum of the indices of z and all its derivatives for the same 
term in the series expansion, while ϑ is the constant index in the original expansion. 
Thus, each term gives rise to a number, and two equal numbers corresponds to two terms 
with the same index, which can ϑ can then be found. ] 
Then if these two numbers [i.e. equations formed from the indices of different terms at 
the start of the expansion] can be equated, and henceϑ  determined, then the vy +ϑ  
values of all the numbers arise from that correctly determined valueϑ , largest or 

smallest. Moreover, this result follows from the 
following artifice.   
 Draw two right lines AB and AC of indefinite 
length, and (with some line taken of unit length) 
on AB (to the right if y is positive, but to the left if  
y is negative) take AD = y, and by drawing DE 
parallel to AC, in that (again if v is positive, or  
otherwise if contrary) take DE = v, and the 
number vy +ϑ is found at the point E. [i. e. the co-
ordinates y and v are plotted for a given term in 
the series, and the gradient found.] With all the 

numbers vy +ϑ  placed at points in this way, the outer [i. e. the largest or smallest of the 
indices] of these shall be the two points E & G, thus in order that all the remaining points 
lie on the same part of the line EG. Then two numbers equated between the points E and 
G determine the value of the index ϑ . For GF is drawn parallel to CA  and crosses AB at 
F, and M is a different point at which another number π is found, and ML is drawn 
parallel to CA and crossing AB in L ; GE crossing AC at I, and MO is drawn parallel to 
this line crossing AC in O ; GH and MN are drawn parallel to AB and crossing DE and 
AC in H and N. Then the numbers π found at the points E, G, and M are 

y v 
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,LMAL,FGAF,DEAD +×+×+× ϑϑϑ (from the construction). Whereby if the numbers  
at E and G are made equal, then ADAF

FGDE
−
−=ϑ , that is HG

HE=ϑ , or (on account of the similar 

triangles MN
NO)ONMEHG, . [p. 31] Hence now the number LMAL +×ϑ at the point M is 

LMAL MN
NO +× , that is AO;  and in the same way the equal numbers at E and G make [the 

same number] AI. Thus if the points E and G are always the outer points, in order that the 
point I thus falls either below or above all the points O, then AI will be – that is the 
number π at E or at G – less or greater by some other number AO as you  please from 
some other point M. Hence by the position of the point I with respect to the points O, the 
sign of π is determined; certainly it is positive when I lies below O, and negative if 
contrary to this. And hence it is easily agreed that η is the greatest of the common 
divisors of AI and of all the AO; for all the other π values do not lie in the same series of 
arithmetic proportionality, as has now been said should be the case.  
 Hence in this manner with all the numbers π in the plane accounted for, if the rule is 
applied to the two outer points E and G, the indexϑ is given, and thus, the sign of the 
index η . Then η itself is found by taking the greatest common divisor of all the numbers 
π arising from the values of ϑ  now found. Thus the form of the series sought will be 
given.  Q.E.I. Moreover, the sign of ϑ  is positive when GE subtends the angle CAB, and 
negative when it subtends the supplement of this angle.   
 Let an example of this procedure be given for the equation   .01 2

3
=−−+

•••

xxxzzx  
[Recall that .&cy ++++= δγβα  and cv &32 −−−−= δγβμ .]   
By running through the terms of this equation,  in the first term 1,  .&0 c===== γβαμ  

Hence the first number π (or vy +ϑ ) is 0. In the second term ax, the indices are 

.&0;1 c===== γβαμ ; hence the second number π is .1+ϑ  In the third term 
•

xxz 2
3

, the 
indices are .&0;1;2

3 c====== δγβαμ , thus the third π is 2
32 +ϑ . And then in the final 

term 
••

x , they are .&0;1;0 c====== δγβαμ , and hence the final π is .2−ϑ  [p. 32] 
 

 And thus with AB and AC drawn, the position of 
the first point A, or of the first π is 0. Take the  
abscissa AD = 1, and the ordinate parallel to AC  is 
DE = 1; E is the place of the second π, or .1+ϑ  
Take the abscissa AF = 2, and the ordinate FG = 2

1 , 
and the position of the third π is G, or .2 2

1+ϑ  Then 
take AD = 1, and with the ordinate DH = - 2, and H 
is the position of the third number .2−ϑ    
 Now with straight lines drawn through all the 
outer points, all the points of the trapezium  
AHGEA are included [each corresponding to the 
index of a term in the differential or fluxional 
equation, which are then made equal in turn to 
determine particular values of ϑ , and from the other 
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indices the common ratio can be deduced for the arithmetical progression]. From the 
equations between the numbers 0 & 2−ϑ at the ends of the line AH, 2=ϑ  is given, and 
all the [possible] numbers π become [for the other points] 0, 
0 ),2(&),1(3),02( 2

1
2
9 +=+==−= ϑϑϑ of which the two smallest are equal to zero, and the 

greatest common divisor is 2
3  ; whereby in this case, 2

3=η  .  
 For the equal numbers taken 2

12&2 +− ϑϑ in the ends of the length  HG, gives 

2
5−=ϑ , and all the numbers π become ;0,,, 2

3
2
9

2
9 −−− of which the two smallest equal ones 

are 2
9− , and the greatest common divisor is 2

3− ; whereby in this case, 2
3=η . 

 If 1&2 2
1 ++ ϑϑ are made equal to each other, then 2

1=ϑ , and all the numbers are  

;,0,, 2
3

2
3

2
3 −  of which the greatest equal numbers are ,2

3 and the common divisor is 

;2
3 whereby in this case .2

3−=η  

 Hence if 01=+ϑ , then 1−=ϑ , and all the numbers are ,3,,0,0 2
3 −− of which there are 

two equal maximum numbers 0, and the greatest common divisor is ;2
3 whereby in this 

case  .2
3−=η [p. 33] 

Therefore the series for x can become :   

.&cCBA 4.or       

.&cCBA 3.or       

.&cCBA 2.or       

.&cCBA  1.either 

41

1

1

52

2
5

2
5

2
1

2
1

2
5

2
7

+++=

+++=

+++=

+++=

−−−

−−

−−

zzzx

zzzx

zzzx

zzzx

 

In the third case the analysis is done as set out below [to determine the numerical 
coefficients]. [p. 34] 
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Proposed 
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Assumed 
equation. 
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3. 
&c. 

0AA 2
2
1 =−  Hence A = 2 or A = 0. 

,01ABB 2
1 =++ .1B      ;B 2

1 −=−=  

-1.C  ,-C   ,0ABAC2C 20
3

4
12 ===+++  

&c.                       &c.               &c 
.&c2 2

5
2
1

20
31

2
1 +−−= −− zzzx  

V
al

ue
s o

f t
he

 
ro

ot
s x

. 

1. 
 
 
2. .&c2

51 +−−= −− zzx  

[p. 35] 
 For this equation, as you see, there are two series that express the value of x, produced 
by two values of A in the equation 0AA 2

2
1 =− , and of these series the second is of the 

same form as in the final case; whereby through one application, both series are found, so 
the fourth case as well as the second. Truly indeed by the analysis set up for the second 
case in the same way also the series is found for the first case. Hence, by only two 
analysis, all the series are found. But here, this shall only be the case when η is the same 
in both series; and when one root of A in the first equation found for comparison of the 
terms is zero. Moreover, there can be more roots of A in that equation, for anyone with 
talent, in a proposed equation; and for as many roots as there are for A, as many series 
should be given by the individual analysis.  
 In this analysis it is to be observed in the second place, that all the coefficients A, B, 
C, &c. are completely determined by the comparison of the terms. Whereby series found 
in this way are all particular solutions, and are unable to be adapted to the conditions of a 
problem, on account of the lack of undetermined coefficients.   
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SCHOLIUM. 
 Sometimes when the index θ is a positive whole number, the first terms in the series 
expressing the fluxions of x vanish : for the coefficients of these first terms are produced 
by the continued multiplication of A in the numbers θ, θ – 1, θ – 2, &c. In this case often 
it shall be that as the term vanishes, that should be one of the terms in the beginning of 
the transformation of the equation, by which it is agreed finally that the series is 
impossible. But if the terms disappear in the start of the fluxions, and only two terms 
remain at the start of the transformed equation, the series still will be given ; which here 
is for the rest of the outstanding terms, since in that there will be some undetermined 
coefficients, by which it will be possible to apply some conditions to the problem.  
Indeed by a similar vanishing of the terms in producing the fluxions, there are sometimes 
other series expressing the root[p. 36], the smallest of which can be found by this 
proposition.  
 Since concerning  the equation for the particular roots that we now discuss,  it is 
permitted also to observe along the way; truly that if v is a quantity from given and from 
some variables composed in some way, and the equation can be reduced to such a form,  
in order that all the term involves either v itself, or some increment, the equation for the 
particular solution of the problem will be v = 0. If in the equation transformed in this way 
v itself is involved, the equation v = 0 contains no undetermined coefficient; and thus, 
this solution will be especially particular ; specially if v only involves integral amounts.  
If the equation transformed does not  change v, but 

•

v , the equation 0=v  contains one 
undetermined coefficient. If the same equation neither contains v nor 

•

v , but 
••

v , the 
equation v = 0 contains two undetermined coefficients : and in the kind where more of the 
missing terms .,&,, cvvv

•••

fall short in the transformed equation, the solution of the problem 
by the equation v = 0 will therefore be more general.  
 Concerning these when  v only involves integrals,  it is advantageous to find the most 
general solution to the problem, through v and its increments the remaining variables can 
be removed, and then by seeking the root v by some method is now drawn. Thus in the 

equation ,02 =−−
•

zxx z for 2
1−x I write v,  this gives ,0=−

•

zvv that is .02 =
••

−
v

zvzv  But the 

fluent of 2v
zvzv

••
− is v

x : whereby for any invariable quantity I write that A will be A=v
z  , 

that is A.
2
1 =−x

z  

[p. 37] 
 

LEMMA II. 
 

