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When  differential equations of the second or of some higher degree present 
themselves for analysis, there are two ways in which they can be re-

arranged for their solution. In the first place the analyst inquires whether these are ready 
to be integrated :  if this is so, then the required integral can be found. Moreover, for an 
integration which is either absolutely impossible, or that seems to be even more difficult, 
the analyst tries to reduce these to differential equations of the first order ; obviously 
analysts are able to judge more easily from these whether a solution can be constructed ; 
and no differential equations other than first order, up to the present, can be constructed 
by known methods. As far as this is concerned, it is not the intention of this dissertation 
to consider the solution of first order equations; but rather [to establish] how differential 
equations of higher degree, especially how those of the second degree can be reduced to 
equations of the first degree; this is to be explained in the following by a certain unusal 
method which is of the widest applicability.  

2. Now indeed mathematicians, when they have come upon differential equations of 
the second or higher degree, on many occasions have reduced these to differential 
equations of the first degree, and then constructed solutions;  as one can see from the 
solutions of the catenary, [or problems involving] elastic shapes, projectiles in media with 
resistance, and of many other curves, for which first order equations have been found 
from second or third order equations. Indeed most of these are themselves integrable, but 
yet these are easier to integrate after they have been reduced to first order. Moreover the 
method of [constructing] these equations has thus been by comparison [of quantities], so 
that a distant or even more distant [value of a] variable can be ignored, and the equations 
are formed from so many differential ingredients of this or these differences of 
differentials [i. e. for first or second order differential equations].    

3. However in a difference - of - differentials equation [which we will usually simply 
call a second order differential equation in this translation: the independent variable is the 
one with the first difference considered constant] with one or the other variable missing : 
it is easy to simply reduce the differential equation by substituting in place of a missing 
quantity a factor from a certain new variable in another differential.  For by this 
reasoning, if a certain constant differential quantity were put in place, the difference of 
the differentials is simply found for the differential;  and a differential equation of the 

first order is obtained. As for example in this equation : , where 
P and Q signify some functions of y, and dy is put constant. Since v itself shall not enter 
the equation, put 

ddvdvdvdy nnn 2QP 

dzdyddvzdydv  then ,

dzdyzdyz nnn 12nQ 

dzzn 2

. With these substituted, the equation itself 

becomes : , and with this divided by dyn-1 :  

; which is a simpler differential equation. 

dynP

dyn zdy QP 
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4. Except for equations of this kind, no one at any time hitherto as far as I know, has 
been able to reduce difference - of - differential  equations to first order differential 
equations, except perhaps these that are completely ready to be integrated. With the 
method I present here, by which indeed not all but nevertheless innumerable second order 
differential equations in which other variable terms are present, can be reduced to simpler 
differentials. Thus truly for these to be reduced that I can change,  I can transform these 
into other forms by a certain substitution, in which the other variable is missing. For with 
this done by means of the substitution, these equations set out in the preceeding § are 
entirely reduced to first order differentials.  

5. For now I will observe a property of the exponential quantity, or a power of that 
dignified number, the exponent of which is a variable with the raised quantity remaining 
constant if it is to be differentiated, and again differentiated, then the finite variable of the 
exponent itself always remains unaffected ; and the differentiated parts are factors from 
the differentiation of the whole exponent. A quantity of this kind is cx where c can denote 
the number, of which the logarithm is one;  the differential of this is cxdx, the second 
order differential is cx(ddx + dx2), where only x in the exponent enters into the 
calculation. I have examined these, considering if exponentials of this kind could be 
substituted in place of indeterminate variables in second order equations : then the 
variables themselves are only present in the exponentials.  Where it should be noted,  as 
this exponential [function] can be applied in place of the indeterminate [variable] 
quantities by the substitution of a factor, that they can be removed by division; by this 
method even other indeterminate variables can be removed from the equation, as long as 
the differentiated quantities of these remain.   

6.  This operation does not indeed succeed with all equations;  nevertheless I have 
observed that three kinds of second order differential equations are to be admitted.  The 
first kind consists all these equations which only have two constant terms. Another 
consists of these equations, in which the indeterminate individual terms of equal 
dimension [i. e. having the same power] constitute a number: and truly not only the 
indeterminates alone, but also the differential coefficients of this and the order of each 
single dimension set up is to be judged. For the third kind I refer to these equations, in 
which the individual terms with other indeterminates maintain a number of the same 
dimension; they all follow the same line of thought, concerning the manner in which the 
the dimension they have produced is judged. Therefore, I will demonstrate here how to 
make the reduction for all the equations of these three kinds.   

7. All the equations pertaining to the first kind are to be understood under this general 

formula : , where dx is put constant [i. e. if dx is constant, then x is 
the independent variable running along the x-axis ]. Even although in some equations 
neither dx nor dy can be taken as constant ; but each depends on a certain other variable, 
with which there is no difficulty by the known method, because the constant was a 
differential made into a variable and likewise for the other constant.  

ddydyydxax pnpm 2

Truly in order to reduce this equation, I put x = cv, and y = cvt. Hence dx = cv dv, and 
dy = cv(dt + tdv). And hence ddx = cv(ddv + dv2) and  
ddy = = cv(ddt + 2dtdv + tddv + tdv2). But since dx is made constant then ddx = 0, and 
thus ddv = -dv2. With this substituted in place of ddv, we  have 
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 ddy = cv(ddt + 2dtdv + (1 - ) tdv2).  These values can be put in place of x and y in the 
proposed equation, and it is transformed into this equation:   

))1(2()( 22)1()( tdvdtdvddttdvdttcdvac pnvpnpppmv    . 

