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The solution is found for problems
Concerning  plane curves formed by lines with various kinds of elasticity,

the points of which are acted on by forces of some kind.

 Author
Leonard Euler.

Since that first curve that the celebrated James Bernoulli assigned for the curvature of a
planar elastic curve, and afterwards by many others,  the form of every elastic curve is
now known, except for heavy elastic laminar curves; it is understood that their solutions
are different from these previous solutions.  Moreover the bending of heavy elastic
laminar shapes can only be found by their departure from their natural state, yet as far as
I know, this has not been determined by anyone until now. Recently the most
distinguished Daniel Bernoulli and I have fallen upon this investigation, and I have
approached this problem in what can be considered to be a not too inelegant manner,
and the solutions that we have produced simultaneously to the problems that we pursued
have agreed exceedingly well. Truly, for the first solution, it is seen that there is nothing
difficult initially, and here too my solution need not be explained by the formal theory I
have considered.  Indeed the first investigation extends this far, that the curve formed by
a heavy laminar shape, with one end fixed and having some kind of force applied to the
other end, can be found. However, at the start of the work I consider a more general
lamina of arbitrary elasticity, and having some hanging weights attached. And on this
account, although any particular case can be worked out on its own, nevertheless it is
seen that [the more difficult] problems cannot be easily worked out, without making use
of this general theory: and indeed not only has it been extended to laminar curves of any
elasticity, but indeed also to curves formed by perfectly flexible bodies, and the theory
can account for the forces applied in any manner of displacement; so thus the curvatures
of all flexible bodies can be found.  It can be agreed
upon besides, that the solution of the general problem
can scarcely avoid the accepted thought of being more
bountiful than that of any specific case. Truly, before I
am able to approach the general problem itself, it is
necessary to present first some matters relevant to the
solution.

Hypothesis.
1. If two [rigid] rods aB and BC [on the line CBa] are joined at B in an elastic way and
are to be rotated by a force AD into the position ABC [fig. 1, ],  in order that the angle
ABa is taken up. There will be a moment of the force AD about B considered as the
product of the elastic force at B and the angle ABa . It is known that this factor is equal
to the product of the force AD by AB. [note that AD is at right-angles to AB] This
hypothesis is generally assumed; however the truth of this is satisfactory only if the
angle ABa is exceedingly small and that can probably be shown by experiment. [Euler
presumably had in mind the twisting of a wire, which obeys an angular form of Hooke's
law: applied torque or moment = elastic constant × angle rotated through from
equilibrium, or ϑτ c= .]
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Lemma 1. If the force NO is applied to some point
N of the curve ANM [fig. 2], and this is resolved
into a horizontal force NS and as a vertical force
NR. The size of the force NO acting on the curve
AM to make it rotate  about M,  or the moment of
this force is equal to NR.FP + NS.GQ. With MQ,
AP drawn to the horizontal and AQ, PM to the
vertical.

Demonstration. The force NO is equivalent to the
two forces NR and NS acting together. The
moment truly of the force NR in M is, in order to
be in agreement with the principles of statics,
NR.PF ; and the moment of the force NS in M is NS. GQ. Hence since both forces are
trying to turn the curve AM in the same direction, the moments of both or the moment of
the force NO is equal to NR.FP + NS.GQ.     Q.E.D.

Lemma 2. The curve AM, [which is a curved rod,
string, chain, or plate, f(x); for which Euler eventually
assigns A as the origin, with a left-going x-axis], with
forces to be applied at all the points N obviously
parallel to the perpendiculars to AP, is to be
determined from the curve BG [g(x) is the force/unit
length; the forces can be externally applied, or be due
to the weight of the curve], thus as the force acting
through the point N, for a point on the curve which is
as QN [we can take QH as the size of the force, see
fig. 3, acting along NQ]. Another curve AVT is
constructed [h(x) is the total weight or force acting
vertically to right of the section considered ],  the
lines of application QV of which shall be as the area AQHB [h = ∫ ')'( dxxg ]. The sum of
all the moments of all the forces to the curve ANM [ANB in original text] turning about
M shall be as the area APT.

Demonstration. The moment of the force QH in M is QH.PQ. A point m is taken near to
the point M. The line of application of the force mp is drawn;  the moment of the force
QH in m is equal to QH.Qp.  Hence the difference of these moments is QH.Pp.
[Thus, for a given element of the original curve, which we can imagine to be a small
section of an elastic rod, one effect of a force QH applied along the rod at Q is to apply a
moment of size QH.Pp.]
The same thing will prevail for all the individual forces, hence the difference of all the
moments acting at M and m gives rise to the area ABGP by Pp or PT.Pp, [i. e. the area
of the element PptT of the curve h].
 If now the sum of all the moments for m is put equal to M + dM, then the difference of
the moments is dM , therefore dM = PptT, and consequently M is equal to the area APT.
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[We can now add the moments of all the other weights or forces acting along the rod for
the points M and m ; the total difference of the moments is the whole moment acting on
the element, and each weight gives a contribution similar to that established. The area of
the curve ABGP is the total weight or force applied; note that we should really be
talking about the weight or force per unit length for the loading of the rod or beam, to
get the correct units. Occasionally, Euler has objects with cylindrical symmetry in
mind.]

[In terms of integrals, as an alternative approach, we can write ')'(')( dxxgxxM
X

x
∫= ,

where g(x') is the force at position x' due perhaps to the weight of the curve;  the point A
is X, and P is the point x w.r.t. some origin. The integration is performed by parts, where

)(')'( xhdxxg =∫ to give : [ ] ∫∫∫ −=−==
X

x

X

x

X
x

X

x
dxxhdxxhxxhdxxgxxM ')'(')'()(')'(')( , as

required, since either x = 0 or h(X) = 0 in the first term.]
Q.E.D.
Now it can be said that with the abscissa AP taken, x, and the corresponding point of
application in curve AT for P ; Moreover, the sum of all the forces [acting vertically to
the right] can be brought together at x and designated P [i. e. P(x)]; hence the sum of all
the moments at M  = ∫ dxP .

