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CHAPTER III 
 

CONCERNING THE INTEGRATION OF DIFFERENTIAL 
FORMULAS BY INFINITE SERIES  

 
PROBLEM 12 

126. If X is a fractional rational function of  x, to show the integration of the differential 
formula dy Xdx=  by a series expansion. 
 

SOLUTION 
Since X is a fractional rational function, the value of this can always be expanded out ; 
so that it becomes :  

2 3 4 etcm m n m n m n m nX Ax Bx Cx Dx Ex .,+ + + += + + + + +  
 
where the coefficients A, B, C etc. establish a recurrent series to be determined from the 
denominator of the fraction. Hence the individual terms can be multiplied by dx and 
integrated, with which performed the integral y can be expressed by the following series : 
 

1 1 2 1C
1 1 2 1+  + etc Const ;

m m n m nAx Bx x
m m n m ny . .

+ + + + +

+ + + + += + +  

where if in the series for  X a term of the form M
x  occurs, then in the integral a term  

M lx  is introduced. 
SCHOLIUM 

127. Since the integral Xdx∫ , unless it is algebraic, can be expressed by logarithms and 

angles, hence the values of the logarithms and of the angles are able to be shown by 
infinite series. Now since several series of this kind have been examined in the   
Introductione [L. Euler : Introductio in analysin infinitorum, Book I, Ch's. VI-VIII], not 
only the same series treated, but an infinite number of other series can be elicited by 
integration.  This it will be helpful to indicate from examples, where chiefly we establish 
formulas of the kind, in which the denominator is a binomial [by this Euler simply means 
that the denominator has two terms, and should not be confused with the modern 
meaning of the term]; then indeed also we will consider some cases provided with 
trinomial denominator or a multinomial. But in the first place we elicit [functions] of this 
kind, in which the denominator of the fraction is binomial, and which is able to be 
transformed [into an infinite series]. 
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EXAMPLE 1 

128. To integrate the differential formula ax
a x+ by a series. 

 Let  ;dx
a xy
+

= ∫  then ( ) Consty l a x .,= + +  from which integral thus to be determined, 

so that it vanishes on putting x = 0, will be ( )y l a x la.= + −  Now since   
3 4

2 3 4 5
1 1

4 5
etcx xx x x

a x a a a a a
.,+ = − + − + −  

 
then by the same rule the integral can be defined  
 

2 3 4 5
2 3 4 52 3 4 5

etcx x x x x
a a a a a

y .,− + − + −=  

 
from which we can deduce, as indeed it is now agreed,  
 

( ) 2 3 4

2 3 42 3 4
etcx x x x

a a a a
l a x la .,+ = + − + − +  

 
COROLLARY 1 

129. If we take x negative, so that dx
a xdy −
−=  , in the same manner it is clear, that  

( ) 2 3 4

2 3 42 3 4
etcx x x x

a a a a
l a x la .,− = − − − − −  

and with these combined : 
( ) 4 6 8

4 6 82 3 4
2 etcxx x x x

aa a a a
l aa xx la .,− = − −− − −  

and 
3 5 7

3 5 7
2 2 2 2

3 5 7
etca x x x x x

a x a a a a
l .+

− = + + + +  

 
COROLLARY 2 

130. These last series are elicited by the integration of the formulas  
 

( )4

4 6
2 12 etcxdx xx x

aa xx aa a a
xdx . ,−

− = − + + +  

and 

( )4

4 6
2 12 etcadx xx x

aa xx aa a a
adx . .− = + + +  

But there is  
( )2 2andxdx adx a x

aa xx aa xx a xl aa xx laa l ,− +
− − −= − − =∫ ∫  

 
thus so that now we can desist from these formulas for the integration through series.  
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EXAMPLE 2 
 

131. To integrate the differential formula adx
aa xx+∫  by a series.  

  
Let adx

aa xxdy += , and since there arises Arc  tang x
ay . .= , the same angle can be expressed 

by an infinite series. For since we have  
4 6 8

3 5 7 9
1 etca xx x x x

aa xx a a a a a
.,+ = − + − + −  

on integration there arises  
3 5 7

3 5 73 5 7
Arc  tang etcx x x x x

a a a a a
y . . .= = − + − +  

 
EXAMPLE 3 

 
132. To express the integrals of these formulas 33 11

xdxdx
xx

and
++∫ ∫  by series. 

Since there shall be 

3
3 6 9 121

1
1 etc

x
x x x x .,

+
= − + − + −  

then there becomes 

3
4 7 10 131 1 1 1

4 7 10 131
etcdx

x
x x x x x .

+
= − + − + −∫  

and 

3
2 5 8 11 141 1 1 1 1

2 5 8 11 141
etcxdx

x
x x x x x .

+
= − + − + −∫  

 
Now by § 77 we have by logarithms and angles : 
 

( ) ( )3

3

3

1 2
3 3 3 31

2
3 3 1

1 1 2

                  Arc.tang

dx
x

x sin.
xcos .

l x cos . l xcos . xx

sin . . ,
π

π

π π

π

+

−

= + − − +

+

∫
 

and 
 

( ) ( )3

3

3

1 2
3 3 3 31

2
3 3 1

1 1 2

                  Arc.tang

xdx
x

x sin.
xcos .

l x cos . l xcos . xx

sin . . ,
π

π

π π

π

+

−

= − + − − +

+

∫
 

 
But in this case, 3 32 21 1

3 2 3 2 3 2 3 2, ,cos . cos . , sin . sin . ,π π π π= = − = = from which there 
becomes : 
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( ) ( )

( ) ( )

3

3

31 1 1
3 3 21 3

31 1 1
3 3 21 3

1 1 Arc.tang

1 1 Arc.tang

xdx
xx

xxdx
xx

l x l x xx . ,

l x l x xx .

−+

−+

= + − − + +

= − + + − + +

∫

∫
 

 
as with both the integrals and the series taken, so that they vanish on putting 0x = . 

 
 

COROLLARY 1 
 
133. Hence with the series added there is produced : 
 

4 5 7 8 10 1132 1 1 1 1 1 1 1
2 2 4 5 7 8 10 113

Arc.tang etcx
x. x xx x x x x x x .,− = + − − + + − − +  

 
moreover with the latter subtracted from the former there is made : 
 

( )
2 4 5 7 8 10 1112 1 1 1 1 1 1 1

3 2 4 5 7 8 10 111
etcx

x xx
l x x x x x x x x .,+

− +
= − − + + − − + +  

 
the value of which is also :   

( ) ( )2 3

3
1 11 1

3 1 3 1
x x

x xx x
l l .+ +
− + +

= =  

 
COROLLARY 2 

134. Since there shall be : 

( )3
31

31
1xxdx

x
l x

+
= +∫ , 

 
in the same manner there is : 
 

( )3 3 6 9 121 1 1 1 1
3 3 6 9 121 etcl x x x x x .,+ = − + − +  

 
in which series all the powers of x occurring are added. 
 

EXAMPLE 4 
 
135. To express this integral ( )

4
1
1

xx dx
x

y +

+
= ∫  by a series. 

  
 Since there arises : 
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4
4 8 12 161

1
1 etc

x
x x x x .,

+
= − + − + −  

then there shall be 
3 5 7 11 13 151 1 1 1 1 1

3 5 7 11 13 15 +etcy x x x x x x x .= + − − + − −  
 
Now by §82, when m = 1 and n = 4, on putting 4

π ω=  the integral becomes likewise :  
 

3
1 1 3Arc.tang 3 Arc.tang ;x sin. x sin .

xcos . xcos .y sin . . sin . .ω ω
ω ωω ω− −= +  

 
but on account of  
 

1 1 1 1
4 2 2 2 2

45  there is 3 3 ;sin . , cos . , sin . , cos .π ω ω ω ω ω −= = ° = = = =  

 
and we have 

21 1 1
12 2 2 2 2

Arc.tang Arc.tang = Arc.tang xx x
xxx x

y . . . .−− +
= +  

 
EXAMPLE 5 

136. To express this integral ( )4

6

1

1

x dx

x
y

+

+
= ∫  by a series.. 

  
 Since there arises :  

6
6 12 18 241

1
1 etc

x
x x x x .,

+
= − + − + −  

then there shall be : 
5 7 11 13 171 1 1 1 1

5 7 11 13 17+ etcy x x x x x x .= + − − + −  
 
But by §82, when 61 6 and 30m , n ,πω= = = = °  there is : 
 

32 2
3 1 3 1 3

52
3 1 5

Arc.tang 3 Arc.tang ;

                        5 Arc.tang ;

x sin. x sin .
xcos . xcos .

x sin .
xcos .

y sin . . sin . .

sin . .

ω ω
ω ω

ω
ω

ω ω

ω

− −

−

= +

+

 

 
now there is :  
 

3 31 1
2 2 2 2, 3 1, 3 0 5 , 5sin . cos . ,sin . cos . ,sin . cos . ,ω ω ω ω ω ω= = = = = = −  hence 

 
1 2 1
3 3 32 3 2 3

Arc.tang Arc.tang Arc.tangx x
x x

y . .x .
− +

= + +  
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or 
( )

4

3 11 2 1
3 1 3 3 1 4

Arc.tang Arc.tang Arc.tang x xxx
xx xx x

y . .x . .−
− − +

= + =  

 
COROLLARY 1 

137. Let 

6
3 9 15 211 1 1 1

3 9 15 211
etcxxdx

x
z x x x x .,

+
= = − + − +∫  

but on making 3x u=  there is produced : 
 

6
31 1 1

3 3 31
Arc.tang Arc.tangxxdx

x
z .u .x .