8. Now  can be determined thus, as by division the exponential terms can be taken 
away.  In order that this can be done, it is necessary that v(m + p) = (n + p - 1)v, hence 

on collecting terms, pm
pn

 1 . Therefore the above equation with  determined is 

changed into the following : )2()()( 2121 tdvdtdvddttdvdttdv pm
nmpnpp

pm
pn





   . 

Which might have been found immediately from the proposition, if I had put  
x = c(n + p - 1)v:(m + p), and y = cvt. But n + p - 1 is the number of dimensions which 
constitutes y; and m + p which constitutes x [from the original d.e.]. Hence in which case  
the particular  that is easily determined could have been substituted straight away.  In 
the equation found, in place of v, put dv = zdt, then ddv = zddt + dzdt, but 

2212 dtzdvddv pm
pn


  . Hence 21 zdtddt pm

pn
z

dzdt

  is found. With these substituted 

there emerges : )2()()( 2122121 tzzdtzdtzdttzdtdttdtza pm
nm

z
dzdt

pm
pnpnppp

pm
pn








  . 

Which divised by dtp-1 gives )()1()( 212121 dttzzdttztdtza pm
nm

z
dz

pm
pnmpnpp

pm
pn








  .  

9. Therefore the proposed general equation  has therefore been 
reduced to this first order differential equation : 

ddydyydxax pnpm 2

)31 dzdttzpm
nm 
()1()( 321211 dtzztzdtza pm

pnmpnpp
pm

pn  



 , with the equation found 

multiplicatied by z. This equation can be found from that [first equation] by a single act, 
by  being put in place of v in the first equation. Hence x and y become 

: . If from the differential equation found, the 
proposed second order differential equation can be found again, we may see what kind of  

substitution in place of z and t ought to be used. When then 

: whereby . Hence we have . Hence,  

since this gives 

zdt

c n (

 zdt x
c

tcyx zdtpmpmzdtp    )()(:)1  and 

 )1(:1  pnc xy npm (:)( 

 )1(:1  pnxdt x

 zdtpncx )1(

( yxttp )1  )1(:)  pnpm

 zdt  lxpn 1
1 ; hence xpn

dxzdt )1(  . But 

dxyxpn
pm
1
)( 


dy) x (dt pnpm 1(:)  pnpnm )1(:)12(  . Consequently it is found that   

])()1[(: )1(:)()1(:)1( dxyxpmdyxpndxz pnpmpnnm   . Moreover it is evident, 
that if z in t or t in z can also given a relation, as  x and y have between each other, then it 
can be found. [Note that a : b means a/b.] 

10. We can demonstrate these which have been found in general by some particular 
example. Let xdxdy = yddy, which is reduced on division by dy, to this equation 
 xdx = ydy-1ddy. For this adaptation from the general equation, we have placed  
a = 1, m = 1, p = 1, n = 1. With these substituted in the first order differential equation  
that is obtained, to which the proposed equation is reduced: 

)()1( 3
2
12

3
31

2
1 dzdttzdtztztzdt   , which will become  

. The proposed xdxdy = yddy is reduced to this 

equation if  Therefore the construction of the 

tdzdtztdttzdttzdtz 23 32232 

    toequal made is cx zdt . and 2 tcy zdt
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proposed equation depends on the construction of the differential equation found; if one 
can be done, then so will the other; for if this can itself be integrated, then that too will be 
integrated.  

11. The second kind of difference - of -differentials equations [i. e. second order d. 
e.'s], that I can reduce to first order differential equations by my method, embraces these, 
which maintain a number of the same dimension for the individual terms, of which the 
variables and their differential terms are in agreement. The general equation pertaining to 

this is the following : . With the individual 
terms of this equation, the variables have a single dimension: and dx is placed constant. 
Although this equation truly is agreed upon from only three terms taken : nevertheless 
any number of extra terms can be added as you please, with the same operation still 

remaining.  Terms of the form  can thus be added as you please, as 
particular examples, to which the general equation to be reduced can be adapted, with 
more or less terms in agreement. However it is sufficient to take three terms, as I have 
said : since the method does not require more of the other kind to be reduced.  

ddydydxybxdydxyax qqnnppmm   2121

qqrr dydxyex  21

12. I can reduce the proposed equation with cv substituted in place of x,  and in place of 
y, cvt. Therefore, since x = cv and y = cvt; then dx = cvdv and dy = cv(dt + tdv): and again 

. Since truly dx is placed 
constant, then ddx = 0, from which therefore  ddv = -dv2, on account of which the 

equation is obtained: . These values are put in place x, y, dx, dy and 
ddy in the equation, and it is transformed into the following:  

)2( and )( 22 tddvtdvdtdvddtcvddydvddvcddx v 

)2( dtdvddtcddy v 

)2()()( 212 dtdvddtctdvdtdvtbctdvdtdvtac pqqnvpptmv  

dtdvddttdvdtdvbttdvdtdvat qqnpptm 2)()( 212  

dzdtzddtddv

. Which divided 
with cv removed, results in this equation:  

. In this since v shall be 
absent, I put dv = zdt then  , but ddv = -dv2 = -z2dt2 hence 

z
dxdtzdtddt  2 . Hence the equation is obtained :  

222121 )()( zdtztdtdtdtzbtztdtdtdtzat qqqnpppm   2zdtz
dzdt  or this equation, 

with more order: z
dztqqnpprm ztdtdtzbtztdtzat   212 )()1 zdt ( . 