The General Problem.
Let BMA be any elastic laminar plate and with
displacements from forces applied at any fixed points
whatever, moreover with that end in B fixed, and at A two
weights E and F are have been hung on pulling on A, of
which E is along the vertical and F the horizontal. It is
required to determine the curve AMB that the nearby
lamina has been turned into by being bent.
Solution. The horizontal line AC is taken for the axis, in
which the abscissa AP is taken equal to x. Let PM = y be
the perpendicular to this and AM = s, the [differential] element of which is taken as
being constant.  The radius of curvature at the point M is put equal to r ; and the angle
that the two elements constitute vary inversely as r. The elastic strength at M is
designated by the letter v; the strength producing this angle varies as r

v (from the
hypothesis above.) For this single proportional therefore ought to be the sum of all the
moments delivered to M  so coming from the individual forces applied to the curve AP,
as from the weights E and F. Moreover the moment of the force or weight E in M  =
E.AP = E.x (by Lemma 1.) and  the moment of the force F is equal to F.PM = F.y (cit.)
Besides this point M being displaced, also the arc AM of all the individual points are
displaced by the forces.  For these are to be resolved acting in the vertical along AE and
in the horizontal along AC, the sum of all the vertical forces is to be called P, and Q for
the sum of the horizontal forces from A as far as M. The sum of the moments of the
vertical forces  = ∫ dxP  (Lem.2.) and the sum of the moments of the horizontal forces =

∫ dyQ . Thus the total strength of the moments acting at M is equal to Ex + Fy + ∫ dxP  +
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∫ dyQ . Since r
v  should be proportional to that moment , the equation is obtained :

∫∫ +++= .QdyPdxFyExr
v∆

If in place of P + E , P is written, and in place of Q + F , Q ; we have ∫∫ += QdyPdxr
v∆ ,

let ∫ ∫ +=+== .or   then Z; QdyPdxdZQdyPdxZr
v∆  From which the nature of the curve

AMB can be recognised. Q.E.I.
In order that the use of this equation is better understood, I will apply this

equation to special cases, and some of these is now to be expanded on, in order that their
similarities can be understood; this is indeed a part of analysis still in a dormant state, as
many forms of curves yet unknown will see the light for the first time.

Problem. To find the general equation for curves, which perfectly flexible bodies
assume under the action of any manner of forces.

Solution. We will have perfectly flexible bodies [such as formed by the links of a
chain, or by a string] when the elastic strength vanishes everywhere, then indeed even
the smallest force will produce an angle between two elements.  Moreover, the size of
the elastic force [torque really] is expressed by the letter v, therefore v is set equal to
zero, to give the resulting equation :
 0 = E.x + F.y + ∫ dxP  + ∫ dyQ , which satisfies the question. Q.E.I.
Moreover, as P and Q , which obviously can be eliminated from the depending
summation, and in place of these dP and dQ are produced, which denote the forces
themselves applied to the points M; the equation is differentiated and we have:
  E.dx + F.dy + P.dx + Q.dy = 0.  Hence 0FQ EP =+++ dy

dx
dy
dx . From which,

0dQ 22
EEPPP =+++ −−

dy
dxddydyddx

dy
dxd

dy
dxddydyddx . But since is agreed to put ds constant

then: 
dy
ddxdsdxddydyddxdxddxdyddy 2 and , =−−= .

 [These results follow by differentiation of ds2 = dx2 + dy2 = constant;
etc.  ,..0 ddydyddxdx +=

Note that x and y are treated as separate variables; the closest we can get to this is to
regard both as functions of some parameter, such as the arc length from some fixed point
on the curve, or as the time taken to travel a certain length along the curve at a constant
speed x(t), y(t) in the same direction; this was the legacy of Newton, who was still alive
at this time, though the notation is that of Leibnitz, which Euler obviously thought more
convenient. Thus, we can consider dx, ddx, dy, and ddy as equivalent to Newton's

y, yxx &&&&&&  , , , etc., when treated in this manner. Parametric equations are often handled with
the dot notation, which we present here along with the one used by Euler. Hence,

2222222  givesconstant for  , syxdsdydxds &&& =++= , from which
(*)   0 dyddydxddxyyxx +==+ &&&&&& , and

(**);  ///)(/ 2222 dyddxdsyxsyxxyyxxxxyyxxydxddydyddx ==+=+=−=− &&&&&&&&&&&&&&&&&&&&&&&  ]
Whereby :

0dQ PEP
3

2

3

2
=+++ dy

dxd
dy

ddxds
dy

ddxds .  And from this: 02

2

2

3 PQ =+++
ddxds

dxdyd
ddxds
dyd EP .

Hence [on differentiation again to eliminate E, with ds2 constant]:
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From this equation we find, using ddydyddxdx .. −=  :
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This equation will be made much simpler, if the radius of the osculating circle r is
introduced, which is :
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 From this we find [this is the fundamental result used throughout this paper.] :

.....2 from arising those//  termsextra [

QQ2QPP2P0
223 dPddyddxdydxdydsdPdxdydPds

drdyddsdxdrdydddrdxddsdydrdxdd

+++

+−+++=

It is observed that these terms involve higher orders of ds than the first power, and the
last term involves a product of second order derivatives. For the sake of completeness,
the entire equation is quoted here in the dot notation, before the stage of substituting for
the third derivatives, which can of course be done, when further simplification can then
be made:

.0PPPPQQQ P 222

2

2

2

2

2

22

3

2

3

2

2 2
s
y3 =+−++−++ &&&&&&&&&&

&&&

&&&&

&&&

&&&&&

&&&

&&

&

&

&&&

&&&&

&&&

&

&&&

&&&

xs
yyx

xs
xyx

xs
yx

xs
xy

xs
y

xs
yy ]

 This equation gives all the possible curves
which perfectly flexible bodies are able to form
by being displaced in some manner, as
understood below.

Problem.  To find the curve that a perfectly
flexible string forms, to which vertical forces
are applied to all points.
Solution.  The horizontal forces vanish in this
case, leading to Q = 0. Whereby
 0 = Ex + Fy + ∫ dxP ; and hence  0 = Edx +
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Fdy + Pdx = 0; and thus ;02
)( =+ −

dx
dyddxdxddyFdP

or .22 ddxFdsdydPdx =  Truly, ,rddx
dsdy = hence

[from **], .32 FdsrdPdx =  And from these equations the curve can be recognised in
special examples. Q.E.I.
 This equation gives catenaries of all kinds.

Let dP = ads, as the forces shall be everywhere equal, which should produce the
common catenary for chains of uniform thickness.  Moreover we have the equation

;2 Fdsddxdyadx =  which integrated gives

dx
dsay FC−=  [recall that ds is a constant quantity] or with the constant C ignored, which

does not change the nature of the curve, and with - F put in place of F : dsaydx F= is
obtained, and hence [on squaring, re-arranging and taking the square root again],

)( FFaayy
Fdydx
−

=  , which is the equation for catenary curves [Fig. 5], to be applied in this

way : on account of assuming F negative, the weight indicated by that letter ought to act
in the opposite direction to that in which we put F to pull in the first place [i. e. to the
right in Fig. 5, as opposed to the left in Fig. 4].  From A the vertical is sent Aa = F/a,
and the horizontal aP is the axis of the curve AMB, which is convex towards aP and the
tangent at A is parallel to the axis aP, hence AB is the common catenary.

Let , hence F then  ,P 2

2

2
F23

dx
dsayddxdsdyadxadxd −===  or with F taken negative,

the equation will be, [on substituting ds2 = dx2 + dy2 ] :
222 FF2 dydxaydx =− . Hence 

)2(
F
Fay

dydx
−

=  , which is in agreement with the equation

for the parabola of Appolonius [i. e. a curve of the form x2 = 2a(y - y0) where F = 4a2].