+
= = =∫  

 
Hence a mixed series of this kind is produced :  
 

3 5 7 9 11 13 15 171 1 1 1 1
3 5 7 9 11 13 15 17 etcn n nx x x x x x x x x .,+ + − − − + + + −  

 
the sum of which is 

( )
4

3 1 31
3 31 4

Arc.tang Arc.tangx xx n
xx x

. .x .−

− +
+  

 
COROLLARY 2 

138. Here if there is taken 1n = − , the two angles can be gathered together into a single 
angle :  
 

( ) 3 5 7

4 4 6

3 1 3 3 4 41 1 1
3 3 31 4 1 4 4 3

Arc.tang Arc.tang Arc.tangx xx x x x x
xx x xx x x

. .x .− − + −
− + − + −

− =  

 
which [final] fraction on being divided by 41 xx x− + is reduced to 

33
1 3

x x
xx
−

− which is the 
tangent of the triple of the angle having x for the tangent, thus in order that  
 

331
3 1 3Arc.tang =Arc.tangx x

xx. .x−
− , 

 
which likewise shows the same series is found.  
 

EXAMPLE 6 
 

139.  To integrate this series ( )1 1

1

m n m

n

x x dx

x
dy

− − −+

+
=  by a series. 

On account of 
2 3 41

1
1 etcn

n n n n
x

x x x x .
+

= − + − + −  

there is obtained : 
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2 2 3

2 2 3 etc
m n m n m n m n m n mx x x x x x

m n m n m n m n m n my .
− + − + −

− + − + −= + − − + + −  
 

Hence this series by § 82 can be expressed by some sum of the arcs of circles, 
which can be seen there. 

 
COROLLARY 

 

140. From the same proposed formula ( )1 1

1

m n m

n

x x dx

x
dz

− − −−

−
= , on account of 

 
2 3 41

1
1 etcn

n n n n
x

x x x x .
−

= + + + + +  

 
there is found : 

2 2 3

2 2 3 etc
m n m n m n m n m n mx x x x x x

m n m n m n m n m n mz .
− + − + −

− + − + −= − + − + − +  
 
and the value of this has been shown in §84. 

 
EXAMPLE 7 

141. To integrate this formula ( )1 2
1

x dx
x xxdy +

+ += by a series.. 
 
 In the first place the integral is evidently ( )1 ;y l x xx= + + but in order that it may be 
changed into a series, the numerator and the denominator are multiplied by 1 x− , so that 
there becomes : 
 

( )
3

1 2
1

x xx dx
x

dy + −

−
= . 

Now since there is present : 

3
3 6 9 121

1
1 etc

x
x x x x .

−
= + + + + + , 

on integrating, 
2 3 4 5 6 7 8 92 2 2

2 3 4 5 6 7 8 9 etcx x x x x x x xy x .= + − + + − + + − +  
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COROLLARY 1 

142. In the same manner it can be found that ( )31y l x xx x= + + +  through a series 

expansion. For since there arises ( ) ( )4 1 1y l x l x ,+ − = − then  

 
2 3 4 5 6 7 8 9 10

8

2 3 4 5 6 7 8 9 10
4

2

etc

                                             

x x x x x x x x x

x

y x .

x

= + + + + + + + + + +

− −
 

or 
2 3 4 5 6 7 8 93 3

2 3 4 5 6 7 8 9 etcx x x x x x x xy x .= + + − + + + − + +  
 

COROLLARY 2 
143. But the fraction 1 2

1
x

x xx
+
+ + gives on expansion in a series,  

 
3 4 5 6 7 81 2 x 2 2 etcx xx x x x x x .,+ − + + − + + − +  

 
from which by integration the same series as before is obtained.   
 

EXEMPLE 8 
 

144. To integrate this formula 1 2
dx

xcos . xxdy ζ− +=  by a series. 

 
 By § 64, when 1  0 1 and 1A , B , a b ,= = = =  the integral of this formula is :  
 

1
1Arc.tang x sin .

sin. xcos .y . .ζ
ζ ζ−=  

 
But we find from the recurrent series :  
 

( ) ( )
( ) ( )

2 3 31
1 2

4 2 4 5 3 5

1 2 4 1 8  4

+ 16  12 1  + 32  32 6 + etc

xcos . xx xcos . cos . xx cos . cos . x

cos . cos . x cos . cos . cos . x .,

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

− + = + + − + −

− + − +
 

by which the series sought is obtained on multiplication by dx and integrating. But with 
the powers of cos.ζ changed into the cosines of multiples of angles there is found :   
 

( ) ( ) ( )
( ) ( )

3 41 1 1
2 3 4

5 61 1
5 6

2 2 2 1 + 2 3 2

 + 2 4 2 2 1 + 2 5 2 3 2 + etc

y x xx cos . x cos . x cos . cos .

x cos . cos . x cos . cos . cos . .,

ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= + + + +

+ + + +
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COROLLARY 1 
145. If there is put  

( )1
1 2

xcos . dx
xcos . xxdz ,ζ

ζ
−

− +=  

 
there is by § 63 [Ch. I] 1 1 and  lA , B cos . , a bζ= = − = = , and thus  
 

( ) 11 2 Arc. tang  ;x sin.
xcos .z cos . l xcos . xx sin . ζ

ζζ ζ ζ −= − − + +  

 
but with a series on account of  
 

1 2 3 4
1 2 1 2 3 4 etc.xcos .

xcos . xx xcos . x cos . x cos . x cos .ζ
ζ ζ ζ ζ ζ−

− + = + + + + +  

 
there is produced 

3 4 51 1 1 1
2 3 4 52 3 4 etc.z x xxcos . x cos . x cos . x cos .ζ ζ ζ ζ= + + + + +  

 
COROLLARY 2 

146. But since 
( )2 2

1 2
dx xcos . cos . sin .

xcos . xxdz ,
ζ ζ ζ

ζ
− + +

− +=  

 
then 

( ) 2
1 21 2 dx

xcos . xxz cos . l xcos . xx sin . .ζζ ζ ζ − += − − + + ∫  

 
Hence therefore for  

1 2
dx

xcos . xxy ζ− += ∫  

 
another infinite series is found involving logarithms, clearly  
 

( )

( )
2

2
3 41 1 1 1

2 3 4

1 2

2 3 etc

cos .
sin .

sin .

y l xcos . xx

x xxcos . x cos . x cos . . .

ζ
ζ

ζ

ζ

ζ ζ ζ

= − +

+ + + + +
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PROBLEM 12 [a]  

(We must assume that an incorrect number has been applied here, as 12 is repeated..) 
147. To integrate the irrational differential formula ( )1m ndy x dx a bx−= + by an infinite 

series.  
SOLUTION 

 Let va c
μ

= ; then there is produced 

( )1 1 vm nb
ady cx dx x ,

μ
−= +  

where indeed we assume that c is not an imaginary quantity. Therefore since there is  
 

( ) ( ) ( )( )2 3

3
22 3

1 1 2 1 2 3
1 1 etc.v v b v v bbn n n nb

a v a v v aa v v v a
x x x x ,

μ
μ μ μ μ μμ − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ = + + + +  

 
on integrating : 

( ) ( )( ) 32 3

3
2

1 1 2 2 31 2 3
etc.

m m n m n m nv bb v v bbx x x x
m v a m n v v aa m n m nv v v a

y c ,μ μ μ μ μμ + + +− − −
⋅ + ⋅ ⋅ + +⋅ ⋅ ⋅

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

 

 
which series recurs indefinitely to infinity, unless v

μ  is a positive whole number. But if in 
the case, in which v is an even number, a should be a negative quantity, our expression 
can be represented thus 

 

( ) ( )11 x 1
nv vv vmm n na

bdy x dx bx a b dx x .
μ μμ μ+ −− −= − = −  

 
Therefore since there shall be 
 

( ) ( ) ( )( )2 3

2 3
22 3

1 1 2 1 2 3
1 1 etc.v v a v v abn n n na

b v a v v b v v v b
x x x x ,

μ
μ μ μ μ μμ − − −− − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− = − + − +  

 
and it becomes on integrating, 
 

( )

( )
( )

( )

( )

22

21 21 2
etc.

v n v nnm m mv v vv
v aavx vx vx

mv n v b mv v n mv v nv v b
y b .

μ μμμ μ μμ
μ μ μ

− −
+ + +−
+ ⋅ + − + −⋅ ⋅

⎛ ⎞
= − ⋅ + ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
If a and b are positive numbers, each expansion is allowed to be used. 
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EXAMPLE 1 

148. To integrate the formula 
( )1

dx
xx

dy
−

= by series. 

 
 First from above it is evident that y = Arc. sin. x, which angle hence can be expressed 
by an infinite series. For since there shall be 
 

( )
2 4 6 813 13 5 13 5 71 1

2 2 4 2 4 6 2 4 6 81
 1 + etc.,  

xx
x x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅−
= + + + +  

then 
3 5 7 913 13 5 13 5 71

2 3 2 4 5 2 4 6 7 2 4 6 8 9 + etc., x x x xy x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ + ⋅  

 
and with each value thus defined, so that it vanishes on putting 0x = . 

 
COROLLARY 1 

149. Hence if there is put 1x = , on account of 21Arc.sin . π=  then 
 

13 13 5 13 5 71
2 2 3 2 4 5 2 4 6 7 2 4 6 8 91 + etc., π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  
 
But if there is put 1

2x = , on account of 1
2 630Arc.sin . π= ° = then 

 
3 5 7 9

13 13 5 13 5 71 1
6 2 2 2 3 2 4 2 5 2 4 6 2 7 2 4 6 8 2 9

+ etc., π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + +  

 
the ten terms of which series added together gives 0,52359877, of which the six fold 
gives 3,14159262 only disagreeing in the eighth figure from the truth.   
 