13. This differential equation of the first order can be obtained from the proposed 

equation in a single act,  if x and y are replaced at once by to 

become thus : ; and 

, whereby . With this called upon 

for use we will have .  

tcycx zdtzdt    and ; 

zdzdt :

)( and tzdtdtcdyzdtcdx zdtzdt  

0 )2  zzdtdzdtzdtt ddt 

 ):( 2 zdzdtzdtcddy zdt  

( cddx zdt zdt 2

This example is to be considered:   , it can be changed into 

. With this brought together with the general equation, there becomes :  
a = 1, b = 0, m = a, and p = 2. If  this equation is therefore reduced as with the general 

formula, this equation is found :  . Or this: . 
[These sorts of constructions] may be permitted, if the construction and a second order 
differential equation can to be made.  It is to be observed that nearly always one comes 

21 dxxddyy  

dzzdtdtz 21 

21dxyxddy  

zt : dzdtzdtzt  231
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upon differential equations of such a kind that certainly they can only be resolved with 
difficulty, or which absolutely defy resolution.    

14. I insert another example, , which adopts this form of the 

general equation: . Here the general equation is reduced,  

ddyyydxxdxdy 22 

ddydx 21ydxdyxy  2

and a = 1, m = 1, p = 1, b = -1, n = 0, q = 2.  Therefore the proposed example answers to 

the following differential equation : . This is 

multiplied by t2z, and  or  is 

obtained, which on separation gives and on integration 

zdzzdtdtzztzdtt t :)1( 212  

dztdttztdtz 2223  dtztdtz 22 
tttdtzdz :)1(: 22 

tdtzdtz 32  dzt 22 

 - 1: z = t + 1 : t - a or atz - t =t2z + z. Truly put z = dv : dt. Hence atdv - tdt = t2dv + dv, 
or dv = tdt(at - tt - 1). Since indeed  cv = x then v = lx and t = y : x hence dv = dx : x and 
dt = (xdy - ydx) : xx consequently ydy + xdx = aydx. This equation can be integrated 
again, where truly I only note the case that if a = 0 then it will pass over into the equation 
of a circle.  

15.   I now accept the case where there shall be more terms, as in the general equation.  

. This exemple can be 
reduced in the above manner. With dx placed constant,  there remain the same 
substitutions of course, x = cv, y = cvt; dx = cvdv; dy = cv(dt + tdv) and ddy = cv(ddt + 
2dtdv). Truly ddv = -dv2. With these put in place and with the equation put in order, it is 

found that . Since here v is to be 
missing, put dv = zdt, then as before the equation will be : ddt = -zdt2 - dxdt:z. After that 
this equaton of the reduced order is found : dt + 2tzdt - tdx + ttdz = 0. Which, since z has 
only a single dimension, can be separated by the method set out by the celebrated Johan 
Bernoulli in the Actis Lips. But without any substitution, this equation and these of a 
similar kind, can be integrated straight away or reduced to an integrable form, by the 
following method.  

0222233  dxddyydxddyyxdyyxdxyxdxdyxxdyyydx

02 2223  ttdvddttdvddttdtdvttdvdvtdtdt

16. Our equation can be reduced to this : 01
2   ttt

dt
t
zdtdz , in order that dz is affected 

by the coefficient that it takes, by which z is affected, truly 1
2
t
dt  with the integral of this is 

expressed by   12 t
dt  . Now the proposed equation is multiplied by  1

2
t
dt

c and we have:   

01
21

2

1
1

22  
  

 


ttt
dtc

t
zdtc t

dt
t
dt

t
dt

dzc . Moreover the equation of the integration has been done, 

indeed the integral of the first two terms is zc t
dt 1

2
. Therefore azc ttt

dtc t
dt

t
dt

  
   1

2
1

2
. But  

)1(1   tlt
dt hence 22

)1(1   tc t
dt

. Thus azt t
dtt    )1(2)1( , and hence 

. By this method all the differential equations for which either of the 
variables never has more than one dimensions, can be integrated or they can even be 
arranged to be reduced. Here, regarding the industrious method I have used, from which 
more can be understood of how great the uses of the exponential function shall be in 
solving equations.  

alttzt  2)1(

17. The equation arrived at is this  . This can be reduced further,  in 
order that an equation can at last be obtained between x and y : since dv = zdt then 

alttzt  2)1(
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 z = dv : dt; on account of which the equation will be changed from 

 to this adtdtlttdtdvt  2)1( 2)1( 


t
dtlttdtadtdv . Which again allows integration;  the 

integration truly has this form )1( 
 t

tlttav , indeed with a constant added has this form,   

)1( 
 t

tltbttabv . Since truly x = cv; then v = lx. And since y = cvt then  y = tx and 

therefore  t = y : x. The following equation is obtained with these substituted :  

xy
byyaxbxlx 
 ylxyly

1

. From which this equation arises : (b - a)x + (1 - b)y = yly - xlx. For 

the sake of brevity, put b - a = f, and 1 - b = g;  then the equation becomes : 
 fx + gy = yly - xlx. Which is the integral for the proposed equation in §15. If we put 
 f = 0, and g = 0, then yly = xlx. From which, with the numbers to be taken [from the 
logs], the equation yy = xx is found.  