If x is given from some given z by some analytical equation, of some certain number of  
dimensions; also some increment of x, 

n
x  , is given from z by an equation of the same 

number of dimensions.  
 For whatever number the dimensions of x are in the proposed equation, there is the 
same number of roots (certainly also impossible to be counted.). But the individual roots 
have their own increments. Whereby there are just as many roots of the increments of any  
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n
x  as there are roots of the whole quantity x itself; and thus there is given in each case an 

equation of the same dimensions.  Q.E.D.   
 
 

COROLLARY. 
 Hence with the proposed equation defining the relation of any individual increments  

n
x  in terms of the known variable x, if it is possible to give the whole variable x, from the 

given
•
z by an equation with a finite number of terms, and it is given by an equation in 

which x increases through just as many dimensions as 
n
x  increases in the proposed 

equation.  
PROP. X. PROB. VII. 

 
From a given equation of one dimension, by which the value of any individual increment  

n
x  is defined; to find the value of the integral quantity x itself in a number of finite terms, 

if it is possible to happen.   
 If it is possible for the relation of x to be given to known quantities in a finite number 
of terms, to be given by an equation of one dimension (by the Corte Lem.2.) The solution 
thus sought is by trying to find a quantity to which

n
x is equal, from which it is agreed that 

it can be reduced to the form of increments of some known quantity of the same order. 
For if that is the case, the root x is given in a finite number of terms, making  that equal to 
the integrated or whole-variable counterpart of the expression, in a finite number of 
terms.  But if this does not happen, then the problem is not solvable.   
 With fluxions so many fluents can be given in a finite number of terms found by the 
Newtonian Quadrature of Curves. And sometimes expressions of this kind can readily be 
found by the two following Propositions.  
 

PROP. XI.  THEOR. IV. 
 

The fluent of sr
•

can be expressed in terms of either the series  
 
        sr

•

   .&
//////

csrsrsrrs +−+−=
••••••

,or   sr
•

 .&
//////

csrsrsr −+−=
••••••

 
    
  
 The theorem is investigated in the following way. Let the fluent sought be ,prs + that 
is, it shall be given by :   
  sr

•

.prs +=  Then by taking the fluxions, it becomes 
••••

++= psrsrsr , i. e. 
••

−= srp :  
 
and thus :  
 
 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 48 
Part 1B. Translated with Notes by Ian Bruce. 

 
  

•

−= srp  , and hence  
••

−= srsrsr                . Then the following expression becomes :  
 

;  
/

qsrsr +=
••

and by taking fluxions : i. e. ;  
/ •••••

++= qsrsrsr  [p.39] i. e. ;  
/ •••

−= srq and hence 
 
 

;     
/ ••

−= srq  hence     sr
•

 .   
// •••

+−= srsrrs   And by repeating these operations in the same 
way, it is found that   
 

sr
•

  =−+−=
••••••

        
/////

srsrsrrs
••
••

••••••

+−+− srsrsrsrrs
/////////

    + &c. 
 
[The theorem follows by repeated integration by parts, and closely resembles a theorem 
of Johan. Bernoulli. It is assumed that this procedure can be carried out indefinitely in 
general. Thus, in the first place, in modern notation, the integration by parts of the 
integral ;]/[]/[)()( ∫∫∫ −== dtdtdsrsrdtdtdrstdrts the final term is now integrated by parts  
in the same manner : ∫ ∫∫∫ −= dtdtsddttrdtrdtdsdtdtdsr ]/[')'('']/[]/[ 22 ; and the process is 
continued to generate further terms at will, and the terms can be added to give the series 
shown.  ] 
 When this theorem is to be applied in a particular case,  some other fluxion

•

w  can be 
selected, and in the computation of the fluents .,&,, crrr

••••••

or .,&,, csss
••••••

the fluent is 

compared first with some other, that is multiplied by
•

w , and the fluent of the product is to 
be taken for the adjoining fluent sought. In the same way, in the computation of the 
fluxions .,&,, crrr

••••••

or .,&,, csss
••••••

 the quotient with another fluxion is taken, that makes use 

of 
•

w , and similarly for the fluxion of the quotient, by making use of 
•

w  taken for the 
nearby fluxion sought.  Moreover this extra fluxion 

•

w  is thus to be taken in order that the 
terms can be as simple as possible. [Thus, integration by parts can often be avoided by 
the appropriate choice of an integrating factor.]    
 For the series found by this theorem is adapted in two ways [for two forms of the 
series are given] for the conditions of the problem, that is, for a given single value of the 
fluent sought there corresponds a known value of the variable.  Here in the first place all 
the fluents .,&,,

///

crrr or .,&,,
///

csss are to be taken as pure variables, without the addition of 
any constant terms, and then a constant [of integration] can be added on later to the series 
found according to that condition to be determined. Likewise it follows for all the fluents 
produced by the first method, thus they are to be corrected by the addition of constant 
terms, [p. 40] in order that everything vanishes together, (and thus the whole series 
vanishes,) when  the variable is given some certain value [as one expects from a definite 
integral].  
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 In addition, when some term .,&,, csss
••••••

 is equal to zero, the first series comes to an end 
abruptly, and this gives the fluent a finite number of terms. And likewise in the other 
series, when some term of .,&,, crrr

••••••

disappears. 
 [The interested reader can refer to L. Feigenbaum’s article : ‘Brook Taylor and the 
Method of Increments, Arch. Hist. Exact Sci. 34 (1-2) (1985), 1-140’ for a more in-depth 
account of this proposition, which has at least a resemblance to a theorem published by 
Jonan. Bernoulli in 1695 in the Acta. Erud., and which led to a charge of plagiarism by 
one of Bernoulli’s students, which according to Feigenbaum was not truly justified, 
though Taylor should have expressed his indebtedness to Bernoulli for the conception of 
his more general and perhaps more useful proposition, generalised even more in the 
following proposition. The following examples show how the proposition works.] 

 
EXAMPLE I. 

 
 Let the fluxional equation be given : 

••

−= zzxx ,  
[in which we recognise the circle 222 azx =+ ]  
and it is proposed to find the fluent of xz

•

.  
[i. e. the integral in the modem sense, or the quantity of which the fluxion is xz

•

]  
In this case, 

•

z is taken for
•

r , and x is taken for s, and most conveniently we can 

make )(
•••

−== xxzzw . With this agreed upon,  
 

 r = z, 3

3/
      zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

, ,      3.5

5/// zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

 ,      3.5.7

7///// zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

 and thus henceforth;  

[Use is made of continued integration by parts in the formulas for this proposition, 
however, by a careful choice of the independent variable, this can sometimes be reduced  
to a simple integration, essentially by a change of variable. Thus, 

3

3/
. . zzdzzdzzrdwr dz

dw ∫∫ ∫ ==== , etc.] 
likewise  
 

zw
zr 1      ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
•

, 3
1      

zw
rr −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
••

, 5
3      
zw

rr ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

••
•••

, and thus henceforth.  

[In this case, ;1   zdw
dz

w
zr === •

•
•

where the increments   and dzzdww ==
••

 form a differential 

ratio. Subsequently, ;1.
)(

 
)(

  3

11

zdw
dz

dz
d

dw
d

w
rr zz −==== •

•
••

etc. ] 

 
 
Also s = x, 
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xw
ss 1      −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•

, 3
1      

xw
ss −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
••

, 5
3      

xw
ss −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

••
•••

, and thus henceforth  

[we can consider s as starting from an infinitesimal value δs; hence 

xxx
x

dw
dss 1      −⎟

⎠
⎞⎜

⎝
⎛ =

−
==

•

δ
δ , etc.; and 3

3/
- xx.xdxs −== ∫ , etc.]; likewise 

 
 
 

  3

3/
      xsws −⎟
⎠
⎞⎜

⎝
⎛ ==

•

, 3.5

5///
      xsws ⎟
⎠
⎞

⎜
⎝
⎛ ==

•

, 3.5.7

7/////
      xsws −⎟
⎠
⎞

⎜
⎝
⎛ ==

•

, and thus henceforth. Hence, from 

the first series .&
//////

csrsrsrrs +−+−
••••••

 :    .&c    33.5.7

7

33.5

5

3

3
−+−+=

•

x
z

x
z

x
zzxxz And by the other 

series .&
//////

csrsrsr −+−
••••••

, it is  .&c    53.5.7

7

3.5

5

3

3
+−+−=

•

z
x

z
x

z
xxz  

[p. 41] 
 In these series the fluents .,&,,

///

crrr and likewise .,&,,
///

csss are taken as independent 
variables; whereby the series are fitted to the condition of the problem by the addition of 
some constant.  Accordingly for the first of these series the area of a circle is shown, 
adjacent to the sine x and to the cosine z, and by the other series the area of the 
complement of the square is shown with the negative sign : Which thus is that area lying  
next to the abscissa z [and with x] produced beyond the ordinate.  [Thus, the first integral 

can be the area of some segment of the circle 222 azx =+ , given by ∫
b

a
xdz and expressed 

by the given infinite series, where x = asinθ, z = acosθ, etc.] 
 

EXAMPLE II. 
 