COROLLARY 2 
150. This proposed formula

( )
dx
x xx

dy
−

= on putting x uu=  becomes 

( ) ( )4
2 2

1
udu du

uuuu u
dy ,

−−
= =  

hence 
2 2  ;y Arc.sin .u Arc.sin . x= =  

 
then indeed in terms of a series it becomes : 
 

( )3 5 713 13 51
2 3 2 4 5 2 4 6 72 etc.  u u uy u ⋅ ⋅ ⋅

⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ +  

or 
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( )313 13 51
2 3 2 4 5 2 4 6 72 1 etc.x xx xy x .⋅ ⋅ ⋅

⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ +  

 
EXAMPLE 2 

 
151. To integrate the formula ( )2dy dx ax xx= − by a series. 
  
 On putting x=uu there becomes ( )2 2dy uudu a uu= − but by the reduction I (§118) 
there is  

2 1 2  1 1 2n , m , a a, b , , v ,μ= = = = − = = from which 
 

( ) ( ) ( )
3
21 1

4 22 2 2uudu a uu u a uu a du a uu ,− = − − + −∫ ∫  

 
and by III on taking 1 2 1 2 1 2m , a a, b , n , , vμ= = = − = = − =  there becomes 
 

( ) ( )
( )

1
2 2

2 2 ;du
a uu

du a uu u a uu a
−

− = − +∫ ∫  

but there is the relation 

( ) 2 22
= xdu u

a aa uu
Arc.sin Arc.sin

−
=∫  

and thus 
 

( ) ( ) ( )

( ) ( )

3
21 1 1

4 4 2 2

1 1
4 2 2

2 2 2

                                = 2     

x
a

x
a

uudu a uu u a uu au a uu aaArc.sin

u uu a a uu aaArc.sin .

− = − − + − +

− − +

∫
 

Hence 
( ) ( )1

2 2
2    x

a
y x a ax xx aa Arc.sin .= − − +  

 
But with the series to be found there is :  
 

( )
( )

1
2

1 3
2

3

2

1131 11
2 2 2 4 4 2 4 6 8

2 1

     = 1 etc 2

x
a

x xx x
a aa a

dy dx ax

x dx . a⋅ ⋅⋅
⋅ ⋅ ⋅

= −

− ⋅ − ⋅ − ⋅ −
 

and hence on integration,  
 

5 7 93 2 2 22
3

2 2 113 22 1 11
3 2 5 2 2 4 7 4 2 4 6 9 8

  = etc 2x x x
a aa a

y x . a⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛ ⎞
− ⋅ − ⋅ − ⋅ −⎜ ⎟

⎝ ⎠
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or 

( )2 3 4

3
1131 11

3 2 5 2 2 4 7 4 2 4 6 9 8
  = etc 2 2x x x x

a aa a
y . ax .⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− ⋅ − ⋅ − ⋅ −  

 
COROLLARY  

152. The integral can be found more easily on putting x a v= − , from which there 
becomes : 
 

( )dy dv aa vv= − −  
and by the reduction III [§ 118] 
 

( ) ( )
( )

1 1
2 2

dv
aa vv

dv aa vv v aa vv aa
−

− = − +∫ ∫ , 

hence 
( )1 1

2 2
v
ay C v aa vv aa Arc.sin .= − − −  

or 
( ) ( )1 1

2 22 ;a x
ay C a v ax xx aa Arc.sin . −= − − − −  

 
so that therefore on putting  x = 0, also y = 0, it is required to put 1

2 1C aa Arc.sin .= , thus 
so that : 
 

( ) ( )1 1
2 22 .a x

ay a x ax xx aa Arc.cos . −= − − − +  
Indeed there is: 

1
22

x a x
aa

Arc.sin . Arc.cos . .−=  

 
COROLLARY 2 

 
153. If we put 2

ax = , then there becomes 3
8 6 ;aa aay π−= +  but the series gives 

 

( )3 5 7
1131 1 11

2 3 2 5 2 2 4 7 2 2 4 6 9 2
  = 2 etcy aa . ,⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − − −  

 
from which it is deduced that  
 

( )3 4 6
3 3 1131 1 11

4 3 2 5 2 2 4 7 2 2 4 6 9 2
  = 6 etc ;.π ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ − − − −  

 
but by the above [§ 149] there is 
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( )2 4 6
13 13 51

2 3 2 2 4 5 2 2 4 6 7 2
  = 3 1 etc ,.π ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ + + +  

 
from the combination of which several others can be formed. 
 

EXAMPLE 3 
 
154. To integrate the formula 

( )1
dx

xx
dy

+
=  by means of a series. 

 
 The integral is ( )( )1y l x xx= + +   taken thus, so that it vanishes on putting 0x = . 

But on account of 

( )
2 4 613 13 51 1

2 2 4 2 4 61
1 etc.  

xx
x x x⋅ ⋅ ⋅

⋅ ⋅ ⋅+
= − + − +  

 
the same integral expressed by a series shall be  
 

3 5 713 13 51
2 3 2 4 5 2 4 6 7 etc. x x xy x ⋅ ⋅ ⋅

⋅ ⋅ ⋅= − ⋅ + ⋅ − ⋅ +  
 

EXAMPLE 4 
155. To integrate the formula 

( )1
dx
xx

dy
−

=  by means of a series. . 

 
 The integration gives ( )( )1y l x xx= + −  which vanishes on putting 1x = . Now on 

account of  

( ) 3 5 7
13 13 51 1 1

2 2 4 2 4 61
etc.  x x x xxx

⋅ ⋅ ⋅
⋅ ⋅ ⋅−

= + + + +  

the same integral shall be 
 

2 4 6
13 13 51

2 2 2 4 4 2 4 6 6
etc.  

x x x
y C lx ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + − − − −  

 
which in order that it vanishes on putting x = 1, the constant is defined thus, so that the 
series becomes : 
 

( ) ( ) ( )2 4 6
13 13 51 1 1 1

2 2 2 4 4 2 4 6 61 1 1 etc.  
x x x

y lx ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + − + − + − +  
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COROLLARY 
156. On putting 1x u= +  there becomes 
 

( ) ( )

( )

1
2

3

222

13 13 51
2 2 2 4 4 2 4 6 82

1

    1 etc.

du du u
uu uu

du u uu u
u

dy

,

−

+

⋅ ⋅ ⋅
⋅ ⋅ ⋅

= = +

= − ⋅ + ⋅ − ⋅ −
 

 
from which there is had on integration 
 

3 5 7
2 2 22 13 2 13 5 21 1

2 3 2 2 4 5 4 2 4 6 7 82
  = 2 etcu u uy u .⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎛ ⎞

− ⋅ + ⋅ − ⋅ +⎜ ⎟
⎝ ⎠

 

or 

( )31 13 13 5
2 3 2 2 4 5 4 2 4 6 7 8  = 1 +etc 2u uu uy . u .⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− + −  

 
EXAMPLE 5 

157. To integrate the formula 
( )1 n

dx
x

dy
−

= by means of a series.. 

 
 By integration there arises 

( )( ) 1
1 1

11 1 n nn x
y − −− −
= −  

 
on making y = 0, if 0x = , or 

( ) 11 1
1

nx
ny
− +− −
−=  

 
Now indeed by the series there is : 
 

( ) ( )( )( )1 1 22 3
1 2 1 2 31 etc.n n n n ndy dx nx x x ,+ + +
⋅ ⋅ ⋅= + + + +  

 
from which the same integral is thus expressed :  
 

( ) ( )( )3 42 1 1 2
2 1 2 3 1 2 3 4 etc.n n x n n n xnxy x ,+ + +

⋅ ⋅ ⋅ ⋅ ⋅= + + + +  
 
Moreover it is hence evident also that : 

( )
( )n l

1
1

1 1
x

n y −−
− + = . 
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SCHOLIUM 
 

158. But since these can be exceedingly clumsy to use, and as there shall be a need to 
apply these more fully, I will set out another more abstract method to elicit the series, 
which often proves to be of outstanding use in analysis.  
 [This is an important result : the differential involves two powers of x, m and n,  a 
fractional power of the binomial, v

μ , and two coefficients, a and b, and hence is of 
general applicability] 

 
PROBLEM 13 

 
159. For the proposed formula of the differential  

( ) 11 vm ndy x dx a bx
μ −−= +  

to convert the integral of this into a series by another method. 
 