18. Here I relate the method by which a third kind of equation can be reduced, these 
are embraced, in the individual terms of which each variable maintains the same number 
of dimensions. Here there are two cases to be distinguished, as either with the differential 
of that variable itself of the same dimensions put constant everywhere,  or otherwise. In 
the first case, consider the following general equation :  

. In which x hs the dimensions m in each term, 
amd dx is put constant. Moreover, P and Q signify some functions of y itself. This 
reduction can be effected with the help of a single substitution ; for x can be made equal 
to cv and dx = cvdv and ddx = cv(ddv + dv2); hence ddv = -dv2. From these changes made  

 is obtained. Obviously, after it has been divided by 
cmv. 

ddydxdydxxdyx mbmbbmmm   22 QP

ddydvdydvxdy mbmbbmm   22 QP

19. Since in the equation found, v is not kept, for the equation is reduced by 
substituting zdy in place of dv. Then it becomes : ddv =zddy + dydz = -dv2 = -z2dy2. 
Hence ddy = -zdy2 - dydz.z is found. Hence these values found are substituted into the 
equation, in place of dv and ddy, and the following equation is obtained : 

. Which results in this equation, on 

division by  dym+1 :  . Which is of first order, as was 

proposed. It is possible to reach this immediately, if . From which 
we have : 

. 
The values from these are to be substituted in place of x, dx, ddy , and they immediately 
present the equation found . 

dzdyzdydzdyzdy mmmmbmbm 112122 QP  

zdydzdyzdy mmb 11QP  

zddydzdyzdycddxzdycdx zdyzdy 0)( and 2  

dz

x is 

 

 zdyc  toequalput  

zdyddy hence and  zdxdy :2 

20. The other case pertaining to an equation of the third kind considers the following 
general equation :  1 1P Qm m m b b m b mx dy x dx dy dx ddx      . In which equation dy is put 
constant, P and Q designate some functions of y itself. And in order that all the individual 
tems of x are observed to have the dimension m. As before, z is put equal to cv; then dx = 
cvdv, and  
ddx = cv(ddv + dv2). With these substituted in the equation, this equation results on  

division by the factor cmv, . This equatio, in 
order to be further reduced, with v removed,  dv is put equal to zdy since dy is constant, 

ddvdvdvdydvdy mmbmbm 1111 QP  
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and ddv = dzdy. This on account of the this, is finaly changed into : 

.  Moreover this, if it is divided by dym, 

gives the equation: . Therefore construction of the 
proposed equation follows from that found.   

dzdyzdyzdyzdy mmmmmbm 11111 QP  

zdyzdyzdy mb 1QP   dzm 1

21. From these I can observe, it is understood, the manner in which differential 
equations of the second order pertaining to these three kinds ought to be handled to 
reduce them to the first order. I concede that it is indeed very rare to come upon such 
equations,  in which neither variable is missing; However I think that nobody is going to 
argue over this discovery, on account of its usefulness. It may well be the case, as some 
new field of study is opened up, suggesting problems the resolution of which leads to 
such equations. I myself remember when certain physical problems came down to 
resolving this equation  y2ddy = xdxdy, for which then at the time neither by me nor by 
others with whom I communicated, could any way of resolving the problem be found. 
Now truly, since it belongs both to the first and the second kind, a reduction can be easily 
accomplished, as can be seen from §10.  

22. Truly with this besides, concerning the constant to be assumed,  I have brought a 
word of caution : For equations related to the second kind there is nothing between 
whatever differential shall be taken as constant. It can be either the differential of one or 
the other variable, or another differential from both variables with differentials freely 
composed, but which is homogeneous, as the nature of the problem requires. That indeed 
has been the general position from the example; but at the same time it is to be 
understood how, if the constant differential is to be any given quantity, then the equations 
are required to be tractable.  The constant differential is still to be accounted for in the 
two remaining first and the third kinds. Indeed there it is necessary, as the constant can be 
put in place from either differentiable variable. If this is not done by the method 
explained, then the reduction will not succeed.  Here truly the constant ought to be 
unchanged for these cases, and an equation can be transformed into another, in which 
either differentiable variable can remain the same.    

23. The method expounded in this dissertation is concerned with the reduction of 
second order differential equations to simpler differential equations by the substitution of 
suitable exponential quantities for the variables. This truly is of wider application, as we 
have shown here. Endless differential equations of the third order are able to be reduced 
to others which are of second order, with the aid of this method. And in general, 
differential equations of order n are reduced to others of order as much as n - 1. Truly  
equation of this order of the differentials, which are reduced by this method, also are to 
be made up from three kinds, the same as those shown here. From these therefore it is to 
be considered, how much use substitutions of this kind might have in handling first order 
differential equations. But this is not the work to explain many things about these.  
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NOVA METHODUS 
INNUMERABILES AEQUATIONES DIFFERENTIALES SECUNDI 
GRADUS REDUCENDI AD AEQUATIONES DIFFERERNTIALES 

PRIMI GRADUS.  
Auctore 

Leonh. Eulero.  
1. 

M. Sept. 
1728. 

 
Quando ad aequationes differentiales secundi vel altioris cuiuspiam gradus 
perveniunt analystae, in iis resoluendis duplici modo versantur. Primo 

inquirunt, an in promtu sit eas integrare : id si fuerit, obtinuerunt, quod desiderant. Cum 
autem integratio vel prorsus impossibilis, vel saltem difficultior videtur, conantur eas ad 
differentiales primi gradus reducere; quippe de quibus facilius iudicari potest, an construi 
queant ; nullaeque aequationes differentiales, nisi primi gradus, adhuc cognitis methodis 
construi possint. Quod ad illud attinet, de eo hac dissertatione explicare non est 
propositum; quomodo autem aequationes differentiales altiorum graduum praesertim vero 
secundi ad differentiales primi gradus sint reducendae, methodum quandam adhuc 
inusitatam, et quae latissime patet in sequentibus sum expositurus.  