 Let nbzax += , and the fluent of 11 −−
•

λθ xzz is to be found. In this case, if we make  
1−

••

= θzzr  and 1−= λxs  then the most convenient choice [for the independent variable]will 
be 1−

•••

== nzznbxw . Hence by taking pure fluents, the first series will be found to be   
 
 

.θ

θzr =  
 

                                               .      .)(

/
rnbznbzrwr n

n

n

n

++

+
=⎟

⎠
⎞⎜

⎝
⎛ ==

•

θθθ

ϑ
 

 

                                            .      
/

2))(2(

222///
rnbzzbnrwr n

n

nn

n

+++

+
=⎟

⎠
⎞

⎜
⎝
⎛ ==

•

θθθθ

θ
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                                           .      
//

3))(2)(3(

333/////
rnbzzbnrwr n

n

nnn

n

++++

+
=⎟

⎠
⎞

⎜
⎝
⎛ ==

•

θθθθθ

θ
 and thus henceforth. 

 
Likewise .,&,, crrr

••••••

 in the same manner as in the previous example . The 

fluents .,&,,
///

csss can be found in the following way.  

  
/
s is the fluent of sw

•

, i. e. of .1−
•

λxx  The pure fluent of this is λ

λx , whereby in order 

that 
/
s vanishes when x = d, then by taking away λ

λd  the fluent becomes 

λ

λ

λ

λ dxs −=
/

, 

,1).1(

1

.1)1(

1//

+

+

+

+
+−= λ

λ

λ

λ

λλ

λ dxdxs  

)2.(1.2

2

)1(1.1

1

.1.2

2

)1)(2(

2///

+

+

+

+

++

+
−+−= λ

λ

λ

λ

λ

λ

λλλ

λ dxdxdxs  and thus henceforth. 
 The other ratio for the formation of the rest of the nearby terms can now indeed be 
agreed upon. 
    
 

SCHOLIUM. 
 

1. A proposed fluxion can be resolved into the factors .& sr
•

 in various ways and many 

different series can arise. Thus the fluxion now proposed : 1
_________

1 | −− +×
•

λθ nbzazz , can also be 

written as 1
_________

1 | −−−−+ +×
•

λλθ nnn azbzz . Where, if for
••

wsr &, , are taken 1
_________

1 |, −−−−+ +
•

λλθ nnn azbzz , 

& 1−−
•

− nzzna , and x is written for nbza + , the same fluent is expressed by the following 
series :   

  11 −−
•

λθ xzz     &c.C.B.A. 4
3

3
2

2

1
++++= −+

−
−+

−
−+
−

−+

−

x
a

nn
nn

x
a

nn
nn

x
a

nn
nn

nn
xz

λθ
λ

λθ
λ

λθ
λ

λθ

λθ
 

 

  11 −−
•

λθ xzz     &c.C.B.A. 3
2

2 ++++= +
++

+
++

+
+

a
x

nn
nn

a
x

nn
nn

a
x

nn
n

na
xz

λ
λθ

λ
λθ

λ
λθ

λ

λθ
 

 
 Where the letters A, B, C, &c. are written for all the terms with their signs in the 
respective series.  
 
2. In the investigation of the Theorem it is found that sr

•

.     
/ •

−= srrs   Hence if for sr &
•

is 
taken   
 

λθ |&
_________

nbzazz +
•

, and for nbzax += is written z, then       1
11

1 −+
++

•
+•

−= λθ
θ
λ

θ
λθ λθ xzxzz nzbnxz  ,  that 

is, 
       11

11
11 1 −+

++
−+

•+•

−= λθ
θ
λ

θ
λθ λθ xzzxzz bnxz .  
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Thus for some given fluent 11 −+

•
λθ xzz , the fluent of  1−+

•
λθ xzz n is also given. Hence if for 

some n successive whole numbers, either positive or negative, the fluent of one is given  
 nn xzz −+

•
λθ , then the fluents of all  nn xzz −+

•
λθ are also given.  

 

3. The same flux can also be written thus :|
_________

λλθ nn azbzz −+ +×
•

 where if now nzz λθ +
•

 is taken 

for r, and λ|
_________

nazb −+ is taken for s :  

λθ xzz
•

1
_________

   11

1
||

_________
−−−+

++++

−
+

−+

+×+×=
•

λλθ
λθ
λ

λθ

λλθ
nnn

n
na

n

n
azb

n
z azbzz   , that is [p. 46] 

 
 

λθ xzz
•

   1
   11

1
−

++++

+ •

+×= λθ
λθ
λ

λθ

λθ
xzzx

n
na

n
z . Thus with the flux of λθ xzz

•

, also the flux of 1−
•

λθ xzz  
is given, and vice versa. Thus with the same index θ remaining, if it is continued to be 
made smaller , or to be increased by unit amounts of λ, for the given fluent of one λθ xzz

•

, 
the fluents of all λθ xzz

•

are given. And by these two cases taken together, if some 
successive whole numbers are written by σ and τ, either positive or negative, with θ and λ 

remaining, then if the fluent of one of these fluxions τλσθ ++ +×
•

|
_________

nn bzazz is given, also the 
fluents of all the fluxions come about in the same way. And in the same way it is 
permitted to go to comparison of the fluents, when the quantity within the root brackets is 
of the third, fourth, or of a greater nomination. But then these are more elegantly 
produced by the most illustrious Newton in his Quadratura Curvarum.  
 

 
PROP. XII.  THEOR. V. 

 

Let n be the index of the order of the fluent srQ
•

=
\

, for example, if n = 2, then 
//
QQ

n
= , if n = 0, then ,

0
QQQ

n
== if  n = -1, then ,

1 •

==
−

QQQ
n

and thus for the remaining 

quantities; then .&....
//

///
/

/.

\

321211 csrsrsrsrQ
n

nn
n

n
n

n
n

n
n n

+−+−=
•
••

•••

 When n = 1, and thus henceforth 

(from our notation) 
•

−= nnn
\

; 
••

+=+= nnnnnn
////

  ; . [p. 47] 

[This is a generalisation of the previous proposition, where the argument Q is integrated n 
times for positive indices n. The term

/

r means the function r has been integrated once, 
/////

, rr , etc. that it has been integrated twice and three times. On the other hand, 
///

 and , ,
nn

n

rrr indicate that the function r has been integrated n, n + 1, and n + 2 times; while 
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n

r
\

indicates that r has been integrated n – 1 times. Thus, the rising and falling slopes of the 
small lines indicate an increase of decrease in an index or number of some kind.]  
 
 When n = 1, the theorem is the same as the preceding one; and hence the form of the 
series is found. For by investigation thus, the coefficients are found to be :  

,,,,1 321211
////
nn

n
n

nn ××× &c. [i. e. .etc,,,,1 3
2

2
1

12
1

11
+++ ××× nnnnnn  are all unity.] 

 Let the coefficients to be found be .,&,,, cwyvx and by their increments .,&,,, cwyvx
••••

 to 

be increased to .,&,,,
////

cwyvx Thus if .&.
///

\

csrwsrysrvsrxQ
nnnnn
++++=

•
••

•••

, then the next 

integration is : .&.
///

/

//

/

/

//

/

csrwsrysrvsrxQ
nnnnn

++++=
•
••

•••

  Now if the coefficients .,&,,, cwyvx are of 

the desired value, maintaining the same values .,&,,,
////

cwyvx , and if the fluxion of the new 

series is taken to reduce the series to the original series. Then by taking the fluxions first 
in r, then in s, [and adding as in the total derivative] it follows that 

.&)()().(
///

\

///////
csrywsrvysrxvsrxQ

nn
nnn

+++++++=
•
••

•••

 Hence by comparing the terms of this series 

with the related terms of the first series, then xxxx =+=
•
)(

/
; and thus ; 

•
x  = 0. Hence  x is 

a constant. But when 
•
x  = 0,  x = 1; whereby [the coefficient in the first term of the 

expansion ] x = 1 always. By comparing the second terms in the two series, it follows that 
;)1(

/
vvvxv =++=+

•
and hence ;)1(

••
−=−= nv and hence .1 av n += −   

[p. 48.] But when  n = 0, v = 0; whereby a = 0 and 1
nv −= . By comparing the third terms,  

;)(
///

ynyyvy =−+=+
•

 
/
ny =

•
(=n + 1) and hence .21

/ by
n

n +=  But when n = 0, y = 0; hence b = 

0, and hence .21
/
n

ny =  In the same manner, ;.)( 21
//

/// ywwyw
nn

=++=+
•

and thus 21
///
nn

w−
•

, and 

hence 3
//

21
/

nnn
w −= . And hence by going on indefinitely, the remaining coefficients are 

found,  and all as are shown in the theorem. 
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EXAMPLE. 

 From this arrangement, the fluent )(| 111
_________

1 −−−−
••

=+×= λθλθ xzzbzazzQ n can be written in 
any form you please, following from example 2 of Prop. XI:  
 
either 1. 

.&.3.3

B.2.2A.1.
.......2..

//

//

/

/

\

\
\\

1

cCx
bzn

nn
nn

x
bzn

nn
nn

x
nbz

nn
nn

nnnn
xzbnQ

n

n
nxn

nnn

+
+
−

+
+
−+

+
−+

+++
=

−+

θ
λ

θ
λ

θ
λ

θθθθθ

λθ

 

 
or 2. 

.&
.3

.3

B
.2

.2A
.1

.
........2.1.

//

//

/

/

\

\

cC
bz

xn
nnn

n

bz

xn
nnn

n
bz
nx

nnn
n

nbn
xzQ

n

nn
nxn

+
+
−

+
+
−+

+
−+

+++
=

+−

λ
θ

λ
θ

λ
θ

λλλλ

λθ

 

 
or 3. [p. 49.] 

cx
an

nnnn
nn

x
na

nnnn
nn

nnnnnnnnn
xznaQ

xnnn

&B.2.2A.1.