SOLUTION 

Putting in place ( ) vny a bx z
μ

= + ; then 

 

( ) ( )( )1 1v nn n n
vdy a bx dz a bx bx zdx ,

μ
μ− −= + + +  

 
from which there is prepared 
 

( )1 1nm n n
vx dx dz a bx bx zdxμ− −= + +  

or 

( )1 1m n nvx dx vdz a bx n bx zdx.μ− −= + +  

Now before we investigate the series in which the value of z is to be defined, that case 
should be noted in which b vanishes, that the differential becomes : [x is used rather than 
b in the first edition, and also in the O.O. edition, which is obviously an error] 
 

1 1v vmdy a x dx a dz,
μ μ− −= =  

in order that 11 m
adz x dx−= . Hence we may put in place 

 
2 3 etcm m n m n m nz Ax Bx Cx Dx .+ + += + + + +  

 
and there becomes : 

( ) ( )1 1 2 12 etcm m n m ndz
dx mAx m n Bx m n Cx .− + − + −= + + + + +  
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These series are substituted in place of  z and dz

dx  in the [above] equation  
 

( ) 1 1 0n n mvdz
dx a bx n bx z vxμ − −+ + − =  

 
and with the individual terms set out following the powers of x this equation arises :  
 

( ) ( )
( )

1 1 2 1 2 etc

                                 0
                                                       

m m n m nmvaAx m n vaBx m n vaCx .

v mvbA m n vbB ,
n bA n bBμ μ

− + − + − ⎫+ + + + +
⎪⎪− + + + =⎬
⎪+ + ⎪⎭

 

 
from which the individual terms produced from the equations with positive terms with 
the equations equal to zero, are defined by the following formulas :  
 

10                                      hence        mamvaA v , A ,− = =  

( ) ( ) ( )
( )

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

2

2
3

 0                        

2  0          

3 2  0        

mv n b
m n va

m n v n b
m n va

m n v n b
m n va

 m n vaB mv n bA , B A,

m n vaC m n v n bB , C B,

m n vaD m n v n bC , D C

μ

μ

μ

μ

μ

μ

+
+

+ +
+

+ +
+

+ + + = = −

+ + + + = = −

+ + + + = = −

 

 
and thus any coefficient is easily found from the preceding. Now indeed there shall be  
 

( ) ( )2 3 etcvn m m n m n m ny a bx x Bx Cx Dx .
μ

+ + += + + + + +  

 
SOLUTION 2 

 
Just as this series we have assumed that this series follows ascending powers of x, thus it 
is also allowed to set up a series of descending powers :  
 

2 3 4 etcm n m n m n m nz Ax Bx Cx Dx .− − − −= + + + +  
in order that  

( ) ( ) ( )1 2 1 3 12 3 etcm n m n m ndz
dx m n Ax m n Bx m n Cx .− − − − − −= − + − + − +  

 
from which series on substitution there is produced 
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( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 3 1 2 3 etc

            2           3             4                     
                                                  

m m n m n m nm n vbAx m n vaAx m n vaCx m n vaCx .

n bA m n vbB m n vbC m n vbD
v n bB

μ

μ

− + − + − − −− + − + − + − +

+ + − + − + −

− + +

0
                                             

.
n bC n bDμ μ

⎫
⎪⎪ =⎬
⎪+ ⎪⎭

 
 
Hence the letters A, B, C etc can be determined in the following manner : 
 

( ) ( )
10                       hence       v
bm n v nm n vbA n bA v , A ,μμ

− +
− + − = = ⋅  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

2
3

3
4

  2  0         

2 3  0        

3 4  0        

m n v a
bm n v n

m n v a
bm n v n

m n v a
bm n v n

 m n vaA m n vbB n bB , B A,

m n vaB m n vbC n bC , C B,

m n vaC m n vbD n bD , D C,

μ

μ

μ

μ

μ

μ

− −
− +

− −
− +

− −
− +

− + − + = = ⋅

− + − + = = ⋅

− + − + = = ⋅

 

 
where again the law of the progression of these letters is evident.   
 

COROLLARY 1 
 

160. The first series therefore is memorable, since in the cases in which  
 

( )  0   or   m
n vm in v n i,μμ+ + = − − =  

 
the series is truncated and the integral produced is algebraic. Now the latter series is 
truncated, as often as 0  or  m

nm in i− = = , with i denoting a whole positive number.  
 

COROLLARY 2 
 

161. Now each series also is troubled with a certain inconvenience, since it is not always 
possible to be called to use. For when either m = 0 or m + in = 0, the first cannot be used, 
and truly when ( ) 0  or  m

n vm in v n i,μμ− + = + = the use is removed from the latter, since 
the terms become infinite. 

 
COROLLARY 3 

162. Now this inconvenience in use comes about, so that, as often as one cannot be 
applied, the other certainly can be called into service,  only with these cases excepted, in 
which both   and  m m

n v n
μ− +  are positive whole numbers.  But since then 1v = , these 

cases are rational whole numbers and present no difficulty.  
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COROLLARY 4 
163. Also both series for z can be joined together in this manner. Let the first series be 
equal to P, and the latter truly equal to Q, as it is possible to take both z P= as well as 
z Q= . Moreover with the two joined together there arises z P Qα β= + , provided 

1a β+ = . 
 

SCHOLIUM 
164. Moreover from this, since we produce two series for z, it follows that at least these 
two series are equal to each other; nor indeed is it necessary that the values of y to arise 
from that to become equal, as long as they differ from each other by a constant amount. 
Thus if the first series found is indicated by P, and the second by Q, since from that first 

one there arises ( ) vny a bx P
μ

= + , and indeed from the other ( ) vny a bx Q
μ

= + , certainly 

there shall be the constant quantity ( ) ( )vna bx P Q
μ

+ − and therefore  

( ) vnP Q C a bx
μ−

− = + . Clearly each series only shows a particular integral, since it 

involves no constant, which now is not contained in the formula of the differential. Yet 
meanwhile by the same method the complete value for z can be elicited ; for in addition  
the series allows P or Q to be put in place and with a substitution made, the series P is 
defined as before ; now for the other a new series is required to be put in place, so that 
there becomes  
 

1 2 1 3 1 4 1   2 3 4 etc
                2         3 0

                                        

n n n nnva x nva x nva x nva x .
n b nvb nvb nvb ,

n b n b n b

β γ δ ε
μ α β γ δ

μ β μ γ μ δ

− − − − ⎫+ + + +
⎪

+ + + + =⎬
⎪+ + + ⎭

 

 
from which determinations are deduced :  
 

( ) ( ) ( )2 3
2 3 4 etc.,v b v b v bb

va va va va, , , ,μ μ μμβ α γ β δ γ δ δ− + − + − +−= ⋅ = ⋅ = ⋅ = ⋅  
 
thus so that there is produced :  
 

( ) ( )( )( )2 3

2 3
22 3

2 2 31 +etc.v v vn n nb b b
v a v v v v va a

z P x x xμ μ μ μ μμα + + +
⋅ ⋅ ⋅= + − ⋅ + ⋅ − ⋅  

 
or 

( ) vnz P a bx
μ

α
−

= + +  

and hence 
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( ) v vny P a bx a ,
μ μ

α= + +  

which is the complete integral, since the constant α remains arbitrary.   
 

EXAMPLE 1 
165. To integrate the formula 

( )1
dx

xx
dy

−
=  by a series in this manner.  

 Since by comparison with the general form established :  
1 1 1 2 1 2a ,b , m , n , , vμ= = − = = = = , from which on putting ( )1y z xx= −  the first 

solution  
3 5 7 etcz Ax Bx Cx Dx .= + + + +  

produces 
6 82 4

3 5 7 91 etcA , B A, C B, D C, E D, .,= = = = =  
from which we deduce 
 

( ) ( )3 5 72 4 62 2 4
3 3 5 3 5 7 etc 1y x x x x . xx ,⋅ ⋅⋅

⋅ ⋅ ⋅= + + + + −  

 
since the integral vanishes on putting 0x = ; hence there arises  y Arc. sin .x= . The other 

method here is attempted in vain on account of 1m
n v .μ+ =  

 
COROLLARY 1 

166. On putting 1x = , hence it is seen that 0y =  on account of ( )1 0xx− = ; but the 
product must be considered carefully in this case as the sum of the infinite series becomes 
infinite, thus so that there is no obstacle for 2y π= . If we put 1

2x ,= there becomes 
o

630y π= = and thus 

( )2 3
32 4 62 2 4

6 3 4 43 5 4 3 5 7 4
1 etc. .π ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + + + +  

 
COROLLARY 2 

167. In a similar manner the proposed formula 
( )1

dx
xx

dy
+

=  is found : 

 

( ) ( )3 5 72 4 62 2 4
3 3 5 3 5 7 etc 1y x x x x . xx ,⋅ ⋅⋅

⋅ ⋅ ⋅= − + − + +  

and this becomes 
( )( )l y l x xx= + +  
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EXAMPLE 2 

168. To integrate the formula 
( )1
dx

x xx
dy

−
=  by a series in this manner.  

 Hence [in the general term ( ) 11 vm ndy x dx a bx
μ −−= + ] there is now put : 

0 2  1   2 1 and 1m , n , , v , a bμ= = = = = = − ; therefore the other series is taken to be 

summed [recall that ( ) vny a bx z
μ

= +  in general]: 

( )
2 4 6 8

1
etcy

xx
z Ax Bx Cx Dx .− − − −

−
= = + + + +  

 
and there is produced :  

62 4
3 5 71 etcA , B A, C B, D C, .,= = = =  

 
We may hence therefore deduce :  
 

( ) ( )4 6 8
2 4 61 2 2 4

3 3 5 3 5 7
etc 1xx x x x

y . xx .⋅ ⋅⋅
⋅ ⋅ ⋅

= + + + + −  

 
But on integration there is produced : 
 

( )1 1 xx
xy l ,

− −
=  

 
which values are in agreement, since each vanishes on putting  x = 1.  

 
COROLLARY 1 

169. Moreover since this series does not converge unless 1x > , as in this case the 
formula ( )1 xx−  becomes imaginary, this series is of no use.  

 
COROLLARIUM: 2 

170. If 
( )1
dx

x xx
dy

−
=  is proposed, the same series for y emerges multiplied by 1−  and 

there arises  

( ) ( )4 6 8
2 4 61 2 2 4

3 3 5 3 5 7
etc 1xx x x x

y . xx .⋅ ⋅⋅
⋅ ⋅ ⋅

= + + + + −  

 
But on putting 1

ux =  then 
( )1

du
uu

dy −
−

= and y C Arc.sin .u= −  or 

1
xy C Arc.sin .= −  
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where it is required to take C = 0, since that series vanishes on putting x = ∞ , thus so that  
1
xy Arc.sin .= − , which agrees with the above [§ 165] on setting 1

x u= . 
 