2. Iam quidem saepenumero Mathematici, quando aequationes differentiales secundi 
vel altiorum graduum occurrerunt, eas ad differentiales primi gradus reduxerunt, atque 
deinde constrexerunt; quemadmodum videre licet in constructionibus catenariae, 
elasticae, projectoriae in medio quocunque resistenti pluriumque aliarum curvarum, 
quarum aequationes primo differentiales secundi vel tertii gradus sunt inventae. 
Pleraeque quidem earum reipsa integrabiles sunt, sed tamen eas facilius erat integrare, 
postquam ad differentiales primi gradus fuerant reductae. Earum autem aequationum 
ratio ita est comparata, ut vel ultra vel saltem alterutra indeterminata ipsa desit, earum 
eiusve differentialibus et differentio - differentialibus aequationes tantum ingredientibus.  

3. Si autem in aequatione differentio - differentiali alterutra indeterminata caret: facile 
est eam ad simpliciter differentialem reducere substituendo loco differentialis quantitatis 
deficientis factum ex nova quadam indeterminata in alterum differentiale. Hac enim 
ratione, si constans quoddam differentiale fuerit positum, differentio-differentiali aequale 
invenitur simpliciter differentiale; quo substituto aequatio habetur differentialis primi 

gradus. Ut in hac aequatione P , ubi P et Q significant functiones 
quascunque ipsius y, atque dy constans ponatur. Quia ipsa v non ingreditur aequationem, 
fiat dv . His substitutis ista oritur aequatio 

, divisaque hac per ista ; quae est 
simpliciter differentialis. 

ddvdvdvdy nnn 2Q 

dz P 

dzdyddvxdy  erit ,

dyzdyz nnnn 12nQ dyP dzzdyzdy nn 2Q 

4. Alias aequationes differentio differentiales, nisi huiusmodi, nemo adhyc quantum 
scio, ad differentiales primi gradus unquam reduxit, nisi forre in promtu fuerit eas prorsus 
integrare. Hic autem methodum exponam, qua non quidem omnes, sed tamen 
innumerabiles aequationes differentio-differentiales utut ab utraque indeterminata 
affectae ad simpliciter differentiales reduci poterunt. Ita vero in iis reducendis versor, ut 
eas certa quadam substitutione in alias transformem, in quibus alterutra indeterminata de 
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est. Quo facto ope substitutionis § praeced. expositae eae aequationes penitus ad 
differentiales primi gradus reducentur.  

5. Cum observassem eam esse quantitatum exponentialium, seu potius earum 
dignitatum, quarum exponens est variabilis manente quantitate elevata constante, 
proprietatem, ut si differentientur, denuoque differentientur, semper variabilis finita ipsa 
nonnisi exponentem afficiat; atque differentialia sint facta ex ipso integrali in 
differentialia exponentis. Quantitas huiusmodi est cx ubi c denotet numerum , cuius 
logarithmus est unitas; erit eius differentiale cxdx, differentio - differentiale cx(ddx + dx2), 
ubi x nonnisi in exponentem ingreditur. Haec considerans perspexi, si in aequatione 
differentio - differentiali loco indeterminatarum huiusmodi exponentialia substituantur : 
tum ipsas variabiles tantummodo in exponentibus superfuturas esse. Quo cognito oportet, 
ut ea exponentialia loco indeterminatarum substituenda ita accommodentur, ut facta 
substitutione, ea divisione tolli queant; hoc modo alterutra saltem indeterminata ex 
aequatione eliminabitur, eiusque duntaxat differentialia supererunt.  

6. Haec quidem operatio non  in omnibus aequationibus succedit; verumtamen eam 
tria aequationum differentialium 2di gradus genera admittere observavi. Primum genus est 
omnium earum aequationum , quae nonnisi duobus constant terminis. Alterutrum eas 
comprehendit  aequationes, in quarum singulis terminis indeterminatae aequalem 
dimensionum numerum constituunt : neque vero indeterminata ipsa solum, sed etiam eius 
differentialia cuiusque gradus dimensionem unam constituere existimanda sunt. Ad 
tertium genus eas refero aequationes, in quarum singulis terminis alterutra indeterminata 
eundem obtinet dimensionum numerum; quorsum eadem pertinent, quae modo de 
aestimatione dimensionum allata sunt. Omnes igitur aequationes ad haec tria genera 
pertinentes hic reducere docebo.  

7. Omnes aequationes ad primum genus pertinentes sub hac generali formula 

comprehenduntur : , ubi dx constans ponitur. Etsi enim in 
aequatione quapiam neque dx neque dy constans accipiatur; sed aliud quoddam 
differentiale inde pendens, id nihil difficultatis habet, cum cognita sit methodus, quod 
constans erat differentiale, variabile faciendi et vice eius aliud quoddam constans. Ad 
hanc vero aequationem reducendam pono x = cv, et y = cvt. Erit dx = cv dv, et  

ddydyydxax pnpm 2

dy = cv(dt + tdv). Atque hinc ddx = cv(ddv + dv2) et  
ddy = = cv(ddt + 2dtdv + tddv + tdv2). Sed cum dx ponitur constans erit ddx = 0, adeoque 
ddv = -dv2. Hoc substituto loco ddv, habevitur ddy = cv(ddt + 2dtdv + (1 - ) tdv2). 
Surrogentur hi valores loco x et y in aequatione proposita, transformabitur ea in hanc  

))1(2()( 22)1()( tdvdtdvddttdvdttcdvc pnvpnpppmv     . 