........
|

/

/

\

\\
1

_____

++
−+−

−+
−+−

−

+
−+−+−+−+−

−=
−−

λθ
λ

λθ
λ

λλθλθλθ

λθ

 

 
or 4.  

ca
xn

nnn
nn

a
nx

nnn
n

an
zzQ xnxnnn

&B2.

A1......2.1.

/

/

\

\\\

+
+
++

+
++

+++
−=

−++

λ
λθ

λ
λθ

λλλλ

λθλ

 

 
Obviously in the first two series, for

•

w take 1−
•

nzznb , and by making QwQ
•

=  
/

,  
 
 

///

QwQ
•

= , and thus henceforth; and in the two final forms of the series for 
•

w  take 
1−−

•

− nzzna   
 
and similarly by making QwQ

•

=  
/

, 
///

QwQ
•

= , and thus henceforth. 
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Moreover by these series both the fluxions and the fluents of Q are shown.  Thus if 
 n = -1, the series gives the value 

/

Q , if n = -2, the series gives the value 
//

Q , and so on. 
 But in that case, where the sign of the number n is changed, the coefficient of the first 
term is found with certain difficulty. Therefore an example of the method is here set out 
for finding the first term of the series for the value 

//

Q . The coefficient of this term,  taken 

as 
nnnn

nn
bn \

.......2..

1  is ,
\\

+++ θθθθθ
. Moreover, the greatest divisor of this coefficient should be  

[p. 50.] nn
•

+θ .  Whereby as the coefficient is to be found when 
\
n  is a negative number, 

in place of 
nnnn

\
.......2..

1  
+++ θθθθθ

I write cnnnnnn
nnnn

.&2,,..2.3.4....
.2.3.4...  θθθθθθθθθ
θθθθ

++−−−−
−−−−  . Then by rejecting all the 

divisors after nn
\

+θ , when 1
\
=n , the  coefficient is nnnetc

nnetc
+−−

−−
θθθθ

θθ
...2.

.2.  , that is ;  .
1

n+θθ when 

0
\
=n , the coefficient is θθθ

θθ
..2.

.2.  nnetc
nnetc

−−
−− , that is . 1

θ And by the same argument, when 1
\

−=n , 

the coefficient is  nnetc
nnetc

−−
−−

θθ
θθ
.2.
.2.  , that is 1; when 2

\
−=n , the coefficient is netc

nnetc
2.
.2.  −
−−

θ
θθ , that 

is n−θ  ; when 3
\

−=n , the coefficient is  
______________

.2  nn −− θθ ; and hence forth. Thus, now if m 
is the index of the fluxion sought of Q, that is m is written for  – n, 

______
______________

_______
.......  

\\\

nnmnmmn −−−− θθθθ  is the numerical coefficient of the terms of the first series 
sought.  

SCHOLIUM. 
 Now it is permitted to go on to find the integral of an infinite number of terms, the 
particular increments of which are given by equations of higher gradients. But since in 
these cases the solution can only be found from exceedingly large constructions, I have 
thought that it is not worthwhile to expand further on these matters of no future use.  
Quadratic equations are reduced to simple equations by the extraction of roots, and cubic 
equations are resolved by Cardans’s rule, and equations of many dimensions also can be 
resolved by the removal of intermediate terms. Whereby if you have a mind to become 
involved in a task of great labour, with all the intermediate terms removed, then the 
solution can be found from the preceding propositions.  Moreover the following 
observation can only lessen so much labour a little, truly that the value of the increment 
in an equation with a given affection, the coefficient of the following term is similar to  
the increment of coefficient of following term in the equation defining the value of the 
integral itself. Whereby there is a risk involved with the coefficient of the following term, 
if this is not resolved into an integral with a finite number of terms, and the attempt to 
finding a solution in a finite number of terms is frustrated in the remainder of the 
equation.   
 
 With the principles of the method of increments and the method of fluxions briefly 
explained, it remains in the other part of this little book that we demonstrate with some 
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examples how much use can be made of these methods in the solution of certain more 
difficult problems 
 

.  
 PROP. VII. THEOR. III. 

 
 Sint z & x quantitates duae variables, quarum z uniformiter augetur per data 
incrementa 

•
z , & sit ,,,

\\\\

vzvvzvvzn =−=−=
••

& sic porro. Tum dico quod quo tempore z 

cresendo sit z + v, x item crescendo fiet .c&3

\\\

2

\

3.2.12.11 ++++
•

•••
•

••
•

• z
vvv

z
vv

z
v xxxx    

[p. 22] 
DEMONSTRATIO:  

 
  
 x 

•
x  

••
x  

•••
x  

••••
x  &c. 

•
+ xx  

•••
+ xx  

•••••
+ xx  

•••••••
+ xx  &c.  

•••
++ xxx 2  

••••••
++ xxx 2  

•••••••••
++ xxx 2  &c.   

••••••
+++ xxxx 33  

••••••••••
+++ xxxx 33  &c.    

••••••••••
++++ xxxxx 464  &c.     

&c.      
Valores successivi ipsius per additionem continuam collecti sunt x, 

•
+ xx , 

•••
++ xxx 2 , 

••••••
+++ xxxx 33 , &c. ut patet per operationem in tabula annexa expressam. Sed in his 

valoribus x coefficientes numerales terminorum .c&,,,
•••
xxx eodem modo formantur, ac 

coefficientes terminorum correspondentium in dignitate binomii. Et (per Theorema 
Newtonianum) si dignitatis index sit n, coefficientes erunt .c&,,,,1 3

2
2

1
12

1
11

−−− ××× nnnnnn  
Ergo quo tempore z crescendo sit ,

•
+ znz fiet x aequalis seriei 

.c&3
2

2
1

12
1

11 +××+×++
••••••

−−− xxxx nnnnnn  
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 Sed sunt .c&,,, 33

2

3
2

222
1

1

\\\

••

••

••

••

••

• ⎟
⎠
⎞

⎜
⎝
⎛ ==⎟

⎠
⎞

⎜
⎝
⎛ ==⎟

⎠
⎞

⎜
⎝
⎛ ==

−
−

−
−

z
v

z

zznn
z

v
z

zznn
z
v

z

znn  [p. 23] Proinde quo 

tempore z crescendo sit z + v, eadem tempore x crescendo fiet 

.c&3

\\\

2

\

3.2.12.11 ++++
•

•••
•

••
•

• z
vvv

z
vv

z
v xxxx  

COROLL. I. 
Et ipsis .c&,,,,

•••••••
xxxz iisdem manentibus, mutato signo ipsius v, quo tempore z 

descrescendo sit z – v, eodem tempore x decrescendo fiet .c&3

\\\

2

\

3.2.12.11 −−−−
•

•••
•

••
•

• z
vvv

z
vv

z
v xxxx  

vel juxta notationem nostram .c&3
///

2
/

3.2.12.11 +−+−
•

•••
•

••
•

• z

vvv

z

vv

z
v xxxx ipsis .c,&,

\\\

vv conversis in 

.c&,,
///
vv −−  

 
 

COROLL. II. 
Si pro Incrementis evanescentibus scribantur fluxiones ipsis proportionales, factis jam 

omnis .c&,,,,,
///

\\\

vvvvv aequalibus quo tempore z uniformiter fluendo sit z + v fiet x, 

.c&3

3

2

2

3.2.12.11
++++

•

•••

•

••

•

•

z

v

z

v

z

v xxxx vel mutatio signo ipsius v, quo tempore z descrescendo sit z 

– v, x descrescendo fiet .c&3

3

2

2

3.2.12.11
+−+−

•

•••

•

••

•

•

z

v

z

v

z

v xxxx  

[p. 24] 
 

PROP. VIII. PROB. V. 
 

Data Aequatione praeter uniformiter crescentem z involvente quotvis incrementa 
alterius variabilis x; invenire valorem x ex dato z per seriem terminorum numero 
infinitam. 

Per Propositionem primam quare aequationis propositae incrementa omnia in 
infinitum. Tum si sit 

n
x  infimum incrementum ipsius x in aequatione proposita per has 

aequationes dubuntur omnia incrementa 
n
x  & inferiora expressa per incrementa ipsa 

n
x  

superiora. Sint .c&,,,,&,
••••••

cccca certi quidam valores correspondentes ipsorum 
.c&,,,,&,

••••••
xxxxz atque per easdem aequationes dabuntur omnes termini 

&,,
1+nn

cc sequentes expressi per terminos praecedentes ipsum .
n
c  Unde si pro z scribatur a 

+ v, dabitur x per .c&3

\\\

2

\

3.2.12.11 ++++=
•

•••
•

••
•

• z
vvv

z
vv

z
v ccccx (per Prop. 7.) Ubi terminorum 

coefficientes .c&,,,,
••••••

cccc quorum numerus est n, dabuntur per totidem conditiones 
Problematis.  
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SCHOLIUM. 
 