EXAMPLE 3 
171. To integrate the formula 

( )4
dx

a bx
dy

+
=  in this manner by a series.  

 

 Here 1 4  1 2m , n , , vμ= = = =  and thus on putting ( )4y z a bx= +  the first resolution 

gives  
5 9 13 etcz Ax Bx Cx Dx .= + + + + , 

with 
 

3 7 111
5 9 13 etcb b b

a a a aA , B A, C B, D C, .,− − −= = = = arising,  
 
thus so that there becomes 
 

( ) ( )5 2 9 3 13

3 4
43 3 7 3 711

5 5 9 5 913
etcx bx b x b x

a aa a a
y . a bx .⋅ ⋅ ⋅

⋅ ⋅ ⋅
= − + − + +  

 
But here the other resolution can also be put in place  
 

3 7 11 15 etcz Ax Bx Cx Dx .− − − −= + + + +  
with 
 

3 7 111
5 9 13 etca a a

b b b bA , B A, C B, D C, .,− − −−= = = = arising, 
 
from which is deduced : 
 

( ) ( )3

3 2 7 3 11 4 15
43 3 7 3 711

5 5 9 5 913
etcx a aa a

bx b x b x b x
y . a bx ,⋅ ⋅ ⋅

⋅ ⋅ ⋅
= − − + − + +  

 
of which series the first one vanishes on putting x = 0, now this one on putting x = ∞ . 
 

COROLLARY 1 
172. Hence the difference of these two series is constant, clearly :  
 

( )
5 2 9 3 13

3 4

3

3 2 7 3 11 4 15

3 3 7 3 711
5 5 9 5 913 4
3 3 7 3 711

5 5 9 5 913

   etc
Const

etc

x bx b x b x
a aa a a
x a aa a

bx b x b x b x

.
a bx .

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎧ ⎫+ − + − +⎪ ⎪ + =⎨ ⎬
+ − + − +⎪ ⎪⎩ ⎭

 



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 3.  
 Translated and annotated by Ian Bruce.                                page 117 

[The editor of the O.O. volume points out that these two series do not both converge 
unless 4 a

bx = , with 4a bx+ not equal to zero.] 

 
COROLLARY 2 

 
173. Hence we have on taking these two series together 
 

( )
4 3 3 12 5 5 20

3 2 2 7 3 3 11 4
3 3 7
5 5 9 etca bx a b x a b x C

abx a b x a b x a bx
. ,+ + ⋅ +

⋅ +
− ⋅ + ⋅ − =  

 
where, whatever the value attributed to x, always the same value is obtained for C.  
 

COROLLARY 3 
 

174. Thus if a = 1 and b = 1, this series taken by ( )41 x+  remains constant, clearly 

 

( ) ( )4 12 20

3 7 11
41 3 1 3 7 1

5 5 9 etcx x x
x x x

. a bx C.+ + ⋅ +
⋅− ⋅ + ⋅ − + =  

 
Therefore on putting x = 1 there arises 
 

( )3 3 7 3 711
5 5 9 5 9131 etc 2 2C .⋅ ⋅ ⋅

⋅ ⋅ ⋅= − + − +  

 
and also whatever the value given to x, the series is equal to that value.  

 
COROLLARY 4 

175. This last series proceeding with the alternating signs can be transformed easily into 
another series provided with the same signs, from which it is concluded that the constant  
 

( )13 13 5 13 5 71
5 5 9 5 913 5 913171+ + +  + etc 2C . ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅= +  

 
which series converges quickly enough, and it becomes approximately 13

7C = . 
 

SCHOLIUM 
176. Such a method is established from this, that a certain undefined series is produced 
and the determination of this is derived from the nature of the problem. Moreover the use 
of this is chiefly concerned with resolving differential equations ; now also in the present 
arrangement it is often useful to summoned. Also with the help of the same method 
transcending reciprocal quantities, such as both the sines or cosines of angles, can be 
expressed by exponential series ; which even if now they are known from elsewhere, yet 
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it is helpful to have the investigation of these explained by integration, since they are able 
to elicit other things clearly in a similar way.  
 

PROBLEM 14 
177. To convert the magnitude of the exponent xy a= into a series. 

 
SOLUTION 

 
 With the logarithms taken we have ly x la= and by differentiation 
 

ordy dy
y dxdx la y la,= =  

 
from which it is required to search for the value of y by means of a series. But since the 
complete integral appears more general, in our case it is to be noted that on putting x = 0 
it must be that y = 1; whereby this series for y is put in place :  
 

2 3 41 etcy Ax Bx Cx Dx .= + + + + +  
from which there is mad,  

2 32 3 4 etcdy
dx A Bx Cx Dx .= + + + + ,  

 
with which substituted into the equation 0dy

dx y la− =  then  
 

2 32 3 4 etc 0A Bx Cx Dx .
la Ala Bla Cla Dla

⎫+ + + + ⎪ =⎬
− − − − − ⎪⎭

 

 
and hence the coefficients are determined thus :  
 

1 1 1
2 3 4 etcA la, B Ala, C Bla, D C la .= = = =  

 
and thus we follow upon 
 

( ) ( ) ( )2 3 42 3 4

1 1 2 1 2 3 1 2 3 4 1  etc    x la x la x lax xla
· · · · · ·y a .,= = + + + + +  

 
which is that most noteworthy series given in the Introductione [Introductio in analysin 
infinitorum, Book I, Ch.Vll]. 
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SCHOLIUM 

178. For the sines and cosines of angles there must be a reduction to differentials of the 
second order, from which henceforth the series referring to the integral must be elicited. 
But since the integration requires a twin two fold determination, a series thus is to be put 
in place, so that it should be satisfactory to both conditions demanded by the nature of the 
equation. Now this method also can be extended to other investigations, which thus are 
changed into algebraic quantities, and here we shall begin with an example of this kind. 

 
PROBLEM 15 

179. This expression ( )( )l
n

y x xx= + + is to be changed into a series following the 

progressive powers of x. 
SOLUTION 

 Since there is the equation ( )( )1  ly nl x xx= + + , then 

( )1
dy ndx
y xx+
= ; 

 
now the squares are taken towards removing the root sign ; then 
 

( ) 2 21 xx dy nnyydx .+ =  
 

The equation is again differentiated with dx constant, as on division by 2dy it produces 
 

( ) 21 0ddy xx xdxdy nnydx ,+ + − =  
 

from which y must be elicited by a series. But first it is evident, if there is put x = 0, that  
y = 1 and, if x is infinitely small, ( )1 1ny x nx= + = + . Therefore such a series is formed :   

2 3 4 5 61  etcy nx Ax Bx Dx Dx Ex .,= + + + + + + +  
from which it is deduced,  
 

3 4 52 3 4 5 6 etcdy
dx n Ax Bxx Cx Dx Ex .= + + + + + +  

and 

2
3 42A 6 12 20 30 etcddy

dx
Bx Cxx D Ex .= + + + + +  

Hence with the substitution made we arrive at :  
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3 4 5

3 2 2 2 2

 2 6 12 20 30 42  etc
   2      6     + 12    20            

0
           2      3      4      5           

                       

A Bx Cxx Dx Ex Fx .
               A B C D 

n A B C D

nn – n An – Bn – Cn Dn

⎫+ + + + + +
⎪

+ + + ⎪ =⎬+ + + + + ⎪
⎪− − − ⎭

 

and hence the following determinations are derived :  
 

( ) ( ) ( )1 4 9
2 2 3 3 4 4 5,  ,  ,   etcn nn A nn B nnnnA B C D .,− − −

⋅ ⋅ ⋅= = = =  
 
thus so that there arises: 

 
( ) ( ) ( )( )

( )( ) ( )( )( )

5

6

1 4 1 92 3 4
1 2 1 2 3 1 2 3 4 1 2 3 4 5

4 16 1 9 25 7
1 2 3 4 5 6 1 2 3 4 5 6 7

1  

   etc

n nn nn nn n nn nn xnn
·

nn nn nn x n nn nn nn

y nx x x x

x .

− − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + + +

+ + +
 

 
 

COROLLARY 1 

180. As there is ( )( )1
n

y x xx= + + , if we put in place ( )( )1
n

z x xx= − + + , 

a similar series is produced for z, in which only x is taken negative; hence it is therefore 
concluded,  

( ) ( )( ) 64 4 162 4
2 1 2 1 2 3 4 1 2 3 4 5 61 etcnn nn nn nn nn xy z nn

·x x .− − −+
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  

and 
( ) ( )( ) ( )( )( )51 1 9 1 9 253 7

2 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 etcn nn n nn nn x n nn nn nny z nx x x .− − − − − −−
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  

 
 

COROLLARY 2 
181. If there is put in place 1 sinx .ϕ= − ⋅ , then ( )1 xx cos .ϕ+ =  and hence 

( )1 1
n

y cos . sin . cos .n sin .nϕ ϕ ϕ ϕ= + − ⋅ = + − ⋅  

and 

( )1  1
n

z cos . sin . cos .n sin .nϕ ϕ ϕ ϕ= − − ⋅ = − − ⋅ , 

 
from which we deduce : 
 

( ) ( )4 4 4 162 4 6
1 2 1 2 3 4 1 2 3 4 5 61   etcnn nn nn( nn ) nnnncos .n sin . sin . sin . .,ϕ ϕ ϕ ϕ− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − + − +  
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( ) ( )( )

( )( )

1 1 93 5
1 2 3 1 2 3 4 5

4 1 9 25 7
1 2 3 4 5 6 7

             

                etc

nn nn nn nn nn

nn nn nn ( nn )

sin .n n sin . sin . sin .

sin . .,

ϕ ϕ ϕ ϕ

ϕ

− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − +

− +

 

 
COROLLARY 3 

182. These series relate to the multiplication of angles,  and this series is terminated by 
having individual values which in the first cases occur only when n is even, and in the 
second cases, when n is odd.   
 