Problem. To find the curve that a flexible string
forms, to which normal forces are applied at each
and every point.
Solution. The curve shall be AMB [Fig. 6], and as
above AP = x, PM = y; and AM = s. The normal
force dN at M acting along the normal MR is
resolved to the vertical and horizontal, the vertical
force is ds

dxdd NP =

and the horizontal force ds
dyddQ N=  thus ∫= ds

dNdxP  and ∫= ds
dNdyQ ; and

 P N
ds

dxddNddxddd += ;

;N
ds

dyddNddydddQ +=  these values are substituted into the general  equation for perfectly

flexible bodies; but in place of ddP, ,ds
dxddN

r
dNdy +  and in place of ddQ, ,ds

dyddN
r

dNdx +− as

the radius of osculation is applied in the computation [recall that .rddx
dsdy

ddy
dsdx ==− ];

 it is then found that .CN  thus,0NN dsrdrdddrd ==+  Therefore the radius of
osculation varies inversely as the normal force. Q.E.I.
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[The general equation is:

.
required.] as  give  tointegrates which ,0)...(or  

;.../)....(

 : giving ;

 0 Hence;

;QQ2QPP2P0

2222

..2...

..2...

 Cdsr.dN dsdrdNrddN
dsdrdNrdsddNdsdrdydNrdyddNdrdxdNrdxddN

drdyddsdxdrdydddrdxddsdydrdxdd

ds
drdydNdy

ds
dsdxdNdy

ds
rdyddNdy

ds
rdydNdx

ds
drdxdNdx

ds
dsdydNdx

ds
rdxddNdx

ds
rdxdNdy

==+
+=+++

+−+−

+++=

+−+++=

Since this property is in agreement with these recently found, I shall not delay
deriving from it the curves for awnings and sails, and which follow from that property.

The solutions to these two last problems just done have been obtained from
geometry. When the directions of the forces are of course either parallel amongst
themselves or normal to the shape of the curve. Moreover, the curves for any kind of
flexible bodies, for which any kind of forces have
been applied, ought to be found, which no-one has
shown before, except the celebrated  Jacob
Hermann, the solution of this problem is set out in
his Phoronomia.

Problem. To find the form of the curve AMB that a
perfectly flexible string assumes when two forces,
one vertical and the other normal,  are applied to
each point M.
Solution. The normal MR is resolved in the sides  MN and MK, of which MK is vertical
and MN horizontal. Let MN.Q andMK MLP =+= dd It can be said that

.L  LP

other for the And .Q and   L P hence ;

 MN and MKThen  N.MR and force)  vertical(the ML

NN

NNN

N

ds
dxdd

r
dyd

ds
dxddNdNddx

ds
dyd

ds
dxd

ds
dyd

ds
dxd

dddddd

ddd

ddL

++=+=

=+==

===

+

.dd ds
dydd

r
dxd

ds
dyddddyd NNNNQ Also +−== +  From which with the variables substituted [in

the general equation

;..2)(

)()(2)(

:give  to,QQ2QPP2P0

ds
dNdy

ds
dNdy

ds
dyddN

r
dNdx

ds
dNdx

ds
dNdx

ds
dxddN

r
dNdy

drdydsdxrdy

dLdrdxdLdsdyddLrdx
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]....2.
:required as give  to

dNdsdrdLdrdxdLdsdyrdsddNddLrdx ++++
0L2LLNN =++++ dsdyddxdrdrdxddrdsdddsdrd  is found,

;02)()(  .. =++ dLdsdydxrdLddsrdNdei

or L.L2  where,LLNs 2 ddCdsdsdydrdxddrd →=++ ∫
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From which the nature of the curve will be apparent. Q.E.I.
The vertical force dL is put proportional to the element
of the curve ds. Since the string shall have the same
weight and density everywhere, then dL = ads and we
have

.CN gives ,by  dividedwhich 
,22

dsaydsardxrdds
CdsaydsardsdxrdsdN

=++
=++

[There are several obvious misprints in this last
derivation, which must agree with the previous case;
hence the integration constant Cds.]
 AMB shall be a heavy linen sail filled with liquid as far as BI, the normal force dN shall
be as MI, let PI = b;  then MI = b - y. Therefore put dN = bds - yds ; this gives

ignored]been  has   term[The .C

or C gives integrated

 which,C hence ;

But .

2
1

adxdydxaydxe)ds(yy-by

dxedsaydxyydsbyds

ddxayddxadxdyydsdybdsdyr

Cdsaydsardxyrdsbrds

ddx
dsdy

−=+

+=+−

=++−=

=++−

With the constants changed in order that numbers can be avoided : this equation
becomes the following, [on squaring, collecting terms, and taking the square root again]:

22 )()(

)(

ebyyycay

dyebyyydx
+−−−

+−=

in order that this equation becomes valid for the axis AP; it is necessary in order that for
vanishing y, that dy:dx becomes equal to 0:1; and  cc =
ee, or c = ± e. If  a becomes 0, the equation is obtained
for the noted canvas curve [as the pressure of the liquid
acting on the element is far greater than the weight of
the canvas element].

The curvature of a uniform heavy sail AMB is sought
[Fig.9]. The wind may intrude following TM parallel to
the axis AP. The strength of this will be, since the wind
acts normally to the curve, as the square of the sine of
the angle AMT [from Hermann's Phoronomia, Ch.XXI.], i. e. this is put as 2

2

as
dy and

hence ds
dyd

2
N = , giving dxaydsardxds

rdy C
2

=++ . Moreover since

.C be  will this 3 dsddxaydsddxadsdydxdyr ddx
dsdy =++=  But dx

dyddyddx −=

hence 0C 22 =+−+ dsddyaydsddyadsdxdxdy ; put ds = pdy; this gives
,)1(1  thisFrom .1 and aydpcdpdyppapppdyppdydxddy p

dpdy −=−+−−==

or ; then ;1Let  . 44
4

)1()1( aqaqq
qdq

ayc
dy

ppappp
dp

ayc
dy qppp

−+
−

−−+−− =−=−=
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 4qq + a - aq4 is resolved in the two factors 1 + βqq and a + δqq; where

==+++=−

==

+=+=++=

+
+++−

+
+−

+
+−−

++−

)4(
)()1(

22a
1

)4(
)4(24

)4(
)4(24

1
42

)()1()(-

 Therefore . and 

  where, becomes  thisAnd .)(4-2 and )1(

aa
qqalqqlnm

aa
aa

aaa
aa

qqa
nqdq

qq
mqdq

ayc
dy

aaa

qqalqqlaycl

nm

aa

δβ
δβ

δβ

δβ

δβ

dy
dxds

aaqqa
aaaqqa

aa
pppql −

+++
+−+

+
=−−= 1but  ;

))4(2(
))4(2(2

)4(
1 ;

hence

))4(2()(
))4(2()(:)4(

22

22

)(
aadxdsady
aadxdsadyaaa

D
ayc

+−−+

++−++− =  is obtained for

the heavy sail. [Note the use of l for the natural log
function.]