Ubi est x compositum aliquod ex dignitatibus integris affirmativis ipsius z, 
evanescentibus incrementibus inferioribus, post certum numerum terminorum series 
abrumpetur & fiet finita. Sit aequatio 01=+−

•
xzx & sit 1=

•
z . Tum capiendo incrementa, 

fiet .0=+
••••
xzx  [p. 25] 

Sed hoc fieri nequit nisi sit ;0=
••
x alias enim determinaretur z per aequationem  

z + 1= 0. Ergo si pro z scribatur a + v, & sint 
•
cc & ipsorum 

•
xx & valores quando v = 0, 

erit semper 
•

+= cvcx , hoc est, (pro 
•
c scripto ipsius valore per aequationem propositam 

invento) vcx a
c 1−+= , hoc est (pro v scripto ipsius valore  x - a) zx a

c 11 −+= . 
 In seriebus hoc modo prodeuntibus post aliquot terminos ex observata analogia 
plerumque possunt inveniri coefficientes sequentes absque ulteriori culculo. Et possunt 
nonnunquam series inventae comparari cum aliis seriebus cognitis, quae producuntur a 
cognitis expressionibus finitis : quare vice serierum substitutis istis expressionibus finitis, 
eo pacto dabuntur integrales in terminis numero finitis. Sit aequatio fluxionalis  
 

,02=−−+
••••••

xxxxnzx ubi pro 
•

z scribitur 1. Hinc sit nxz
xxx +

+
••

••

=
2

vel (pro z + nx scripto y). Et 
per calculum continuatu invenietur 

&,)34(,)23(,)2()2(
454

2

32
xnxxnxxnnx y

x
y
x

y
x

y
xx

•
•••

•
••

•••
•••

−=−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×−= + sic porro. Quare (pro a + 

nc scripto p) per hanc Prop. erit .c&4.3.2.1

4)3)(2(
3.2.1

3)2(
2

2
+++++=

••••••••• −−−
p

vccnn
p
vccnvcvccx hoc est 

.c&44
4

)23(
3

)2(
2
133

3
)2(

2
122

2
1

2

2
+×××+××+××++=

•••

•

••
• −−− vcvcvcvccx p

n
p
n

pp
n

p
n

pp
n

pp
n

cn

pc  Sed 

numeri n, 1, 2 – n, 3 – 2n, &c. producuntur per continuam subductionem numeri n – 1. 
Quare si sit p = n – 1, erit series vcvccvcvc n

n
p
n

p
n

pp
n n

n •
−

•••

−
− +−+=+×+× 1

33
3

)2(22
2
1 1)1(.& 1 . 

Pone itaque p = n – 1, [p. 26] hoc est fiat a = n – 1 – nc, atque dabitur x per aequationem 

finitam ;1)1(
_______________________

12

2)1( 1 vcvccvccx n
n

cn

n n
n •
−

•

•

••

−
− −−+×++=  ubi est 1

2

−
+
••

••

= n
ccc , atque v = z – n +1 + nc; 

atque incogniti c & 
•

c  determinandi sunt per duas conditiones Problematis. Porro in hac 
aequatione x & z subeunt vices ipsorum z & x in aequatione ,0=+++

•••••••

zxzxnxxxx  quam 
adduximus in Lem. 1. Eam vero in ordine ad inventionem hujus expressionis finitae 
(absque isthac transformatione quidem frustra quaesitae) transformavi per Propositionem 
tertiam. Cujus Propositionis usus quantus sit constat etiam ex hoc exemplo. Sed & fluente 
uniformiter z, ubi in aequatione proposita involuntur fluxiones secundae, tertiae, vel 
sequentes ipsius x, si per hanc Propositionem cupis invenire valorem ipsius z ex data x, 
erit aequatio eodem modo transformanda.  
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 Nonnunquam per alias transformationes inveniuntur expressiones finitae. Sit aequatio 
2223 )1(44

••

+=− xzxx  (quam etiam adduximus in Lem. 1.) Pono λθ yvx = , deinde 

substituto hoc valore x, & valore fluxionis 
•

x  inde resultante, quaerendo aequationis 
formam simplicissimam determino indices θ & λ, & valorem unius v vel y. 

Hinc ergo sit 11
____________

−−×+=
•• λθλϑ yvvyyvx , atque (per substitutionem) 

222
____________

2
______

22233 ||144 −−••

+×+=− λθλθλθ λϑ yvvyyvzyvyv . Pono λ = - 2 & sit 

2
____________

2 |vyyzyv
•

−=− ϑθ  , hoc est .21 22222 yvzvyyzvv +−+= ϑθ  Pono denique 1=ϑ , utque 

sit ,12 vz =+ϑ quo pacto aequatio divisa per v sit [p. 27] .22 •••

+−= yyvyzyyx Unde 

capiendo fluxiones sit ,222220
••••••••••••

++−−−= yyvyyvyzyyyzyyyy hoc est (pro 
•

v scripto 

ipsius valore 2z) .022 =+−
••••••

yyvyyz Hinc sit vel 0=
••

y , vel ,0=+−
•

yvzy invenietur vy =2 , 

adeoque 1)( 1 == −vyx ; quae est singularis quaedam solutio Problematis. Sed si fiat 0=
••

y , 

pro ipsorum z, y, & 
•

y valoribus concurrentibus scriptis 
•

aao &,, invenietur aaa −=
•

1 , 
adeoque erit zaaay −+= 1 (per hanc Propositionem) & inde 

22

2

)1(
1)(

zaa
zyvx
−+
+== λθ . 

 Quoties fieri potest ipsius z valor datus aequalis nihilo, nec eo pacto termini seriei 
redduntur infini, series prodibit in forma simpliciori ascfendens per dignitates ipsius z. Et 
in hoc casu potest assumi series in terminis generalibus exprimens valorem x; in qua 
coefficientes postea determinentur per comparationem terminorum, ad normam sequentis 
exempli.  
 Sit aequatio .02 =−−

•••

xzxx Pone .&EDCBA 432 czzzzx +++++=  Tum capiendo 
fluxiones sit .&E4D3C2B 33 czzzx ++++=

•

 atque .&E12D6C2 22 czzx +++=
••

 Quibus 
valoribus ipsorum 

•••

xxx ,,  in aequatione scriptis, & terminis dispositis secundum dignitates 

ipsius z sit 
      .&           C    B         

0.          .&          2C2B2A
.&E12D6C2 22

c
c
czz

−−
=−−−

+++
 In hac aequatione (ne fiat z quantitas 

determinata per aequationem affectam alicuis ordinis Analytici, quod in hoc casu est 
absurdum, quoniam ex hypothesi est z quantitatas variabilis, & semper ad libitum 
fumenda) [p. 28.] debent termini omnes evanescere per se, per valores coefficientium A, 
B, C, &c. Erit ergo per terminum primum C = A, per secundum D = 2

1  B, per tertium E = 

3
1 C = 3

1 A, & sic porro; unde sit .&ABABA 4
4
13

3
12 czzzzx +++++=   

 Ubi hoc modo procedere velis per assumptionem serierum informis generalibus, saepe 
diffice est istas formas invenire, praesertim si cupis coefficientes quot opus est 
indeterminatos esse relictos, ut consulatur conditionibus Problematis. Series quasdam 
particulares quaesit Newtonns per extractiones radicum ab aequatibus affectis, & 
methodum docet, concinnam sane & elegantem, inveniendi formas hujusmodi serierum, 
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per dispositionem terminorum in parallelogrammis. Quod Artificium (facta levi 
mutatione) in sequenti propositione explicabimus.  
 

PROP. IX. PROB. VI. 
 

Data aequatione fluxioni duas tantum Fluentes z & x, & earum Fluxiones involvente, 
quarum z uniformiter fluit per Fluxiones 1; invenire formas Serierum ascendentium per 
dignitates ipsius z, per quas exprimi possit valor ipsius x.   
 Seriei quaesitae forma generalis est .&CBA 2 czzz +++ ++ ηϑηϑϑ  & in dato casu speciali 
determinandi sunt indices dignitatum ηϑ & . Qui tales esse debent, ut, conversis omnibus 
terminibus aequationis propositae in series, in iis substituendo valores ipsius x & 
fluxionum suarum per hanc seriem, & per ejus fluxiones expressos, possint termini 
omnium serierum hoc modo provenientium ita inter disponi, ut, per comparationem 
terminorum in quibus sunt eaedem dignatates ipsius z queant determinari coefficientes A, 
B, C, D, &c. vel omnes, vel quot fieri potest. [p. 29] Ad hoc duo requiruntur. Primum, ut 
indices dignitatum z, in seriebus ex terminis aequationis propositae per substitutionem 
provenientibus, omnes cadant in eadem seriem arithemetice proportionalium; alias enim 
semper essent termini solitarii, per quos vel nihil determinaretur, vel fierent omnes 
coefficientes aequales nihilo. Secundo etiam requiritur, ut serierum hoc modo 
provenientium ad minimum duarum terminorum primorum indices inter se aequentur, ut 
determinetur coefficiens primus A : ne per terminum solitarium in initio aequationis ad 
comparationem terminorum instituendam ordinatae fiat coefficiens A, vel forte quantitas 
aliqua data in aequatione proposita, aequalis nihilo; quo pact perturbetur ordo seriei 
inveniendae.  
 His praemissis, si terminus aliquis aequationis propositae seposito coefficiente dato sit 

.& cxxxxz δγβαμ ••••••

terminus primiis seriei ab hoc termino provenientis, (seposito etiam 

coefficiente) erit .&32.&
__________________

ccz −−−−×+++++ δγβϑδγβαμ , & si pro indice hujus termini scribatur π, 
series illa (sepositis coefficientibus) hanc habebit formam 

.&.......................... 32 czzzz ηπηπηππ +++ ita ut omnes series ex terminis aequationis 
propositae provenientes ascendant per ipsius z dignitatem π. Hoc est facile intelligitur 
paululum attendo ad formationes fluxionum .&CBA 2 czzz +++ ++ πϑπϑϑ ad geneses 
serierum ex terminis aequationis propositae per multiplicationes hujusmodi fluxionum in 
invicem. Ergo per jam dicta, debent omnes π cadere in eandem seriem arithmetice 
proportionalium, quorum differentia est π, & ad minimum duo π in principio aequationis 
transformatae debent esse inter se aequales. Qui vel omnium minimi erunt sit π 
affirmatus, vel omnium maximi si sit π negativus. Ergo percurrendo omnes terminos 
aequationis propositae ex singulis colligatur numerus π [p. 30] vel  

.&32
__________________

.& cc −−−−×+++++ δγβϑδγβαμ  vel (pro .&c++++ δγβα  scripto y, & 

pro c&32 −−−− δγβμ scripto v, ) .vy +ϑ  Sint ,vy +ϑ & ,
\\

vy +ϑ duo ex hujusmodi 
numeris. Tum si hi numeri tales sint, ut facti inter se aequales, & inde determinato ϑ , sint 
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omnium numerorum vy +ϑ per istum valorem ϑ provenientum vel maximi, vel minimi, 
recte determinabitur ϑ . Hoc autem sit sequenti artificio.  