PROBLEM 16 
183. For the proposed angle ϕ  both the sine and the cosine are to be expressed by 
infinite series.  

SOLUTION 
 Let   and  y sin . z cos .ϕ ϕ= = ; then there arises  
 

( ) ( )1   and  ldy d yy dz d zz .ϕ ϕ= − = − −  
The squares are taken: 
 

( ) ( )2 2 2 21   and  ldy d yy dz d zz .ϕ ϕ= − = −  
 
this is differentiated on taking  dϕ  constant and there comes about  
 

2 2  et   ddy yd ddz zd .ϕ ϕ= − = −  
 
and thus it is required to define both  y and z from the same equation.  But for  y sin .ϕ=  
it is to be observed, if ϕ  vanishes, to become y = ϕ , for z cos .ϕ= , if ϕ  vanishes, to 
become 1

21z ϕϕ= −  or 1 0z ϕ= +  . Hence on making 
3 5 7

2 4 6

etc

1   etc

y A B C .,

z .

ϕ ϕ ϕ ϕ

αϕ βϕ γϕ

= + + + +

= + + + +
 

and with the substitution made : 
3 52 3 4 5  6 7 etc 0

   1                            
A B C .

A B
ϕ ϕ ϕ ⎫⋅ + ⋅ + ⋅ + ⎪ =⎬

+ + + ⎪⎭
 

and 
2 41 2 3 4 5 6  etc 0

 1                      
. ,α βϕ γϕ

α β

⎫⋅ + ⋅ + ⋅ + ⎪ =⎬
+ + + ⎪⎭

 

 
from which we deduce  
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1

2 3 4 5 6 7 8 9

1
1 2 3 4 5 6 7 8

, , , etc

   etc  

CA BA B C D .,

, , , .,β γαα β γ δ

−− − −
⋅ ⋅ ⋅ ⋅

− −−−
⋅ ⋅ ⋅ ⋅

= = = =

= = = =
 

 
from which the most noteworthy series can now be obtained :  
 

3 5 7

2 4 6

1 1 2 3 1 2 3 4 5 1 2 7

1 2 1 2 3 4 1 2 6

etc

1    etc

sin . .,

cos . .,

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= − + − +

= − + − +

 

 
SCHOLION 

184. There was no need to descend to differentials of the second order, but from the 
differentials of the formulas   and  y sin . z cos .ϕ ϕ= = , which are  

  and  dy zd dz ydϕ ϕ= = − , the same series are found easily. For with the series produced 
as before 
  

3 5 7 2 4 6etc   and  1 etcy A B C . z .ϕ ϕ ϕ ϕ αϕ βϕ γϕ= + + + + = + + + +  
 
with the substitution made there is obtained from the former :  
 

2 4 6  1    3 5  7 + etc 0
1                    

A B C . ,ϕ ϕ ϕ
α β γ

⎫+ + + ⎪ =⎬
− − − − ⎪⎭

 

and from the latter 
 

3 52 4 6  etc 0
1                

. ,
A B

αϕ βϕ γϕ ⎫+ + + ⎪ =⎬
+ + + ⎪⎭

 

 
from which these values are deduced 
 

1
2 3 4 5 6 7, ,  etc  A B, A , B , C .,β γαα β γ− − −= = = = = =  

and thus 
1 1 1
2 2 3 4 2 3 4 5 6

1 1 1
2 3 2 3 4 5 2 3 4 5 6 7

 , ,       etc

, ,   etc

.,

A B C .,

α β γ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − = + = −

= − = + = −
 

 
which values are in agreement with the preceding. Hence it is understood,  how often the 
two equations are easily set out by series at the same time, as if we should wish to extract 
one separately.  
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PROBLEM 17 

185. To express the value of the quantity y, which satisfies this equation 

( ) ( )
ndxmdy
f gxxa byy ++

= . 

 
SOLUTION 

 The integration of this equation gives rise to  
 

( )( ) ( )( )nm
gb

l a byy y b l f gxx x g C,+ + = + + +  

from which we deduce 
 

( ) ( )1
2 2

n b n b
m g m gf gxx x g f gxx x ga

h kb b
y

+ + + −⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
thus on taking the constants h and k, in order that hk f .= Hence we learn, if x is taken as 
vanishing, to become : 

1
2 2

n b n b
m g m gf x g f x ga

h kb b
y + −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

or 

( ) ( ) ( ) ( )1
2 2

n b n b n b n b
m g m g m g m gnxk h k h

b m fh k h k
y a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

or on putting y A Bx= + then 
 

( )n AAb a
m f

B
+

= , 

 
thus in order that the constant B can be defined from the constant  
 

( ) ( )1
2

n b n b
m g m gk h

b h k
A a

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

and in turn 
 

( ) ( ) ( ) ( )and
n b n b
m g m gk h

h k
A b a bAA a A b a bAA .= + + = − + +  

 
Now towards finding the series, the proposed equation with the square taken   
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( ) ( )2 2mm f gxx dy nn a byy dx+ = +  
 
may be differentiated anew with dx taken as constant, so that on division by 2dy there is 
produced :  
 

( ) 2 0mmddy f gxx mmgxdxdy nnbydx .+ + − =  
 
Now for y the series is formed  
 

2 3 4 5 etcy A Bx Cx Dx Ex Fx .,= + + + + + +  
 
with which substituted there is had :  

2 3  2 6 12 20  etc
                                2    6 0
                  2    3

                      

mmfC mmfDx mmfEx mmfFx .
mmgC mmgD .

mmgB mmgC mmgD
nnbA nnbB nnbC nnbD

⎫+ + + +
⎪

+ + ⎪ =⎬
+ + + ⎪

⎪− − − − ⎭

 

 
Hence since A and B may be given, the remaining letters are determined thus :  
 

2

4
2 3 3 4

9 16
4 5 5 6

25  36
6 7 7 8

                             

   

   

  

nnb
mmf

nnb mmg nnb mmg
mmf mmf

nnb mmg nnb mmg
mmf mmf

nnb mmg nnb mmg
· mmf mmf

C A,

D B, E C,

F D, G E,

H F , I G

− −
⋅ ⋅

− −
⋅ ⋅

− −
⋅

=

= =

= =

= =

 

 
and thus the series for y will be known. 

 
EXAMPLE 1 

186. To express the transcendent function Arc.sin .xc by a series of successive progressing 
powers of x. 
 
 Putting Arc.sin .xy c= ; then there becomes 

( )1
  and  dy dxlc

y xx
ly lc Arc.sin .x

−
= ⋅ = , hence 

 
( ) ( )22 2  1dy xx yydx lc− =  

and on differentiating, 
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( ) ( )221 0dyy xx xdxdy ydx lc .− − − =  
 
Now it may be noted on making x vanishing that the proposed function becomes 

1xy c xlc= = + ; hence the series is formed :  
2 3 4 51 etcy xlc Ax Bx Cx Dx .,= + + + + + +  

 
with which substituted there is had : 

( ) ( ) ( ) ( ) ( )

2 3 4

2 3 2 2 2

  1 2 2 3  3 4   4 5 5 6 etc
                        1 2       2 3    3 4

 = 0,                    2          3      4

    

A Bx · Cx · Dx · Ex .
A · B · C

lc A B C

le lc A lc B lc C lc

⎫⋅ + ⋅ + + + +
⎪

− ⋅ − − ⎪
⎬− − − − ⎪
⎪− − − − − ⎭

 

 
from which the remaining coefficient are determined thus : 
 

( ) ( ) ( )

( )( ) ( ) ( )

2 2 2

2 2 2

4 16
1 2 3 4 5 6

1 9 25
2 3 4 5 6 7

                 etc

          etc

lc lc lc

lc lc lc lc
· .

A , C A, E C .,

B , D B, F D .

+ +
⋅ ⋅ ⋅

+ + +
⋅

= = =

= = =

 

 
For the sake of brevity let lc γ= and there becomes : 
 

( ) ( )

( )( ) ( )( )

1 42 3 4
1 2 1 2 3 1 2 3 4

1 9 4 165 6
1 2 3 4 5 1 2 3 4 5 6

 1

etc

Arc.sin .xc x x x x

x x .

γ γγ γ γγγγ

γ γγ γγ γ γγ γγ

γ + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + +

+ + +
 

 
EXAMPLE 2 

187. On putting x sin .ϕ= , to find the series of successive progressing powers of x that 
expresses the sine of the angle nϕ . 
 