8. Iam  determinari debet ita, ut exponentialia divisione tolli possint. Hoc ut fiat, 

oportet sit v(m + p) = (n + p - 1)v, inde colligitur pm
pn

 1 . Superior igitur aequatio 

determinato  abibit in sequentem 

)2()()( 2121 tdvdtdvddttdvdttdva pm
nmpnpp

pm
pn





  . Quae protinus ex proposita 

eruta fuisset, si posuissem x = c(n + p - 1)v:(m + p), et y = cvt. Est autem n + p - 1 numerus 
dimension, quas y constituit; et m + p quas x. Facile ergo in quovis casu particulari  
determinatur statimque debita substitutio habebitur. In aequatione inventa, cum abset v, 

poaatur dv = zdt, erit ddv = zddt + dxdt, sed 2212 dtzdvddv pm
pn


  . Hinc invenitur 



                    Comm: Ac.Scient.Petr.Tom.III pp.124-137; Sept. 1728. L. Euler.                                            10 
              The reduction of innumerable second order differential equations to the  first order… .  

                                                                 E010 :Translated & Annotated by Ian Bruce. 
 

21 zdtddt pm
pn

z
dzdt


  . His substitutis emergit 

)2()()( 2122121 tzzdtzdtzdttzdtdttdtza pm
nm

z
dzdt

pm
pnpnppp

pm
pn








  . Quae divisa per 

dtp-1 dabit )()1()( 212121 dttzzdttztdtza pm
nm

z
dz

pm
pnmpnpp

pm
pn








  .  

9. Reducta ergo est aequatio generalis proposita ad hanc 
differentialem primi gradus 

ddydyydxax pnpm 2

)31 dzdttz 

 zdtpmp cy )() et  

tx pnpm )1(:)( 

()1()( 321211 dtzztzdtza pm
nm

pm
pnmpnpp

pm
pn  






 , multiplicata aequatione 

inventa per z. Haec aequatio unico actu ex ea inveniri potest, posito in prima substitutione 

loco v hoc . Fieri ergo debet . Si ex aequatione 

differentiali inventa iterum proposita differentialis secundi gradus inveniri debeat, 
videamus quales loco z et t substitutiones adhiberi debeant. Cum sit 

erit : quare . Unde habetur 

. Deinde quia erit 

 zdt

(:) mxdt

(:)  pnp

  mxdtpncx (:)1(

 )1(:  pn y

 )1(:1   pnxdt xc

 )1(  ppncx

 )1(  myxt

1 xdt xt

  lxzdt pn 1
1 ; ergo xpn

dxzdt )1(  . 

Sed est dxyx pnpnm
p

p )1(:)12(
1
) 


dy n

mpn ()1


 x m(dt p (:) . Consequenter invenietur  

])()1[(: )1(:)()1(:)1( dxyxpmdyxpndxz pnpmpnnm   . Perspicuum autem est, si 
z in t vel t in z detur etiam relationem, quam x et y inter se habeant, inveniri posse. 

10. Illustremus haec, quae generaliter inventa sunt exemplo quodam particulari. Sit 
xdxdy = yddy, quae reducitur dividendo per dy, ad hanc xdx = ydy-1ddy. Huic generali 
accommodata, habebitur a = 1, m = 1, p = 1, n = 1. Substitutis his in aequatione 
differentiali primi gradus, habebitur ea, ad quam proposita reducitur, 

)()1( 3
2
12

3
31

2
1 dzdttzdtztztzdt   , quae abit in . 

Ad hanc aequationis proposita  xdxdy = yddy si fiat  Constructio 
ergo aequationis propositae pendet a constructione aequationis differentialis inventae; 
haec si construi poterit, et ea construetur; si fuerit reipsa integrabilis, ea quoque integrari 
poterit.  

)23 32232 tdzdtztdttzdttzdtz 

.et  2 tcycx zdtzdt  

11. Secundum genus aequationum differentio-differentialium, quas mea methodo ad 
differentiales primi gradus reducere possum, eas complectitur, quae in singulis terminis 
eundem dimensionum, quas indeterminatae earumque differentialia constituunt, 
numerum tenent. Aequatio generlais huc pertinens est sequens 

 . In huius singulis terminis est unica 
dimensio indeterminatarum: ponturque dx constans. Etsi vero aequatio haec assumta 
[assumpta] tribus tantum constat terminis: tamen quodcunque libuerit insuper adiici 

possunt, operatio enim eadem manet. Possent adhuc addi et huiusmodi 
libuerit; prout exempla particularia, ad quae reducenda generalis accomodari debet, 
pluribus paucioribusve constant terminis. Tres vero terminos, ut dixi, assumsisse sufficit : 
cum plures alium reducendi modum non requirant.  

ddydydxybxdydxyax qqnnppmm   2121

qqrr dydxyex  21

12. Aequationem propositam reduco substituendis loco z, cv et loco y, cvt. Cum igitur 
sit x = cv et y = cvt; erit dx = cvdv et dy = cv(dt + tdv): porroque 

. Quia vero dx ponitur constans, )2(et  )( 22 tddvtdvdtdvddtcvddydvddvcddx v 
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erit ddx = 0, hinc igitur ddv = -dv2, hanc ob rem habebitur . Ponatur 
hi valores in acquatione loco x, y, dx, dy et ddy, transformabitur ea in sequentem  :  

)2( dtdvddtcddy v 

)2dtdvddt 

dtdvddtq 2)2 

()()( 212 ctdvdtdvtbctdvdtdvtac pqqnvpptmv  

tdvdtdvbttdvdtdvat qnpptm ()( 12  

dzdtzddtddv

. Quae divisa per cv 

abibit in hanc . In hac cum 
desit v pono dv = zdt erit  , sed ddv = -dv2 = -z2dt2 ergo 

z
dxdtzdtddt  2 . Hinc ista obtinitur aequatio, 

22212 2)() zdtzdtztdtdtdtzbtztdtdt z
dzdtqqqnp  1 (dtzat ppm seu haec 

ordinatior z
dztqqnpprm zdtztdtdtzbtztdtzat   2)(1( .  12)  