 
Duc rectas infinitas AB, AC, & (sumpta aliqua 
linea pro unitate) in AB (ad dextram si sit y 
affirmativus, sed ad sinistram si sit y negativus) 
sume AD = y, & ducta DE ipsi AC parallela, in ea 
(sursum si sit v affirmativus, at deorsum si contra) 
sume DE = v, & collacta numerum vy +ϑ in 
puncto E. Omnibus numeris vy +ϑ  in punctis hoc 
modo dispotis, sint eorum exteriora duo E & G, ita 
ut puncta reliqua omnia cadant ad easdem partes 
rectae EG. Tum numeri in punctis E & G inter se 

facti aequales dabunt valorem indicis ϑ . Duc enim GF parallelam ipsi CA & 
occurrentem AB in F, & sit M aliud punctum in quo collocatur alius numerus π, & 
ducatur ML parallela ipsi CA & occurrens AB in L, atque; occurrent GE ipsi AC in I, & 
ducatur ei parallela MO occurrens AC in O, atque; ducantur GH, MN ipsi AB parallelae 
& occurrentes DE & AC in H &N. Tum numeri π collacti in punctis E, G, & M erunt 

,LMAL,FGAF,DEAD +×+×+× ϑϑϑ (per constructionem). Quare si numeri in E & G 
fiant aequales, erit ADAF

FGDE
−
−=ϑ , hoc est HG

HE=ϑ , vel (ob similia triangula MN
NO)ONMEHG, . 

[p. 31] Unde jam numerus LMAL +×ϑ in puncto M sit LMAL MN
NO +× , hoc est AO; atque; 

ad eundem modum numeri aequales in E & G fiunt AI. Unde si puncta E & G sint 
omnium exteriora, adeo ut cadat punctum I vel infra vel supra omnia puncta O, erit AI, 
hoc est numerus π in E, vel in G, minor, vel major quolibet alio numero AO in puncto 
quovis alio M. Unde per positionem puncti I respectu punctorum O, determinatur signum 
ipsius π; quippe qui affirmativus est ubi I cadit infra O, & negativus si contra. Et hinc 
facile constat esse η maximum divisorem communem ipsius AI & omnium AO; alias 
enim non caderent omnes π in eandem seriem arithemtice proportionalium, ut per jam 
dicta fieri debet. 
 Ergo numeris omnibus π in plano hoc modo disposiis, si applicetur regula ad puncta 
duo exteriora E & G, dabitur index, ϑ , atqui; signum indicis η . Deinde invenietur ipse η 
sumendo maximum divisorem communem omnium numerem π provenientium per 
valorem ϑ  jam inventum. Unde dabitur forma seriei quaesitae. Q.E.I. Ipsius autem ϑ  
signum est affirmativum ubi GE subtendit angulum CAB, atque, negativum ubi subtendit 
ejus complimentum ad duos rectos.   
 Sit hujus rei exemplum in aequatione .01 2

3
=−−+

•••

xxxzzx Percurrendo terminos hujus 
aequationis, in primo 1 sunt .&0 c===== γβαμ Unde primus numerus π (vel vy +ϑ ) 
erit 0. In secundo termino zx sunt .&0;1 c===== γβαμ unde secundus numerus π sit 

.1+ϑ  In tertio termino 
•

xxz 2
3

sunt .&0;1;2
3 c====== δγβαμ  unde tertius π sit .2 2

1+ϑ . 

Denique in ultimo termino 
••

x sunt .&0;1;0 c====== δγβαμ unde ultimus π sit .2−ϑ   
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[p. 32] 

 
 Ductis itaque AB & AC, erit punctum A locus 
numeri π primi, vel 0. Sume abscissam AD = 1, & 
ordinatam ipsi AC parallelam DE = 1, atq; erit E 
locus secundi π, vel .1+ϑ  Sume abscissam AF = 2, 
& ordinatam FG = 2

1 , atque erit G locus tertii π, vel 
.2 2

1+ϑ  Sume denique AD = 1, & ordinata DH = - 
2, atque erit H locus numeri .2−ϑ    
 Jam ductis rectis per puncta omnia exteriora, 
includentur omnia puncta trapezio AHGEA. 
Aequatis inter se numeris 0 & 2−ϑ in 
extremitatibus lateris AH, fiet 2=ϑ , & omnes 
numeri π fient, 0, 

0 ),2(&),1(3),02( 2
1

2
9 +=+==−= ϑϑϑ quorum omnium minimi sunt duo aequales 0, & 

divisor maximus communis est 2
3  ; quare in hoc casu est 2

3=η  .  
 Pro numeris aequalibus sumptis 2

12&2 +− ϑϑ  in extremitatibus lateris HG, sit 

2
5−=ϑ , & omnes numeri π fiunt ;0,,, 2

3
2
9

2
9 −−− quorum minimi sunt duo aequales 2

9− , & 

maximus divisor communis est 2
3 ; quare in hoc casu est 2

3−=η . 
 Si fiant 1&2 2

1 ++ ϑϑ inter se aequales erit 2
1=ϑ , & numeri omnes erunt 

;,0,, 2
3

2
3

2
3 − quarum maximi sunt duo aequales ,2

3 & divisor communis est ;2
3 quare in hoc 

casu est .2
3  

 Denique si fiat 01=+ϑ , erit 1−=ϑ , & omnes numeri erunt ,3,,0,0 2
3 −− quorum 

maximi sint duo, & divisor maximus communis est ;2
3 quare casu est .2

3− [p. 33] 
Potest ergo fieri  

.&cCBA 4. vel

.&cCBA 3. vel

.&cCBA 2. vel

.&cCBA 1. vel

41

1

1

52

2
5

2
5

2
1

2
1

2
5

2
7

+++=

+++=

+++=

+++=

−−−

−−

−−

zzzx

zzzx

zzzx

zzzx

 

In casu tertio Analysis se habet ut infra exhibetur. [p. 34] 
Aequatio 
proposita 
Aequatio 
assumpta. 
 
Fluxiones. 

.01 2
3

=−−+
•••

xxxzzx  
.&cCBA 2

5
2
1 1 +++= −− zzzx  

 

.&cC2BA

.&cCBA

2
9

4
352

3

4
1

2
7

2
52

1

2
1

3

2

+++−=

−−−=
−−−

−−−

••

•

zzzx

zzzx  
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A
eq

ua
tio

 
tra

ns
fo

rm
at

a.
 zx  

•

− xxz 2
3

 
••

− x1  

.&cCBA 2
3

2
3

+++ −zz  

0.                         .&cA1          
.&cB2ACABA

4
1

2
1

2
1 22

=−++
++++−  

In
ve

ni
um

 
co

ef
fic

ie
nt

iu
m

 1. 
 
2. 
 
3. 
&c. 

0AA 2
2
1 =−  Unde A = 2 vel A = 0. 

,01ABB 2
1 =++ .1B      ;B 2

1 −=−=  

-1.C  ,-C   ,0ABAC2C 20
3

4
12 ===+++

&c.                       &c.               &c 
.&c2 2

3
2
1

20
31

2
1 +−−= −− zzzx  

V
al

or
es

 
R

ad
ic

es
 x

. 

1. 
 
 
2. .&c2

51 +−−= −− zzx  

 [p. 35] 
 In hac aequatione, ut vides, duae sunt series exprimentes valorem ipsius x, prodeuntes 
per duos valores ipsius A in aequatione 0AA 2

2
1 =− , & harum serierum secunda est 

ejusdem formae ac series in casu ultimo; quare per unam hanc Analysin invenitur utraque 
series, tam casus quarti, quam casus secundi. Quinetiam per Analysin institutam in casu 
secundo eodem modo simul invenies seriem in casu primo. Unde per duas tantum 
Analyses series omnes inveniuntur. Sed hoc in eo casu, tantum sit ubi est η idem in 
duabus seriebus, atque; ubi una radix A in aequatione prima inventa per comparationem 
terminorum est 0. Possunt autem plures esse radices A in ista aequatione, pro genio 
cujusvis, aequationis propositae; & quot sunt radicesA, tot dabuntur series per singulas 
Analyses.  
 In hac Analysi secundo observationum est, quod omnes omnio coefficientes A, B, C, 
&c. determinantur per comparationem terminorum. Quare series hoc modo inventae sunt 
omnes particulares, neque accommodari possunt ad conditiones Problematis, ob defectum 
coefficientium indeterminatorum.  

 
SCHOLIUM. 