 There is put in place y sin .nϕ=  and it may be noted with vanishing ϕ  to become 

  and  x y n nxϕ ϕ= = = , that is 0y nx= + , which is the beginning for the series sought. 
But now there is :  
 

( ) ( )1 1
   and   dydx

xx yy
d nd .ϕ ϕ

− −
= =  

Hence 

( ) ( )1 1
dy ndx

yy xx− −
=  

and with the squares taken 
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( ) ( )2 21 1xx dy nndx yy− = − , 

hence 
( ) 21 0ddy xx xdxdy nnydx .− − + =  

 
Whereby this series is formed :  
 

3 5 7 9 etc.;y nx Ax Bx Cx Dx= + + + + +  
 
with which put in place there is had :  
 

3 5 7

3

2 3  4 5     6 7  8 9 etc
           2 3        4 5      6 7

=0,
        3            5           7

                       

Ax Bx Cx Dx .
A B C

n A B C

n nnA nnB nnC

⎫⋅ + ⋅ + ⋅ + ⋅ +
⎪

− ⋅ − ⋅ − ⋅ ⎪
⎬− − − − ⎪
⎪+ + + + ⎭

 

from which these values are deduced  
 

( ) ( ) ( )1 9 25
2 3 4 5 6 7, ,   etc  n nn nn A nnA B C B . ,− − − − − −
⋅ ⋅ ⋅= = =  

thus in order that 
( ) ( )( ) ( )( )( )1 1 9 1 9 253 5 7
1 2 3 1 2 3 4 5 6 71 2 3 4 5

 etc

  

n nn n nn nn n nn nn nny nx x x x .− − − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

= − + − +  

or 
( ) ( )( ) ( )( )( )1 1 9 1 9 253 5 7
1 2 3 1 2 3 4 5 6 71 2 3 4 5

 etc

  

n nn n nn nn n nn nn nnsin .n n sin sin sin sin .ϕ ϕ ϕ ϕ ϕ− − − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

= − + − +  

 
SCHOLION 

188. Since this series is terminated only in cases in which n is an odd number,  
it is to be observed that for even numbers the series can be expressed conveniently by a 
product of sin .ϕ  with another series of the progressive successive powers of the cosine 
of ϕ . Towards finding that we put cos . uϕ =  and there becomes:  

( )1sin .n z sin . z uu ,ϕ ϕ= = −  
from which on account of  
 

( )1
du

uu
dϕ

−
= −  

then on differentiating : 
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( )
( )

( )1 1
1ndu cos .n zudu

uu uu
dz uuϕ

− −
− = − −  

 
or 

( ) 1ndu cos.n dz uu zudu,ϕ− = − −  
which on taking du constant on differentiating again gives  
 

( )
( )

2 2 2
1

1 3nndu sin.n
uu

ddz uu ududz zdu nnzduϕ
−

− = − − − = −  

on account of 
( )1
sin .n

uu
zϕ

−
= . 

On account of which the series sought for sin.n
sin.z ϕ

ϕ=  must be elicited from the equation :  

( ) 2 21 3 0ddz uu ududz zdu nnzdu ,− − − + =  
 
where it is to be noted, since u cos .ϕ= , with vanishing u, in which case there is made  

90ϕ = ° , there becomes either 0z = , if  n is an even number, or 
 1  if 4 1  or 1z , n , zα= = + = − ,  if 4 1n α= − . Which individual cases are to be worked out 
separately; and for which the beginning of each series becomes apparent, if there is put 

90ϕ ω= °−  and on vanishing there becomes  
( )1  90u cos . , sin . , sin .n sin . n n z.ϕ ω ϕ ϕ ω= = = = °⋅ − =  

Now for the individual cases [i.e. in the four quadrants]:  
 

I    if 4        then    
II   if 4 1   then       1
III  if 4 2  then      
IV  if 4 3  then    1

. n , z sin.n nu
. n , z cos .n
. n , z sin .n nu
. n , z cos .n ,

α ω
α ω
α ω
α ω

= = − = −
= + = =
= + = = +
= + = − = −

 

 
from which the known series are now deduced well enough.  
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CAPUT III 
 

DE INTEGRATIONE FORMULARUM DIFFERENTIALIUM 
PER SERIES INFINITAS 

 
PROBLEMA 12 

126. Si X fuerit functio rationalis fracta ipsius x, formulae differentialis dy Xdx=  
integrale per seriem infinitam exhibere. 
 

SOLUTIO 
Cum X sit functio rationalis fracta, eius valor semper ita evolvi potest; 
ut fiat 

2 3 4 etcm m n m n m n m nX Ax Bx Cx Dx Ex .,+ + + += + + + + +  
 
ubi coefficientes A, B, C etc. seriem recurrentem constituent ex denominatore 
fractionis determinandam. Multiplicentur ergo singuli termini per dx et integrentur, quo 
facto integrale y per sequentem seriem exprimetur 
 

1 1 2 1C
1 1 2 1+  + etc Const ;

m m n m nAx Bx x
m m n m ny . .

+ + + + +

+ + + + += + +  

ubi si in serie pro X occurrat huiusmodi terminus M
x  inde in integrale ingredietur 

terminus M l x . 
SCHOLION 

127. Cum integrale Xdx∫ , nisi sit algebraicum, per logarithmos et angulos exprimatur, 

hinc valores logarithmorum et angulorum per series infinitas exhiberi possunt. Cuiusmodi 
series cum iam in Introductione [L. Euleri Introductio in analysin infinitorum, t.I cap. VI-
VIII] plures sint traditae, non solum eaedem, sed etiam infinitae aliae hic per 
integrationem erui possunt. Hoc exemplis declarasse iuvabit, ubi potissimnm eiusmodi 
formulas evolvemus, in quibus denominator est binomium; tum vero etiam casus aliquot 
denominatore trinomio vel multinomio praeditos contemplabimur. Imprimis autem 
eiusmodi eligemus, quibus fractio in aliam, cuius denominator est binomius, transmutari 
potest. 

EXEMPLUM 1 
128. Formulam differentialem ;ax

a x+  per seriem integrare. 

Sit  ;dx
a xy
+

= ∫  erit ( ) Consty l a x .,= + + unde integrali ita determinato, ut evanescat 

posito x = 0, erit ( )y l a x la.= + −  Iam cum sit 
3 4

2 3 4 5
1 1

4 5
etcx xx x x

a x a a a a a
.,+ = − + − + − , 
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erit eadem lege integrale definiendo 
 

2 3 4 5
2 3 4 52 3 4 5

etcx x x x x
a a a a a

y .,− + − + −=  

 
unde colligemus, uti quidem iam constat, 
 

( ) 2 3 4

2 3 42 3 4
etcx x x x

a a a a
l a x la .,+ = + − + − +  

 
COROLLARIUM 1 

129. Si capiamus x negativum, ut sit dx
a xdy −
−=  , eodem modo patebit esse 

( ) 2 3 4

2 3 42 3 4
etcx x x x

a a a a
l a x la .,− = − − − − −  

hisque combinandis 
( ) 4 6 8

4 6 82 3 4
2 etcxx x x x

aa a a a
l aa xx la .,− = − −− − −  

et 
3 5 7

3 5 7
2 2 2 2

3 5 7
etca x x x x x

a x a a a a
l .+

− = + + + +  

 
COROLLARIUM 2 

130. Hae posteriores series eruuntur per integrationem formularum 
 

( )4

4 6
2 12 etcxdx xx x

aa xx aa a a
xdx . ,−

− = − + + +  

et 

( )4

4 6
2 12 etcadx xx x

aa xx aa a a
adx . .− = + + +  

Est autem 
( )2 2etxdx adx a x

aa xx aa xx a xl aa xx laa l ,− +
− − −= − − =∫ ∫  

 
ita ut iam his formulis per series integrandis supersedere possimus. 
 

EXEMPLUM 2 
131. Formulam differentialem adx

aa xx+∫   per seriem integrare. 

  
Sit adx

aa xxdy += , et cum sit Arc  tang x
ay . .= , idem angulus series infinita exprimetur. Quia 

enim habemus 
4 6 8

3 5 7 9
1 etca xx x x x

aa xx a a a a a
.,+ = − + − + −  

erit integrando 
3 5 7

3 5 73 5 7
Arc  tang etcx x x x x

a a a a a
y . . .= = − + − +  
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EXEMPLUM 3 
 
132. Integralia harum formularum 33 11

xdxdx
xx

et
++∫ ∫  per series exprimere. 

Cum sit 

3
3 6 9 121

1
1 etc

x
x x x x .,

+
= − + − + −  

erit 

3
4 7 10 131 1 1 1

4 7 10 131
etcdx

x
x x x x x .

+
= − + − + −∫  

et 

3
2 5 8 11 141 1 1 1 1

2 5 8 11 141
etcxdx

x
x x x x x .

+
= − + − + −∫  

 
Verum per § 77 habemus per logarithmos et angulos 
 

( ) ( )3

3

3

1 2
3 3 3 31

2
3 3 1

1 1 2

                  Arc.tang

dx
x

x sin .
xcos .

l x cos . l xcos . xx

sin . . ,
π

π

π π

π

+

−

= + − − +

+

∫
 

et 
 

( ) ( )3

3

3

1 2
3 3 3 31

2
3 3 1

1 1 2

                  Arc.tang

xdx
x

x sin.
xcos .

l x cos . l xcos . xx

sin . . ,
π

π

π π

π

+

−

= − + − − +

+

∫
 

 
At est 3 32 21 1

3 2 3 2 3 2 3 2, ,cos . cos . , sin . sin . ,π π π π= = − = = unde fit 
 

( ) ( )

( ) ( )

3

3

31 1 1
3 3 21 3

31 1 1
3 3 21 3

1 1 Arc.tang

1 1 Arc.tang

xdx
xx

xxdx
xx

l x l x xx . ,

l x l x xx .

−+

−+

= + − − + +

= − + + − + +

∫

∫
 

 
integralibus ut seriebus ita sumtis, ut evanescant posito 0x = . 