If the wind is applied downwards along the
direction TM, the force of this on the sail will be as
the square of the sine of the angle AMT : i. e. as

2

2

ds
dx . Therefore put ds

dxd 2N =  and this gives

ds
dx2 +ardx + ayds = Cds. Since moreover ,adx

dsdyr =

it will be  hence ,C2 dsddxaydsddxadsdsdydydx =++

adsdx
ddx

adsdx
ddx

adsadsdxdx
ddx

aydsCds
dy

++− −== .. 11
2  which integrated becomes

.)( 111 lbdslaydscdsl adsdx
adsdx

adsads +−= +−−  Hence
222 )( then ;Let  .or  aabbdsayedxebcabdsbdxaydxcdxdx

adsdx
b
ayc =−=−+=−= +− ,

consequently 
aabbays

abdydx
−−

=
2)(

 as AP is the axis, it is necessary that dy : dx = 0 : 1; if y

= 0,  therefore
e = ± ab. Thus 

)2( byyy
bdydx
±

= . Which is the equation for a catenary and the same

variable quantity a is kept, but not from the weight of a string that may be hanging.
Hence from this example it is apparent that this can happen, for the force of the wind, as
gravity, can produce the same catenary separately.
The normal force is constant too, for

ddx
dsdyrcdxaydsardxbrdsbdsdN ==++=  truly since ,erit  , this becomes

cddxayddxadxdybdsdy =++ , which integrated gives:

. and 

, then ;Let  .

22 )()(

)(

ayaayc

dybyc

ayc
eds

dx

aydxbydscdxcdsacbceadxbds

+−−

+

−

=

−−=+=+=
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Problem. If two forces are applied to any point
whatever M on the curve AMB, [Fig. 11] of which one
is applied along the normal as MN, and the other along
the tangent MT; the equation for the curve is found,
that a perfectly flexible forms.

Solution. Both forces are resolved along the vertical
and horizontal sides [of rectangles],  truly MN into MR
and RN, and MT into MS and TS; Hence dP = MR +
MS and dQ =NR - TS. But MN = dN and MT = dT. Hence

;dQ and P TNTN
ds

dxddyd
ds

dyddxdd −+ ==  from which

ds
dydd

ds
dxdd

r
dxd

r
dyd

ds
dyddddyddxddddxddd TNTNTTNNP +++== +++  . And

ds
dxdd

ds
dydd

r
dRdy

r
dxddd TNNQ −−−= − . From which by substituting these values the

equation is obtainded : 0TNN =++ dsdrdddrd  , or after integration rdN +Tds = Cds;
on account of ddx

dsdyr = , it follows that this becomes Q.E.I.      .CTN ddxddxdyd =+
This equation has this use that, not only is it easy to be applied to a very simple

case, but also it can easily be applied to all cases, but in the general case it is possible to
resolve the forces along the tangent and the normal.  Besides this advantage I think that
there should be caution too on going into a computation, for in place of the vertical and
horizontal components, the most general equation is returned in the most succinct way
by the normal and tangential components, for which moreover this equation arises :

r
v

r
dzdsdrddrddsdrdsdddrdsd ∆=++=++   Zubi ZZTNN 232 .

Problem. To find the general equation for curves,
that strings of any elastic nature should have, having
no forces applied to the individual points.
Solution. In this case both

,0

Hence 0.Q and 0P
23 =++

==

r
dzdsdrddzzrd

dd

suitably arranged from the general equation ;  in
which

 
,0 hence

 :0dT and 0N
223 =++

==

dzddzdsrdrddzzrrddzd

d

which integrated gives .)(or  224222 dzadsdsrddzadsdzdsrrddz −==+  But

. hence ,
2222 )dz-(ads

ddz
dxds

ddx
dy
ddx

ddx
dsdyr

−
===  This with the help of logarithmic integration

gives :

,
222 )(

1
1)(

1
1

bds
dsdxdx

ads
adsdzdz ll

−
−+

−−
−+

−
=  or .FE ryx ν∆=+
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The same equation is found from the first equation found, where
∫ ∫Qdy et  Pdx vanish

and thus there remains .FE ryx ν∆=+  Q.E.I.
Problem. To find the curvature with elasticity
but without gravity, where there is the same
elastic force everywhere [Fig. 13].

Solution. Since the elastic force is the same
everywhere, put

.FE hence and ; r
ayxaν ∆=+=  It is possible to

put  Ex + Fy = Gt, where t can denote the abscissa in place of the other assumed, and
hence ,G r

at ∆=  which equation now allows the elastic curve to be recognised, that
truly in this way can be integrated. Let

.or AFE E
A

E
F

ds
addxydy xdyaddxydsdyxdsdy =+=+

Also let .or AFE F
A

F
E

ds
addyxdx ydxaddyydsdyxdsdy −=+−=+  Consequently on

addition and
integration we have .22 Cyx Fds

Aady
Ed

Aadx
E

Fyy
F

Exx ++=++  Hence 2FEdxds + EExxds +
FFyyds =
2AFadx -2AEady +2EFCds = ds(Ex + Fy)2. Which also gives the elastic curve. Q.E.I.

Problem. To find the curve formed by a  filament AMB of uniform weight and with
the same elasticity everywhere.

Solution. When the string or wire has the same weight[/unit length] everywhere,  dP is
constant, equal to ads : hence P = a and Q = 0. Besides, since the elasticity is
everywhere the same,  put v = b; and the equation becomes

.FE ∫++= asdxyxr
b∆  If as is increased by the constant E then the equation is not

changed,
and it becomes :F-or  F rr

bdr asdxdyasdxyr
b +=+= ∫ ∆∆  and with excess constants

discarded :
.0=++ rr

bdrcdyasdx  But  whichfrom : hence ; 1
dsdy
ddx

rddx
dsdyr ==

. Hence . 32243
3

322

2

3
xdbdybdxddxcdsdyasdsdxdy

dsdy
xddydxddx

dsds
xdydddxddy

rr
dr +=+== −−−  Put dx

=pds,
then .et   and )1( 3 dsddpxddpdsddxppdsdy ==−=  From which by substitution we
obtain

).1()1()1( 22222:3 ppbddpbpdpdsppcdsppaps −+=−+−  Truly there is no agreement
that
it is possible to reduce this equation to construct a solution.