 Nonnunquam ubi index θ est numerus integer affirmativus, evaneseunt termini primi 
in seriebus exprimentibus fluxiones ipsius x : nam producuntur coefficientes istorum 
terminorum primorum per continuam multiplicatinem ipsius A in numeros θ, θ – 1, θ – 2, 
&c. In hoc casu saepe sit ut terminus evanescat, qui debeat esse unus ex terminis in 
principio aequationis transformatae, quo pacto series ista aliquando sit impossibilis. Sed 
si evanescent termini in genesi fluxionum, & tamen supersunt termini duo in principio 
aequationis transformatae, series adhuc dabitur; quae etiam hoc erit caeteris praestantior. 
quod in ea erunt coefficientes aliquot indeterminati, per quas accomodari potest series ad 
aliquot conditiones Problematis. Quinetiam per similem evanescentiam terminorum in 
productione  [p. 36] fluxione sunt nonnunquam aliae series radicem exprimentes, quae 
per hanc propositionem minime inveniuntur. 
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 Quoniam de aequationum radicibus particularibus jam loquimus, libet etiam hoc unum 
obiter observare; nempe quod si v sit quantitas ex datis & variabilibus quovis modo 
composita, & possit aequatio ad talem formam reduci, ut omnis terminus involvat vel 
ipsum v, vel ejus incrementum aliquod, erit aequatio v = 0 particularibus solutio 
Problematis. Si in aequatione hoc mode transformata involvatur ipsum v, aequatio v = 0 
nullum continebit coefficientem indeterminarum, adeoque; solutio haec erit maxime 
particularis; praesertim si v integrales tantum involvat. Si aequationem transformaram 
non ingreditur v, sed 

•

v , aequatio 0=v  continebit unum coefficientem indeterminatum. Si 
aequatio eadem non continet nec v, neque 

•

v , sed 
••

v , aequatio v = 0 continebit duo 
coefficientes indeterminatos: atque; in genere quo plures terminorum superiorum 

.,&,, cvvv
•••

deficiunt in aequatione transforma eo generalior erit solutio Problematis per 
aequationem v = 0.  
 Ad hace ubi v integrales tantum involvit potest commode inveniri Problematis solutio 
generalissima, per v & incrementa sua exterminando caeteras variablies, & deinde 
quaerendo radicem v per methodum aliquam jam traditam. Sic in aequatione 

,02 =−−
•

zxx z pro 2
1−x scripto v,  sit ,0=−

•

zvv hoc est .02 =
••

−
v

zvzv  Sed ipsius 2v
zvzv

••
− fluens 

est v
x : quare pro quantitate quavis invariabili scripto A erit A=v

z  , hoc est A.
2
1 =−x

z  

[p. 37] 
 

LEMMA II. 
 

Si datur x ex dato z per aequationem quamvis analyticam certi cujusvis numeri 
dimensionum; etiam dabitur ipsius x incrementorum quodvis 

n
x  ex dato z per 

aequationem ejusdem numeri dimensionum. 
 Nam quot sunt dimensiones ipsius x in aequatione proposita, tot sunt ejusdem radices 
(quippe etiam impossibiles ad numerando.). Sed singulae radices x sua habent 
incrementa. Quare tot sunt radices incrementi cujusvis 

n
x  quot sunt radices ipsius 

integralis x; adeoque. utrumque; dabitur ex dato x per aequationes ejusdem numeri 
dimensionem. Q.E.D.   

 
COROLLARIUM. 

 Hinc proposita aequatione definiente relationem singularis alicujus increminti 
n
x  ad 

cognitam variabelem x, si dari potest integralis x, ex dato 
•
z per aequationem terminorum 

numero finitam, dabitur per aequationem in qua x ascendit ad tot dimensiones, atque; 
ascendit 

n
x  in aequatione proposita.  
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PROP. X. PROB. VII. 
 

Data aequatione unius dimensionis definiente valorem cujusvis incrementi singularis 
n
x ; 

invenire valorem ipsius integralis x in terminis numero finitis, si fieri potest.  
[p.38] 

 Si dari potest relatio x ad quantitates cognitas in terminis numero finitis, dabitur per 
aequationem unius dimensionis (per Cor. Lem.2.) Solutio itaque quaerenda est tentando 
an quantitas, cui sit 

n
x aequalis, quo pacto reduci potest ad formam incrementi alicujus 

cogniti ejusdem ordinis. Quod si sit, dabitur radix x in terminis numero finitis, faciendo 
eam aequalem integrali istius expressionis. Sed si hoc fieri nequit res desperando erit.  
 In fluxionibus quoties dari possunt fluentes in terminis numero finitis invenientur per 
finitis invenientur per Quadraturam Curvarum Newtonianam. Et nonnunquam commode 
inveniuntur hujusmodi expressiones per Propositiones duas sequentes.  
 

 
PROP. XI.  THEOR. IV. 

 
Ipsius sr

•

fluens exprimi potest per alterutram exp. seriebus 
 
      sr

•

.&
//////

csrsrsrrs +−+−=
••••••

, vel   sr
•

 .&
//////

csrsrsr −+−=
••••••

 
    
 Theorema investigatur ad sequentem modum. Sit fluens quaesita ,prs + hoc est, sit  

  sr
•

.prs +=  Tum capiendo fluxiones erit 
••••

++= psrsrsr , hoc est 
••

−= srp : adeoque  
 

•

−= srp  , indeque  
••

−= srsrsr                . Itaque secundo fiat  ;  
/

qsrsr +=
••

& capiendo 
 
 fluxiones erit ;  

/ •••••

++= qsrsrsr hoc est [p.39] ;  
/ •••••

++= qsrsrsr hoc est ;  
/ •••

−= srq atque  
 

;     
/ ••

−= srq  adeoque sr
•

 .   
// •••

+−= srsrrs  Et per operationes repetitas eodem modo invenitur  
 
 

sr
•

  =−+−=
••••••

        
/////

srsrsrrs
••
••

••••••

+−+− srsrsrsrrs
/////////

    = &c. 
 
 Quando hoc Theorema est applicandum ad casum particularem, eligenda est fluxio 
aliqua 

•

w , & in computandis fluentibus .,&,, crrr
••••••

vel .,&,, csss
••••••

cum primum comparuerit 

fluens aliqua, ea ducenda erit in 
•

w , & producti fluens sumenda erit pro proxima fluente 
quaesita. Item in computandis fluxionibus .,&,, crrr

••••••

vel .,&,, csss
••••••

 quoties colligitur fluxio 

aliqua, erit ea applicanda ad 
•

w , & quotientis fluxio similiter applicata ad 
•

w  sumenda erit 
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pro fluxione proxime quaesita. Haec autem fluxio 
•

w  ita sumenda est ut termini sint fieri 
potest simplicissimi.   
 Potest etiam series per hoc Theorema inventa dupliciter accommodari ad conditionem 
Problematis, hoc est, ad datum unum valorem fluentes quaesitae respondentem dato 
valori variabilis cognitae.  Hoc sit primo sumendo omnes fluentes .,&,,

///

crrr vel 

.,&,,
///

csss pure, absque ulla correctione per additionem invariabilium, & deinde seriei 
inventae addendo invariabilem per conditionem istam postea determinandam. Idem sit 
secundo fluentes omnes, cum primum prodierint, ita corrigendo per additiones 
invariabilium, [p. 40] ut omnes simul evanescant, (adeoque & series tota evanescat,) 
quando variabilis data est certi alicujus valoris.  
 Ad haec quando terminus aliquis .,&,, csss

••••••

 aequalis est nihilo, series prima 
abrumpitur, & fluentem dat in terminis numero finitis. Atque idem sit in serie altera, ubi 
evanescit terminus aliquis .,&,, crrr

••••••

 
 

EXEMP. I. 
 

 Sit 
••

−= zzxx , & propositum sit invenire fluentem ipsius xz
•

. In hoc casu si pro 
•

r sumatur 
•

z , & pro s sumatur x, commodissime fiet )(
•••

−== xxzzw . Et hoc pacto sunt 
 

 r = z, 3

3/
      zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

, ,      3.5

5/// zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

 ,      3.5.7

7///// zrwr ⎟
⎠
⎞⎜

⎝
⎛ ==

•

 & sic porro; item  

 

zw
zr 1      ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
•

, 3
1      

zw
rr −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
••

, 5
3      
zw

rr ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

••
•••

, & sic porro. Sunt etiam s = k, 

 

xw
ss 1      −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•

, 3
1      

xw
ss −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

•
••

, 5
3      

xw
ss −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== •

••
•••

, & sic porro; item  

 

  3

3/
      xsws −⎟
⎠
⎞⎜

⎝
⎛ ==

•

, 3.5

5///
      xsws ⎟
⎠
⎞

⎜
⎝
⎛ ==

•

, 3.5.7

7/////
      xsws −⎟
⎠
⎞

⎜
⎝
⎛ ==

•

, & sic porro. Unde per seriem 

priorem .&
//////

csrsrsrrs +−+−
••••••

 sit   .&c    33.5.7

7

33.5

5

3

3
−+−+=

•

x
z

x
z

x
zzxxz Et per seriem alteram 

.&
//////

csrsrsr −+−
••••••

 sit .&c    53.5.7

7

3.5

5

1.3

3
+−+−=

•

z
z

z
z

z
xxz  

[p. 41] 
 In his seriebus fluentes .,&,,

///

crrr item .,&,,
///

csss sumantur pure; quare series 
accommodandae sunt ad conditionem Problematis per additionem quantitatum 
invariabilium. Porro per harum, serierum primam exhibetur area circulis adjacens sinui x 
& cosinui z, & per seriem alternam exhibetur ejusdem area complimentum ad 
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quadrantem cum signo negativo : Quod ita sit quoniam area illa adjacet abscissae z ultra 
ordinatam productae.  

EXEMP. II. 
 

 Sit nbzax += , & invenienda sit fluens ipsius 11 −−
•

λθ xzz . In hoc casu si fiat 1−
••

= θzzr , & 
1−= λxz  commodissime sit 1−

•••

== nzznbxw . Unde sumendo fluentes pure, ad inveniendam 
seriem priorem erit  
 

.θ

θzr =  
 

 rnbznbzrwr n

n

n

n

..