13. Aequatio haec differentialis primi gradus unico actu ex proposita elici potuisset, si 

statim positum esset ; unde foret ; 

atque , quare . Hoc in usum 

vocoto habebitur ddy . Propositum sit hoc exemplum 

, mutetur id in . Collato hoc cum  generali aequatione 
fiet a = 1, b = 0. m = a, p = 2. Si ergo hoc exemplum, ut generalis formulae, reductur, 

haec invenietur aequatio . Sive haec . Quae si 
constructionem admitteret, et differentialis secundi gradus ex ea construi posset. 
Notandum est, semper fere ad eiusmodi aequationes differentiales perveniri, quae 
admodum difficulter vel prorsus non construi queant.  

tcycx zdtzdt   et  

0 )2  zzdtdzdt

:( 2 zdzdtzdtc zdt  

yxddy  

zdtdtzt 21 

)(det  tzdtdtcyzdtcdx zdtzdt  

zdzdtzdt :2 

dzdtzdtzt  231

(  zdttcddx zdt

2dxxddy 

ddt 

2dx

 )


dz :

1y 1

z

14. Assumo aliud exemplum, , quod ad modum generalis 

aequationis hanc induit formam . Reducatur huc generalis 
aequatio, et erit a = 1, m = 1, p = 1, b = -1, n = 0, q = 2.  Respondet ergo exemplo 

proposito sequens aequatio differentialis . Multiplicatur 

haec per t2z, habebitur  sive , quae 

separata dat et integrata hanc - 1: z = t + 1 : t - a sive atz - t =t2z + z. 
Est vero z = dv : dt. Itaque atdv - tdt = t2dv + dv, seu dv = tdt(at - tt - 1). Quia vero cv = x 
erit v = lx et t = y : x ergo dv = dx : x et dt = (xdy - ydx) : xx consequenter ydy + xdx = 
aydx. Haec aequatio iterum integrari potest, cum vero tantum noto casum, quod si a = 0 
ea transeat in aequationem circuli.  

ddyyydxxdxdy 22 

ddydxydxdyxy   212

ztzdtt t)1( 12  

dztdttztdtztdt 2223 
tt

zdzzdtdt :2 

dtztdtz 222 

z

zdtz 32 
tdt :)1( 2 

dzt 2
zdz : 2 

15.   Accipio nunc casum, quo plures, quam in generali aequatione, sint termini 

. Hoc exemplum modo 
supra reducere licebit. Cum dx ponatur constans, maneant eaedem substitutiones scilicet, 
x = cv, y = cvt; dx = cvdv; dy = cv(dt + tdv) et ddy = cv(ddt + 2dtdv). Est vero ddv = -dv2. 
His substitutis atque aequatione proveniente ordinata, invenitur 

. Hic cum desit v, ponatur dv = zdt, 
erit ut ante ddt = -zdt2 - dxdt:z. Exinde reperitur haec aequatio in ordinem reducta,  

0222233  dxddyydxddyyxdyyxdxyxdxdyxxdyyydx

02 2223  ttdvddttdvddttdtdvttdvdvtdtdt

dt + 2tzdt - tdx + ttdz = 0. Quae, cum z unicam tantum habeat dimensionem separari 
potest methodo a Cel. Ioh. Bernoulli in Actis  Lips. tradita. Sed sine ulla substitutione 
eam eique similes quascunque statim integrare seu ad integralem formam solum reducere 
possum, sequenti modo. 
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16. Reducatur aequatio nostra ad hanc 01
2   ttt

dt
t
zdtdz , ut dz nullo affectum sit 

coefficiente tum sumatur id, quo z est affectum, nempe 1
2
t
dt cuius integrale exprimatur per 

 12 t
dt  . Iam aequatio proposita multiplicetur per  1

2
t
dt

c et habebitur  

01
21

2

1
1

22  
  

 


ttt
dtc

t
zdtc t

dt
t
dt

t
dt

dzc . Nunc autem aequatio integrabilis est facta, duorum enim 

priorum terminorum integrale est zc t
dt 1

2
. Est igitur azc ttt

dtc t
dt

t
dt

  
   1

2
1

2
. Sed cum sit 

)1(1   tlt
dt erit 22

)1(1   tc t
dt

. Ergo azt t
dtt    )1(2)1( , hincque  

Hoc modo omnes aequationes differentiales in quibus alterutra variabilis una plures 
dimensiones nusquam habetm integrari seu saltem construibiles redduntur. Hac de 
industria methodo sum usus, quo magis intelligatur quanti sint usus exponentialia in 
tractandis aequationibus.  

alttzt  2)1( .

17. Aequatio ad quam est perventum haec est . Haec ulterius 
reducatur, ut tandem aequatio inter x et y rursus obtineatur : quoniam erat dv = zdt erit z = 

dv : dt; quamobrem aequatio in haec vero in 

alttzt  2)1(

adtdtlt tdtdvt  2)1( 2)1( 


t
dtlttdtadtdv . 

Quae denuo integrationem admitit; integrata vero hanc habet formam 

)1( 
 t

tlttav constante vero addita hanc )
tltbt

1( 
 t

tabv . Quia vero est x = cv; erit v = lx. Et 

cum sit y = cvt erit y = tx et ideo t = y : x. His substitutis habebitur sequens aequatio 

xy
ylxylybyyaxbxlx 

 . Unde oritur haec (b - a)x + (1 - b)y = yly - xlx. Ponatur brevitatis 

causa b - a = f, et 1 - b = g;  erit fx + gy = yly - xlx. Quae est integralis aequatio 
propositae § 15. Si fiat f = 0, et g = 0, erit yly = xlx. Ex qua sumendis numeris reperitur 
haec yy = xx.  