There is this elegant problem remaining, what truly is the curve produced by
perfectly elastic filaments in the plane: and indeed nothing stand out more than a rope,
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which shall be perfectly elastic more than any other [example] and without gravity,
when bend in a fluid of the same specific gravity.
This same problem has been published in the  Act. Eruditorum Lips. A 1724, in order
that the curvature of both elastic and inelastic ropes can be found, truly I know no
more about the solution of this problem than that
given at about the same time as by myself, by the
most distinguished Daniel Bernoulli.

Problem. To find the curve BMA [Fig. 14] that a
planar elastic curve fixed at B forms under its own
weight.
Solution. This follows on from the preceding, only
when the applied weights F and E have disappeared,
where we have this equation ∫= asdxr

b∆ , or by getting rid of superfluous constants,

∫= sdxr
b∆ ,

which as above is reduced as follows:

.)1()1( 222 2
3

ddpppAApdpdsppsp −+=−  But neither
this adaptation is
is able to effect a construction of the curve.

Problem. To find the curve AB [Fig.15] of a filament
fixed at B, but free to be moved by the wind NM.

Solution. Let the force of gravity acting on  M = ads,
and the force of the
wind  .

2

ds
bdy−=

This equation is found
.22 aydsardsdxbrdy +=  The radius of osculation r ddx

dsdy= .

Whereby .seu  . 3223 aydsddxadsdxdybdyddxaydsdxdyardsbdsdy +=+=  Put dx = pdy
then

, ) ob( dpdydyddydxddxdpdypddyddx dy
pdxddx +−==+= − from which pp

dpdyddx += 1  is

found.  With these
factors substituted, the equation becomes :

.et   )1()1(
)1()1( ppapppb

adp
y

dyaydpppapdyppbdy
+−+

=++=+  In which the

indeterminate quantities are separated from
each other, and on account of which the
curve sought can be constructed.
[There is an unused diagram, Fig. 16, at the
end of the pdf file used in this translation;
either this was not used in the original
publication, or a page is missing from the
copy of the original paper. IB.]
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SOLUTIO PROBLEMATIS
DE

Invenienda curva, quam format lamina utcunque
elastica in singulis punctis a potentiis quibuscunque sollicitata.

Auctore
Leonhardo Eulero.

Curva, quam Cel. Jacobus Bernoulli primus et postea plures alii laminae elasticae
incurvatae assignarunt, quaeque nomine curvae elasticae nota est, nonnisi laminae
elasticae gravitatis experti competere ex solutionibus eorum intelligitur. Curvatura
autem laminae elasticae gravis, tametsi haec sola in rerum natura locum obtinere queat,
tamen a nemine adhuc, quantum scio, determinata est. Incidimus nuper Clar. D.
Bernoulli, et ego in hanc quaestionem, eamque non inelegantem existimantes aggressi,
atque solutiones eodem tempore et egregie inter se congruentes consequuti sumus. Cum
vero solutio prima fronte non nihil difficilis inventa visa sit solutionem meam hic
quoque exponere non abs re fore arbitratus sum. Quaestio quidem primum tantum ad
hoc extendebatur, ut inveniatur curva, quam lamina elastica gravis uno termino firmata,
altero potentiam quamvis applicatam habens format. Nunc vero hanc rem generalius
complectar laminam in singulis punctis utcunque elasticam, et praeter pondus appensum
qualescunque applicatas habentem positurus; Idque eapropter, tum, quod, etsi quis unum
vel alterum casum particularem elicuerit, problema tamen  hoc modo perceptum exinde
non adeo facile solvatur; tum propter summam eius universalitatem : etenim non solum
ad curvaturas laminarum quomdocunque elasticarum extenditur. Verum etiam ad curvas
corporum perfecte flexibilium et a potentiis quomodocunque sollicitatorum
accommodari potenst; ita ut ex eo omnium corporum flexibilium curvaturae inveniri
possint. Accedit praeterea , quod solutio problematis hoc sensu accepti vix prolixior
evadat, quam in quovis casu speciali. Ante vero quam ipsum problema aggredi possum,
necesse est nonnulla praemittere solutioni inservientia.

Hypothesis.
1. Si duae virgae Ab, BC in B elatere iunctae a
potentia AD in situm ABC torqueantur, ut ang.
ABa comprehendat. Erit momentum potentiae AD
in B ut vis elastica in B et angulus Aba
coniunctium. Hoc scilicet factum aequipollet facto
ex potentia AD in AB. Assumitur vulgo haec
hypothesis; eius tamen veritas si angulus Aba est
vehementer parvus satis probabiliter potest physice demonstrari.
Lemma 1. Si curvae ANM in puncto quecunque N applicata sit potentia NO, eaque
resolvatur in horizontalem NS et verticalem NR. Erit vis pot. NO ad curvam AM circa
M rotandam seu eius momentum aequale NR.FP + NS.GQ. Ductis MQ, AP
hirizontalibus et AQ, PM verticalibus.

Demonstratio. Potentia NO aequivalet duabus NR at NS simul agentibus. Momentum
vero potentiae NR in M est, ut ex principiis staticis constat, NR.PF; et momentum
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potentiae NS in M est NS. GQ. Ergo cum ambae
potentiae curvam AM versus eandem plagam convertere
conentur, erit momentum ambarum seu momentum
potentiae NO = NR.FP + NS.GQ.     Q.E.D.
Lemma 2. Si curvae AM in singulis punctis N potentiae
parallelae perpendiculares nimirum un AP, applicatae,
fuerint determinatae a curva BG, ita ut in punctum N
agat potentia. quae est ut QN. Construaturque alia curva
AVT, cuius applicatae QV sint ut areae AQHB. Erit
summa momentorum  omnium potentiarum ad curvam
ANB circa M flectendam ut area APT.
Demonstratio. Momentum potentiae QH in M est
QH.PQ. Puncto M assumatur proximum m.
ducaturque applicata mp;  erit momentum potentiae
QH in m aequale QH.Qp. Ergo differnetia horum
momentorum est QH.Pp. Idem cum de singulis
potentiis valeat, erit differentia omnium
momentorum in M et in m agentium aequalis areae
ABGP in Pp seu PT.Pp, i. e. elemento PptT. Si iam
ponatur summa omnium momentorum in m = M +
d M, quarum differentia est d M , erit igitur d M =
PptT, consequenter M erit = areae - APT. Q.E.D.
 Dicantur iam abscissae in AP assumtae, x, et
repondentes applicatae in curva AT, P; Designat
autem P summam omnium potentiarum in x contentarum; ergo summa omnium
momentorum in M  = ∫ dxP .

Problema Generale.
Sit lamina BMA utcunque elastica et in singulis punctis a potentiis quibusuis

follicitata, fixa autem ea sit in B, atque in A duo pondera appensa habens E et F, quorum
E secundum verticalem AE, et alterum F secundum horizontalem AC trahit. Oportet
determinare curvam AMB iuxta quam lamina hoc modo sollicitata flectitur.