/
      ++

+
=⎟

⎠
⎞⎜

⎝
⎛ ==

•

θθθ

ϑ
 

 

                                            .      
/

22

222///
rnbzzbnrwr n

n

nn

n

+++

+
=⎟

⎠
⎞

⎜
⎝
⎛ ==

•

θθθθ

θ
 

 

                                           .      
//

323

333/////
rnbzzbnrwr n

n

nnn

n

++++

+
=⎟

⎠
⎞

⎜
⎝
⎛ ==

•

θθθθθ

θ
 & sic porro. 

 
Idem .,&,, crrr

••••••

 iisdem ac in exemplo praecedenti, invenientur fluentes .,&,,
///

csss modo 
sequinti.  

  Est 
/
s fluens ipsius sw

•

, i. e. ipsius .1−
•

λxx  Hujus fluens pura est λ

λx , quare ut evanescat 
/
s ubi est x = d, hinc dempto λ

λd  sit  

λ

λ

λ

λ dxs −=
/

, 

,1).1(

1

.1)1(

1//

+

+

+

+
+−= λ

λ

λ

λ

λλ

λ dxdxs  

)2.(1.2

2

)1(1.1

1

.1.2

2

)1)(2(

2///

+

+

+

+

++

+
−+−= λ

λ

λ

λ

λ

λ

λλλ

λ dxdxdxs  & sic porro. 
 Caeterum ex terminis jam appositis satis constat ratio formandi reliquos.  
 
    

SCHOLIUM. 
 

1. Potest fluxio proposita variis modis resolvi in factores .& sr
•

unde plerumque oriuntur 

series diversae. Sic fluxio jam proposita 1
_________

1 | −− +×
•

λθ nbzazz etiam sic scribi potest 

1
_________

1 | −−−−+ +×
•

λλθ nnn azbzz . Ubi si pro 
••

wsr &, sumantur 1
_________

1 |, −−−−+ +
•

λλθ nnn azbzz , & 1−−
•

− nzzna , 
& pro nbza + scribatur x, exprimetur eadem fluens per series sequentes;   
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  11 −−
•

λθ xzz     &c.C.B.A. 4
3

3
2

2

1
++++= −+

−
−+

−
−+
−

−+

−

x
a

nn
nn

x
a

nn
nn

x
a

nn
nn

nn
xz

λθ
λ

λθ
λ

λθ
λ

λθ

λθ
 

 

  11 −−
•

λθ xzz     &c.C.B.A. 3
2

2 ++++= +
++

+
++

+
+

a
x

nn
nn

a
x

nn
nn

a
x

nn
n

na
xz

λ
λθ

λ
λθ

λ
λθ

λ

λθ
 

 
 Ubi literae A, B, C, &c. scribuntur pro totis terminis cum suis signis in seriebus 
respectivis.  
 
2. In investigatione Theorematis inveniebatur  sr

•

.     
/ •

−= srrs  Unde si pro sr &
•

sumatur  
 

λθ |&
_________

nbzazz +
•

 , & pro nbzax += scribatur z,  erit        1
11

1 −+
++

•
+•

−= λθ
θ
λ

θ
λθ λθ xzxzz nzbnxz  , hoc 

est, 
       11

11
11 1 −+

++
−+

•+•

−= λθ
θ
λ

θ
λθ λθ xzzxzz bnxz . Data itaque fluente ipsius 11 −+

•
λθ xzz , dabitur etiam  

 
fluens ipsius   1−+

•
λθ xzz n . Unde si pro n sumantur successive numeri quicunque integri, 

vel affirmati, vel negativi, si datur fluens unius  nn xzz −+
•

λθ , dabuntur etiam omnium 
 nn xzz −+

•
λθ .  

 

3. Potest etiam eadem fluxio sic scribi :|
_________

λλθ nn azbzz −+ +×
•

 ubi si jam pro sumatur nzz λθ +
•

, 

& pro s sumatur λ|
_________

nazb −+ , erit 

λθ xzz
•

1
_________

   11

1
||

_________
−−−+

++++

−
+

−+

+×+×=
•

λλθ
λθ
λ

λθ

λλθ
nnn

n
na

n

n
azb

n
z azbzz   , hoc est [p. 46] 

 
 

λθ xzz
•

   1
   11

1
−

++++

+ •

+×= λθ
λθ
λ

λθ

λθ
xzzx

n
na

n
z   . Data itaque fluente ipsius λθ xzz

•

, dabitur etiam 

ipsius 1−
•

λθ xzz , & vice versa. Manente itaque indice θ , si continu minuatur, vel augeatur 
λ per unitates, data fluente unius λθ xzz

•

, dabuntur fluenes`omnium λθ xzz
•

. Et per hos duos 
casus conjunctos, si pro σ & τ scribantur successive numeri quicunque integri, vel 
affirmativi vel negativi, manentibus θ & λ, si datur fluens unius cujusvis fluxionis 

τλσθ ++ +×
•

|
_________

nn bzazz , dabuntur etiam fluentes omnium fluxionum eodem modo 
provenientium. Et ad eundem modum pergere licet ad comparationem fluentum, ubi 
quantitas in invinculo radicis est trium, vel quatuor, vel plurium nominum. Sed haec jam 
elegantius fiunt ab illustrissimo Newtono in Quadratura Curvarum.  
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PROP. XII.  THEOR. V. 
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Ubi est n = 1, & (juxta notationem nostrum) sunt 
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  ; . et sic porro. [p. 47] 

 Quando est n = 1, Theorema idem est cum praecenti; unde colligitur forma seriei. 

Coefficientes autem ,,,,1 321211
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nn ××× &c. sic investigo. 
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 Jam si coefficientes .,&,,, cwyvx sint justi valoris, 

manentibus coefficientibus novis .,&,,,
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cwyvx si capiatur fluxio novae seriei fiet regressio 

in seriem priorem. Ergo capiendo fluxiones primo in r, deinde in s, sit 
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 Unde comparando terminos hujus seriei cum 

terminis relativis seriei prioris, sit xxxx =+=
•
)(

/
; adeoque; 

•
x  = 0. Proinde est x 

invariabilis. Sed ubi 
•
x  = 0 est x = 1; quare est semper x = 1. Comparando terminos 

secondus, sit ;)1(
/

vvvxv =++=+
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adeoque ;)1( nv −=−=
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& inde .1 av n += −  [p. 48.]  

Sed ubi n = 0, est v = 0; quare est a = 0 & 1
nv −= . Comparando terminos tertios sit 
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w −= . Et sic 

pergendo in infinitum invenientur reliqui coefficientes, omnino ut in Theoremate 
exhibentur. 
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EXEMPLUM. 
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vel 3. [p. 49.] 

cx
an

nnnn
nn

x
na

nnnn
nn

nnnnnnnnn
xznaQ

xnnn

&B.2.2A.1.

........
|

/

/

\

\\
1

_____

++
−+−

−+
−+−

−

+
−+−+−+−+−

−=
−−

λθ
λ

λθ
λ

λλθλθλθ

λθ

 

 
vel 4.  

ca
xn

nnn
nn

a
nx

nnn
n

an
zzQ xnxnnn

&B2.

A1......2.1.

/

/

\

\\\

+
+
++

+
++

+++
−=

−++

λ
λθ

λ
λθ

λλλλ

λθλ

 

 
Quippe in seriebus duabus primis pro 

•

w sumpto 1−
•

nzznb , & facto QwQ
•

=
/

,  
 
 

///

QwQ
•

= , & sic porro; & in seriebus duabus ultimis pro 
•

w sumpto 1−−
•

− nzzna   
 
& similiter facto QwQ

•

=
/

, 
///

QwQ
•

= , & sic porro. 
 



Brook Taylor : METHODUS INCREMENTORUM DIRECTA & INVERSA (1715)                 71 
Part 1B. Translated with Notes by Ian Bruce. 

Per has autem series exhibentur tam fluxiones quam fluentes ipsius Q. Sic si n = -1, series 
dabit valorem 

/

Q , si n = -2, series dabit valorem 
//

Q , & sic porro. 
 Sed in hoc casu, ubi mutatur signum numeri n, quaedam est difficultas in inventione 
coefficientis termini primi. Sit ergo exemplum methodi hoc faciendi in termino primo 
seriei primae modo exhibitae pro valore 
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nnmnmmn −−−− θθθθ  
coefficiens numeralis terminali primi seriei quaesitae. 
 

SCHOLIUM. 
 Pergere jam liceret ad inventionem  integralium in terminis numero infinitis, quarum 
incrementa singularia dantur per aequationes affectas altiorum graduum. Sed quoniam in 
his casibus solutio quaeri non potest nisi pe calculum valde nimis prolixim, operae 
pretium non duxi praecepta plura tradere in re nullius usus futura. Aequationes 
quadraticae revocantur ad aequationes simplices pe extractionem radicis, atque 
aequationes cubicae resolvuntur pe regulum Cardini, & aequationes plurium dimensionun 
etiam resolvi possunt per ablationem terminorum intermediorum. Quare si cui animus est 
rem adeo laboriosam tentare, terminis omnibus intermediis exterminatis,  deinde solutio 
quaeri potest per Propositiones praecendentes. Tantum autem laborem paululum minuere 
potest haec observatio, nempe quod in aequatione affecta definiente valorem incrementi, 
termini secundi coefficiens est simile incrementum coefficientis termini secundi in 
aequatone definiente valorem ipsius integralis. Quare facto periculo in coefficiente 
termini secundi, si is revocari nequit ad integralem in terminis numero finitis, frustra erit 
solutionem finitam quaeres in caetera aequatione.  
 Principiis Methodi Incrementorum & Methodi Fluxionum jam breviter  explicatis, 
superest ut in parte altera hujus opusculi exemplis aliquot ostendamus, quantus sit usus 
rei in solutione difficiliorum quorundam Problematum. 
 
 

 