18. Tertium genus aequationum quarum hic reducendarum methodum trado, eas 
complectitur, in quarum singulus terminis alterutra indeterminata eundem tenet 
dimensionum numerum. Hic duo distinguendi sunt cusau, prout vel ipsius illius variabilis 
ubique eundem dimensionum habentis differentiale constans ponitur vel secus. Ad 
primum casum spectat sequens aequatio universalis 

. In qua x in singulis terminus m habet 
dimensiones, et dx ponitur constans. Significant autem P et Q functiones quascunque 
ipsius y. Ad hanc reducendam unica substitutione opus est ; nempe fiat x = cv erit dx = 
cvdv et ddx = cv(ddv + dv2); ergo ddv = -dv2. His subrogatis habetur 

. Postquam nimirum divisa est per cmv. 

ddydxdydxxdyx mbmbbmmm   22 QP

ddydvdydvxdy mbmbbmm   22 QP
19. Cum in aequatione inventa v non deprehendatur reducetur substituendo loco dv, 

zdy. Erit ddv =zddy + dydz = -dv2 = -z2dy2. Hinc invenietur ddy = -zdy2 - dydz.z. 
substituantur ergo in aequatione inventa loco dv et ddy hi volores reperti et habebitur 

haec aequatio . Quae divisa per dym+1 

abit in hanc P . Quae est primi gradus, ut erat 

propositum. Ad hanc statim perveniri potuisset, si positum  esset . Unde foret 

dzdyzdydzdyzdy mmmmbmbm 112122 QP  

dzzdydzdyzdy mmb 11Q  

x  zdyc
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zdxdyzdyddyzddydzdyzdycddxzdycdx zdyzdy : hincet  0)(et  22  

1 1P Qm m m b b m b m

. His 
valores loco x, dx, ddy substituti statim inventam aequationem praebent. 

20. Alter casus aequationum aequationum ad genus tertium pertinentium respicit 
sequentem generalem generalem aequationem. x dy x dx dy dx    

ddvdvdvdydvdy mmbmbm 1111 QP  

dzdyzdyzdyzdy mmmmmbm 11111 QP  

dzzdyzdyzdy mmb 11QP  

ddx . 
In qua aequatione dy ponitur constans, P et Q designant functiones ipsius y quascunque. 
Et ut perspicuum est x in singulis terminis m tenet dimensiones. Ponatur, ut ante, z = cv; 
erit dx = cvdv, et ddx = cv(ddv + dv2). Hisce in aequatione substitutis, resultat haec 

aequatio divisione facta per cmv, . Haec 
aequatio, vt ulterius reducatur, cum v desit, ponatur dv = zdy ob dy constans ddv = dzdy. 
Hance ob rem aequatio ultima transmutabitur in 

. Haec autem, si dividatur per dym, dabit 

istam . Pendet ergo constructio propositae aequationis a 
constructione huius inventae.  

21. Ex hisce, arbitror, intelligitur, quomodo aequationes differentiales secundi gradus 
ad  unum truim expositorum genus pertinentes tractari oporteat. Facile quidem concedo 
raro admodum ad tales aequationes perveniri, in quibus non alterutra indeterminata desit; 
Tamen a nemine hoc nomine utilitatem huius inventi impugnatum iri puto. Fieri potest, ut 
nouus aliquis campus aperiatur problemata suggerens quorum resolutio ad aequatones 
tales deducat. Memini me aliquando physicum problema quoddam resoluentem ad hanc 
pervenisse aequationem y2ddy = xdxdy. Qua tum temporis neque a me neque ab aliis, 
cum quibus communicaveram, ulla modo reduci potuerat. Nunc vero, cum et ad primum 
et ad secundum genus pertineat, reductio facile successit ut ex § 10 videre licet.  

22. Hoc vero praeterea de assumenda constante monendum duxi : In aequationibus ad 
secundum genus relatis nihil interest, quodcunque differentiale constans sit assumtum. 
Potest id esse vel differentiale alterutrius variabilis, vel aliud differentiale ex utriusque 
variabilis differentialibus ut libet compositum, modo id sit, ut natura rei exigit, 
homogeneum. Illud quidem in generali exemplo locum obtinuit; sed ex illa operatione 
simul intelligitur, quemodo, si differentiale constans sit qualecunque, aequationes tractari 
oporteat. Aliter res se habet in duobus reliquis generibus primo et tertio; ibi enim necesse 
est, ut alterutrius variabilis differentiale constans sit positum. Id si non fuerit methodo 
exposita reductio non succedit. Hic vero in casibus constans debet immutari, et aequatio 
in aliam transformari, in qua alterutrius variabilis differentiale sit constans.  

23. Methodus in hac dissertatione exposita aequationes differentiales secundi gradus 
ad simpliciter differentiales reducendi consistit in idonea substitutione quantitatum 
exponentialium pro indeterminatis. Ea vero adhuc latius patet, quam hic est expositum. 
Possunt eius beneficio infinitae aequationes differentiales tertii ordinis ad alias, quae sint 
tantum secundi ordinis reduci. Et generaliter aequationes differentiales ordinis n as alias 
reducentur, quae ordinis tantum n - 1. Aequationum vero cuiusque ordinis differentialum, 
quae hac methodo reducuntur, quoque sunt tria genera constituenda, eademque, quae hic 
sunt exposita. Ex his igitur etiam intelligitur, quantum huiusmodi substitutiones in 
aequationibus differentialibus primi gradus tractandis usum habere possint. Sed de his 
non opus est plura exponere.  