Solutio. Sumatur horizontalis AC pro axe, in quo capiantur abscissae AP = x et
AM = s, cuius elementa constantias accipiantur. Ponatur radius curvedinis in M = r; erit
angulus, quem duo elementa in M constituunt,
reciproce ut r. Designetur vis elastica in M litera v; erit
vis hunc angulum producens ut r

v (hyp.) Huic ergo
proportionalis esse debet summa omnium
momenturum in M agentium tam ortorum a singulis
potentiis curvae AP applicatis, quam a ponderibus E et
F. Est autem momentum potentiae seu ponderis E in
M  = E.AP = E.x (Lemma 1.) et ponderis F momentum
est F.PM = Fy (cit.) Praeter haec sollicitatur punctum
M etiam a potentiis singulorum punctorum arcus AM.
Iis in verticales secundum AE et horizontales secundum AC agentes resolutis, vocetur
summa omnium verticalium P, et horizontalium ab A in M usque, Q. Erit summa
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momentorum potentiarum verticalium = ∫ dxP  (Lem.2.) et summa momentorum

potentiarum horizontalium = ∫ dyQ . Erit itaque tota vis in M agens = Ex + Fy + ∫ dxP  +

∫ dyQ . Cui cum proportionalis esse debeat r
v , habebitur haec aequatio

∫∫ +++= .QdyPdxFyExr
v∆  Si loco P + E scribatur tantum P, et Q loco Q + F; habitur

∫∫ += QdyPdxr
v∆ , sit ∫ ∫ +=+== .seu  erit Z ; QdyPdxdZQdyPdxZr

v∆  Ex qua natura
curvae AMB cognoscitur. Q.E.I.

Ut usus huius aequationis melius percipiatur, ad casus particulares eam
accommodabo, eosque partim iam tractatos, ut congruentia eorum perspici queat, partim
vero ad nondum agitatos, ut plurimas a natura formatas curvas adhuc ignotas in lucem
producam.

Problema. Invenire aequationem generalem pro curvis, quas corpora perfecte
flexibilia a potentiis quomodocunque sollicitata formant.

Solutio. Obtinebimus corpora perfecte flexibilia, quando vis elastica ubique
evanescit, tum enim vel minima vis duo elementa ad quemvis angulum inclinare valebit;
Exprimitur autem quantitas vis elasticae litera v ponatur igitur v = 0 et resultat aequatio
 0 = Ex + Fy + ∫ dxP  + ∫ dyQ , quae ergo satisfaciet quaesito. Q.E.I.

Ut autem P et Q , quippe quae a summatione pendent, eliminentur, et loco eorum
dP et dQ producantur, quae denotant potentias ipsas in punctis M applicatas,
differentietur aequatio et habebitur  E.dx + F.dy + P.dx + Q.dy = 0.  Ergo

0FQ EP =+++ dy
dx

dy
dx . Unde 0dQ 22

EEdydPPPdyd =+++ −−
dy

dxddydx
dy

dxd
dy

dxddydx . Sed cum ponatur

ds constans erit dy
ddxdsdxddydyddxdxddxdyddy 2et  , =−−= . Quare

0dQ PEdPd
3

2

3

2
=+++ dy

dxd
dy

ddxs
dy

ddxs .  Et ex hac 02

2

2

3 PQ =+++
ddxds

dxdyd
ddxds
dyd EP . Unde porre

.022

3222

2

2

22

332

2

3 23 =++++ −+−

ddxds
xdxddPdyddxdPdydxdPdydxddyd

ddxds
dxddPdy

ddxds
dxdQdyddxddydQdy

ddxds
ddQdy dP

Ex hac prodibit haec :

.0PP

P3PQQ3Q
3222

2223323

=−+

−+−−

xdxddydddxdsd

ddxdxdddxdxdddyxddyddydxddxdddxdddy

Haec aequatio fiet multum simpicior, si introducatur radius osculi r, que est

ddy
dsdx

ddx
dsdy −==  tunc enim prodibit

.QQ2QPP2P0 drdyddsdxdrdydddrdxddsdydrdxdd +−+++=  Quae aequatio
omnes possilibes curvas, quas corpora perfecte flexibilia quomodocunque sollicitata
formare possunt sub se comprehendit.

Probl.  Invenire curvam, quam format filum perfecte flexile, cui in singulis
punctis potentiae verticales sunt applicatae.

Solut.  Evanescunt igitur hoc in casu potentiae horizontales, unde Q = 0. Quare
 0 = Ex + Fy + ∫ dxP ; et hinc  0 = Edx + Fdy + Pdx = 0; porroque ;02 =+ −

dx
dyddxFdxddydP
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seu .22 ddxFdsdydPdx =  Est vero ,rddx
dsdy = unde .32 FdsrdPdx =  Et ex hisce

aequationibus curva in exemplis specialibus cognoscetur. Q.E.I. Dat haec aequatio
omnis generis catenarias.

Sit dP = ads seu potentiae sint ubique
aequales, prodire debet catenaria communis pro
catenis aequaliter crassis. Habebitur autem

;2 Fdsddxdyadx =  quae integrata dat

dx
dsay FC−= seu neglecta constante C, quae naturam

curvae non immutat, et loco F posito -F obtinetur
dsaydx F= , et hinc 

)( FFaayy
Fdydx
−

=  quae est

aequatio pro cantenaria [Fig. 5], hoc modo
applicanda  : ob F negative assumptum, pondus ea
littera indicatum trahere debet in plagam contrariam ei , versus quam F trahere initio
ponebamus. Ex A demittatur verticalis  Aa = F:a, et horizontalis aP erit axis curvae
AMB, quae erit convexa versus aP et tangentem in A habebit parallelam axi aP, erit
igitur AB catenaria vulgaris.

Sit , ergo Ferit  ,P 2

2

2
F23

dx
dsayddxdsdyadxadxd −===  seu sumpto F negatio erit

222 FF2 dydxaydx =− . Unde 
)2(

F
Fay

dydx
−

=  quae est aequatio pro parabola appoloniana,

ut constat.
Problema. Invenire curvam, quam format filium flexile, cui in singulis punctis

potentiae normales sunt applicatae.
Solutio. Sit curva AMB, et ut supra AP = x,

PM = y; et AM = s. Sit potentia in M normalis MR =
dN resolvatur ea in verticalem et horizontalem , erit
verticalis ds

dxdd NP =

et horizontalis ds
dyddQ N=  unde ∫= ds

dNdxP  et

∫= ds
dNdyQ ; atque  P Nd

ds
dxddNdxddd += et

;Nd
ds

dyddNdydddQ +=  quibus valoribus substitutis in aequatione generali pro corporibus
perfecte flexibilibus; sed loco ddP, ,ds

dxddN
r

dNdx +  ,ds
dxddN

r
dNdx + ut radius osculi in

computum ducatur; invenietur .CN unde 0NN dsrdrdddrd ==+  Est igitur potentia
normalis reciproce ut radius osculi. Q.E.I.

Convenit haec proprietas cum iam inventis, quare non immorabor derivandas ex
ea curvius linteariis, velariis, et quae ex hac proprietate consequuntur.

Haec duo postremo problemata iam dudum a Geometris solutiones nacta sunt.
Quando scilicet potentiarum directiones vel inter se parallelae vel in curvam formatam
normales sunt. Quomodo autem curvae corporum flexibilium, quibus potentiae
qualescunque sunt applicatae, inveniri debeant, nemo adhuc
mostravit, praeter Celeberrimum Iac. Hermannum, cuius in Phoronomia extat huius
problematis solutio.
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Problema. Invenire curvam, quam format filum AMB perfecte flexile, cui in
singulis punctis M applicatae sunt duae potentiae
verticales et normales.

Solutio. Resolvatur normalis MR, in laterales
MN et MK, quarum MK sit verticalis et MN
horizontalis. Erit

MN.Qet MK MLP =+= dd Dicatur

.L  LP ulterius

Et .Qet    L P unde ;

 MNet  MKErit  N.MRet  ML

NN

NNN

N

ds
dxdd

r
dyd

ds
dxddNdNddx

ds
dxd

ds
dxd

ds
dyd

ds
dxd

dddddd

ddd

ddL

++=+=

=+==

===

+

.dd ds
dydd

r
dxd

ds
dyddddyd NNNNQ Atque +== +  Quibus varoribus substitutis obtinebitur

,0L2LLNN =++++ dsdyddxdrdrdxddrdsdddsdrd  seu
.0LLNs =++ ∫ dsdydrdxddrd  Unde natura curvae patebit. Q.E.I.

Ponatur potentia verticalis dL, proportionalis
elemento curvae ds. Ut habeatur filum ubique
aequaliter crassum et grave. Sit igitur dL = ads
habebitur

.CNdat  ,per  divisa quae
,C 22

dsaydsardxrdds
dsaydsardsdxrdsdN

=++
=++

Sit AMB lintearia gravis usque in BI liquore
repleta, erit vis normalis dN ut MI, sit PI = b;
 erit MI = b - y. Ponatur igitur dN = b - y ; erit

.C
seu Cdat  integrata

quae ,C unde ;

autemEst  .

2
1

dxaydxe)ds(yy-by
dxedsaydxyydsbyds

ddxayddxadxdyydsdybsdyr

Cdsaydsardxyrdsbrds

ddx
dsdy

−=+

+=+−

=++−=

=++−

Mutatis constantibus, ut numeri evitentur : haec aequatio transibit in sequentem

22 )()(

)(

cbyyycay

dyebyyydx
+−−−

+−=  ut haec aequatio pro axe AP

valeat; oportet ut evanescente y fiat dy:dx = 0:1; eritque
cc = ee, et c = ± e. Si a fiat = 0, habebitur aequatio pro
nota lintei curva.

Quaeratur curvatura velariae gravis uniformis
AMB. Irruat ventus secundum TM parallelam axi AP.
Erit eius vis, qua in curvam normaliter agit ut quadratam
sinus anguli AMT id est ut 2

2

as
dy ponatur itaque ds

dyd
2

N = ,

habebitur dxaydsardxds
rdy C

2
=++ . Cum autem sit

.Cerit  3 dsddxaydsddxadsdydxdyr ddx
dsdy =++=  Est autem dx

dyddyddx −=

ergo 0C 22 =+−+ dsddyaydsddyadsdxdxdy ; ponatur ds = pdy; erit
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,)1(1erit   Unde.1et  aydpcdpdyppapppdyppdydxddy p
dpdy −=−+−−==

seu ;erit  ;1Sit  . 44
4

)1()1( aqaqq
qdq

ayc
dy

ppappp
dp

ayc
dy qppp

−+
−

−−+−− =−=−=  resolvatur

4qq + a - aq4 in duos factores 1 + βqq et a + δqq; ubi est

==+++=−

==

+=+=++=

+
+++−

+
+−

+
+−−

++−

)4(
)()1(

22a
1

)4(
)4(24

)4(
)4(24

1
42

)()1()(-

igitur Erit  .et  

 ubi ,erit  hincEt  .)(4-2et  )1(

aa
qqalqqlnm

aa
aa

aaa
aa

qqa
nqdq

qq
mqdq

ayc
dy

aaa

qqalqqlaycl

nm

aa

δβ
δβ

δβ

δβ

δβ

dy
dxds

aaqqa
aaaqqa

aa
pppql −

+++
+−+

+
=−−= 1 autemest  ;

))4(2(
))4(2(2

)4(
1 ; unde habebitur

))4(2()(
))4(2()(:)4(

22

22

)(
aadxdsady
aadxdsadyaaa

D
ayc

+−−+

++−++−  pro velaria

gravi.
Si ventus incidat deorsum iuxta TM, erit

eius vis in velum ut quadratum sinus anguli AMT :
id est ut 2

2

ds
dx . Ponatur igitur ds

dxDN 2
=  habebitur

ardx + ayds = Cds. Quia autem ,adx
dsdyr =

erit  unde ,2 Cdsddxaydsddxadsdsdydydx =++

adsdx
ddx

adsdx
ddx

adsadsdxdx
ddx

aydsCds
dy

++− −== .. 11
2  quae integrata abit in hanc

.)( 111 lbdslaydscdsl adsdx
adsdx

adsads +−= +−−  Ergo
222 )(erit  ;Sit  .seu  aabbdsayedxebcabdsbdxaydxcdxdx

adsdx
b
ayc =−=−+=−= +− ,

consequenter 
aabbays

abdydx
−−

=
2)(

 ut AP sit axis, oportet sit dy : dx = 0 : 1. si y = 0 erit ergo

e = ± ab. Ideoque 
)2( byyy

bdydx
±

= . Quae est aequatio pro

catenaria eademque manet quomodocunque a varietur, ut
ergo non a pondre fili pendeat. Hoc autem ita accidere
oportere ex eo patet, quod tam vis venti, quam gravitatis
seorsum eandem catenariam producant.

Sit vis normalis quoque constans, nempe

ddx
dsdyrcdxaydsardxbrdsbdsdN ==++=   veroquia ,erit  ,

erit
cddxayddxadxdybdsdy =++ , quae integra dat

. atque 

,erit  ;Sit  .

22
)()(

)(

ayaayc

dybyc

ayc
eds

dx

aydxbydscdxcdsacbceadxbds

+−−

+

−

=

−−=+=+=

Problema. Si curva AMB in quovis puncto M duae potentiae applicatae fuerint ,
[Fig. 11] quarum altera normalis in curvam ut MN, altera tangentialis MT; invenire
aequationem pro curva, quam format filum perfecte flexible.
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Solutio. Resolvantur ambae potentiae in laterales, quarum una verticalis altera
horizontalis, nempe MN in MR et RN, et MT in MS et TS; Erit dP = MR + MS et dQ
=NR - TS. Sit autem MN = dN et MT = dT. Erit ;dQet  P TNTN

ds
dxddyd

ds
dyddxdd −+ ==  unde

ds
dydd

ds
dxdd

r
dxd

r
dyd

ds
dyddddyddxddddxddd TNTNTTNNP +++== +++  . Et

ds
dxdd

ds
dydd

r
dRdy

r
dxddd TNNQ −−−= − . Quibus valoribus substitutis obtinebitur sequens

aequatio 0TNN =++ dsdrdddrd seu post integrationem rdN +Tds = Cds; unde ob

ddx
dsdyr = , erit Q.E.I.      .CTN ddxddxdyd =+

Haec aequatio hunc habet usum, ut, cum admodum simplex sit, facile ad omnes
casus applicari possit, sed nihilominus generalis est, etenim omnis potentia in normalem
et tangentialem resolvi potest. Praeterea istud adhuc monendum esse puto, aequationem
generalissamam quoque hoc modo succinctiorem reddi, loco verticalium et
horizontalium normales et tangentiales in computum ducendo, haec autem oritur

r
v

r
dzdsdrddrddsdrdsdddrdsd ∆=++=++   Zubi ZZTNN 232 .

Problema. Invenire aequationem generalem
pro curvis, quas fila utcunque elastica in singulis
punctis nullas potentias applicatas habentia, formare
debent.

Solutio. Erit ergo hoc in casu et

,0

 Ergo0.Qet  ,0P
23 =++

==

r
dzdsdrddzzrd

dd

ex aequatione generali modo concinnata; erit enim
in ea

 
,0 unde

 :0dTet  0N
223 =++

==

dzddzdsrdrddzzrrddzd

d

quae integrata dat .)(seu  224222 dzadsdsrddzadsdzdsrrddz −==+  Est autem

. unde ,
2222 )dz-(ads

ddz
dxds

ddx
dy
ddx

ddx
dsdyr

=
===  Hac ope logarithmorum integrata obtinebitur

,
222 )(

1
1)(

1
1

bds
dsdxdx

ads
adsdzdz ll

−
−+

−−
−+

−
=  seu .FE ryx ν∆=+

Eadem aequatio invenitur ex primo inventa aequatioe, ubi
∫ ∫Qdy et  Pdx evanescunt adeoque restat

.FE ryx ν∆=+  Q.E.I.
Problema. Invenire curvaturam elateris

gravitatis expertis, et ubiuis eiusdem vis
elasticae.

Solutio. Cum vis elastica ubique sit
eadem ponatur

.FE eritque ; r
ayxaν ∆=+=  Poni potest loco Ex
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+ Fy = Gt, ubi t denotet abscissam alio loco assumtam, eritque ,G r
at ∆=  quae aequatio

praebet curvam elasticam iam cognitam, hoc vero modo integratibitur. Erit
.seu AFE E

A
E

F
ds

addxydy xdyaddxydsdyxdsdy =+=+

Etiam autem est .seu AFE F
A

F
E

ds
addyxdx ydxaddyydsdyxdsdy −=+−=+  Consequenter

addendo et
integrando habebitur .22 Cyx Fds

Aady
Ed

Aadx
E

Fyy
F

Exx ++=++  Ergo 2FEdxds + EExxds +
FFyyds =
2AFadx -2AEady +2EFCds = ds(Ex + Fy)2. Quae dabit etiam elasticam. Q.E.I.

Problema. Invenire curvam quam format filum, AMB
aequabiliter grave, et aequabiliter
ubique elasticum.

Solutio. Cum filum sit ubique aequaliter grave, erit dP
constans, nempe = ads : unde P = a et Q = 0. Praeterea
quia elasticitas ubius eadem , ponatur v = b; erit

.FE ∫++= asdxyxr
b∆  Augeatur as constanti E et aequatio

non immutabitur, eritque :F-seu  F rr
bdr asdxdyasdxyr

b +=+= ∫ ∆∆  atque abiiciendis
superfluis
constantibus .0=++ rr

bdrcdyasdx  Est autem quoex  : ergo ; 1
dsdy
ddx

rddx
dsdyr ==

. Ergo . 32243
3

322

2

3
xdbdybdxddxcdsdyasdsdxdy

dsdy
xddydxddx

dsds
xdydddxddy

rr
dr +=+== −−−  Ponatur

dx =pds,
erit .et  et  )1( 3 dsddpxddpdsddxppdsdy ==−=  Quibus substitutis habebitur

).1()1()1( 22222:3 ppbddpbpdpdsppcdsppaps −+=−+−  Hanc vero aequationem
nullo pacto
eo reducere potui, ut construi  possit.

Caeteum elegans est hoc problema, quod veram curvuam tam filorum perfecte
flexibilium
quam laminarum elasticarum exhibeat : etenim nullus extat funis, qui perfecte sit
flexilis, neque ulla lamina elastica, quae non sit gravis, nisi forte in fluido aequalis
gravitatis specificae flectatur.
Idem hoc problema in  Act. Efuditorum Lips. A 1724 propositum est, ut curvatura
funis elastici seu
non perfecte flexilis inveniatur, nec vero quantum scio solutionem hucusque ullus
dedit, praeter Clar.
Dan. Bernoulli, qui eadem propemodum tempore, quo ego, solutionem nactus est.

Problema. Invenire curvam, quam format lamina elastica BMA in B fixa
proprioque pondere
incurvata.

Solutio. Fluit ex praecedents, ubi duntaxat F et E pondera applicata evanescere
debent,
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quare haec habebitur aequatio ∫= asdxr
b∆ seu neglectio superfluis constantibus

∫= sdxr
b∆

quae ut supra ad sequentem reducitur .)1()1( 222 2
3

ddpppAApdpdsppsp −+=−  At
neque haec
ad construendum accommoda effici potest.

Problema. Invenire curvam fili AB in fixi in B liberi, agatati a vento NM.
Solutio. Sit vis gravitatis in M = ads, et vis venti .

2

ds
bdy−=  Inveniatur haec

aequatio
.22 aydsardsdxbrdy +=  Est r  radius osculi ddx

dsdy= .
Quare

.seu  . 3223 aydsddxadsdxdybdyddxaydsdxdyardsbdsdy +=+=  Ponatur dx = pdy erit
, ) ob( dpdydyddydxddxdpdypddyddx dy

pdxddx +−==+= − ex qua invenitur .1 pp
dpdyddx +=

His factis
substitutionibus orietur aequatio

.et   )1()1(
)1()1( ppapppb

adp
y

dyaydpppapdyppbdy
+−+

=++=+  In qua

indeterminatae sunt a se invicem separatae, et propterea curva quaesita constui potest.