 
COROLLARIUM 1 

133. His igitur seriebus additis prodit 
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4 5 7 8 10 1132 1 1 1 1 1 1 1
2 2 4 5 7 8 10 113

Arc.tang etcx
x. x xx x x x x x x .,− = + − − + + − − +  

 
subtracta autem posteriori a priori fit 
 

( )
2 4 5 7 8 10 1112 1 1 1 1 1 1 1

3 2 4 5 7 8 10 111
etcx

x xx
l x x x x x x x x .,+

− +
= − − + + − − + +  

 
cuius valor etiam est  

( ) ( )2 3

3

1 11 1
3 1 3 1

x x
x xx x

l l .+ +
− + +

= =  

 
COROLLARIUM 2 

134. Cum sit 

( )3
31

31
1xxdx

x
l x

+
= +∫ , 

 
erit eodem modo 

( )3 3 6 9 121 1 1 1 1
3 3 6 9 121 etcl x x x x x .,+ = − + − +  

 
qua serie illis adiecta omnes potestates ipsius x occurrent. 
 

EXEMPLUM 4 
135. Integrale hoc ( )

4

1
1

xx dx
x

y +

+
= ∫ per seriem exprimere. 

Cum sit 

4
4 8 12 161

1
1 etc

x
x x x x .,

+
= − + − + −  

erit 
3 5 7 11 13 151 1 1 1 1 1

3 5 7 11 13 15 +etcy x x x x x x x .= + − − + − −  
 
Verum per §82, ubi m = 1 et n = 4, posito 4

π ω=  fit integrale idem 
 

3
1 1 3Arc.tang 3 Arc.tang ;x sin. x sin .

xcos . xcos .y sin . . sin . .ω ω
ω ωω ω− −= +  

 
at ob 1 1 1 1

4 2 2 2 2
45  est 3 3 ;sin . , cos . , sin . , cos .π ω ω ω ω ω −= = ° = = = =  

habebimus 
21 1 1

12 2 2 2 2
Arc.tang Arc.tang = Arc.tang xx x

xxx x
y . . . .−− +
= +  

 
EXEMPLUM 5 
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136. Integrale hoc ( )4

6

1

1

x dx

x
y

+

+
= ∫ per seriem exprimere. 

Cum sit 

6
6 12 18 241

1
1 etc

x
x x x x .,

+
= − + − + −  

erit 
5 7 11 13 171 1 1 1 1

5 7 11 13 17+ etcy x x x x x x .= + − − + −  
 
At per §82, ubi 61 6 et 30m , n ,πω= = = = °  est 
 

32 2
3 1 3 1 3

52
3 1 5

Arc.tang 3 Arc.tang ;

                        5 Arc.tang ;

x sin. x sin .
xcos . xcos .

x sin .
xcos .

y sin . . sin . .

sin . .

ω ω
ω ω

ω
ω

ω ω

ω

− −

−

= +

+

 

 
est vero  
 

3 31 1
2 2 2 2, 3 1, 3 0 5 , 5sin . cos . ,sin . cos . ,sin . cos . ,ω ω ω ω ω ω= = = = = = −  ergo 

 
1 2 1
3 3 32 3 2 3

Arc.tang Arc.tang Arc.tangx x
x x

y . .x .
− +

= + +  

seu 
( )

4
3 11 2 1

3 1 3 3 1 4
Arc.tang Arc.tang Arc.tang x xxx

xx xx x
y . .x . .−

− − +
= + =  

 
COROLLARIUM 1 

137. Sit 

6
3 9 15 211 1 1 1

3 9 15 211
etcxxdx

x
z x x x x .,

+
= = − + − +∫  

at facto 3x u= est 

6
31 1 1

3 3 31
Arc.tang Arc.tangxxdx

x
z .u .x .

+
= = =∫  

 
Hinc series huiusmodi mixta formatur 
 

3 5 7 9 11 13 15 171 1 1 1 1
3 5 7 9 11 13 15 17 etcn n nx x x x x x x x x .,+ + − − − + + + −  

cuius summa est 
( )

4

3 1 31
3 31 4

Arc.tang Arc.tangx xx n
xx x

. .x .−

− +
+  

 
COROLLARIUM 2 

138. Si hic capiatur 1n = − , binos angulos in unum colligendo fit 
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( ) 3 5 7

4 4 6

3 1 3 3 4 41 1 1
3 3 31 4 1 4 4 3

Arc.tang Arc.tang Arc.tangx xx x x x x
xx x xx x x

. .x .− − + −
− + − + −

− =  

quae fractio per 41 xx x− + dividendo reducitur ad  
33

1 3
x x

xx
−

− quae est tangens 
tripli anguli x pro tangente habentis, ita ut sit 
 

331
3 1 3Arc.tang =Arc.tangx x

xx. .x−
− , 

quod idem series inventa manifesto indicat. 
 

EXEMPLUM 6 

139. Hanc formulam ( )1 1

1

m n m

n

x x dx

x
dy

− − −+

+
=  per seriem integrare. 

Ob 
2 3 41

1
1 etcn

n n n n
x

x x x x .
+

= − + − + −  

habebitur 
 

2 2 3

2 2 3 etc
m n m n m n m n m n mx x x x x x

m n m n m n m n m n my .
− + − + −

− + − + −= + − − + + −  
 

Haec ergo series per § 82 aggregatum aliquot arcuum circularium exprimit, 
quos ibi videre licet. 

 
 

COROLLARIUM 

140. Eodem proposita formula ( )1 1

1

m n m

n

x x dx

x
dz

− − −−

−
=  ob 

 
2 3 41

1
1 etcn

n n n n
x

x x x x .
−

= + + + + +  

 
invenitur 

2 2 3

2 2 3 etc
m n m n m n m n m n mx x x x x x

m n m n m n m n m n mz .
− + − + −

− + − + −= − + − + − +  
 
euius valor §84 est exhibitus. 

 
EXEMPLUM 7 

141. Hanc formulam ( )1 2
1

x dx
x xxdy +

+ += per seriem integrare. 

Primo integrale est manifesto ( )1 ;y l x xx= + + ut autem in seriem convertatur, 
multiplicetur numerator et denominator per 1 x− , ut fiat 
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( )
3

1 2
1

x xx dx
x

dy + −

−
= . 

Cum nunc sit 

3
3 6 9 121

1
1 etc

x
x x x x .

−
= + + + + +  

erit integrando 
2 3 4 5 6 7 8 92 2 2

2 3 4 5 6 7 8 9 etcx x x x x x x xy x .= + − + + − + + − +  
 

COROLLARIUM 1 
142. Eodem modo inveniri potest ( )31y l x xx x= + + +  per seriem. Cum 

enim fiat ( ) ( )4y 1 1l x l x ,+ − = − erit 
2 3 4 5 6 7 8 9 10

8

2 3 4 5 6 7 8 9 10
4

2

etc

                                             

x x x x x x x x x

x

y x .

x

= + + + + + + + + + +

− −
 

sive 
2 3 4 5 6 7 8 93 3

2 3 4 5 6 7 8 9 etcx x x x x x x xy x .= + + − + + + − + +  
 

COROLLARIUM 2 
143. At fractio 1 2

1
x

x xx
+
+ + per seriem recurrentem evoluta dat 

3 4 5 6 7 81 2 x 2 2 etcx xx x x x x x .,+ − + + − + + − +  
 
unde per integrationem eadem series obtinetur quae ante.  
 

EXEMPLUM 8 
 

144. Hanc formulam  1 2
dx

xcos . xxdy ζ− += per seriem integrare. 

Per § 64, ubi 1  0 1 et 1A , B , a b ,= = = = est huius formulae integrale 
 

1
1Arc.tang x sin .

sin . xcos .y . .ζ
ζ ζ−=  

 
At per seriem recurrentem reperimus 
 

( ) ( )
( ) ( )

2 3 31
1 2

4 2 4 5 3 5

1 2 4 1 8  4

+ 16  12 1  + 32  32 6 + etc

xcos . xx xcos . cos . xx cos . cos . x

cos . cos . x cos . cos . cos . x .,

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

− + = + + − + −

− + − +
 

qua serie per dx multiplicata et integrata obtinetur quaesitum. Potestatibus 
autem ipsius cos.ζ in cosinus angulorum multiplorum conversis reperitur 
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( ) ( ) ( )
( ) ( )

3 41 1 1
2 3 4

5 61 1
5 6

2 2 2 1 + 2 3 2

 + 2 4 2 2 1 + 2 5 2 3 2 + etc

y x xx cos . x cos . x cos . cos .

x cos . cos . x cos . cos . cos . .,

ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= + + + +

+ + + +
 

 
COROLLARIUM 1 

145. Si ponatur  
( )1

1 2
xcos . dx
xcos . xxdz ,ζ

ζ
−

− +=  

 
erit per § 63 1 1 et  lA ,B cos . , a bζ= = − = = ideoque 
 

( ) 11 2 Arc. tang  ;x sin.
xcos .z cos . l xcos . xx sin . ζ

ζζ ζ ζ −= − − + +  

at per seriem ob 
 

1 2 3 4
1 2 1 2 3 4 etc.xcos .

xcos . xx xcos . x cos . x cos . x cos .ζ
ζ ζ ζ ζ ζ−

− + = + + + + +  

 
fit 

3 4 51 1 1 1
2 3 4 52 3 4 etc.z x xxcos . x cos . x cos . x cos .ζ ζ ζ ζ= + + + + +  

 
COROLLARIUM 2 

146. At quia 
( )2 2

1 2
dx xcos . cos . sin .

xcos . xxdz ,
ζ ζ ζ

ζ
− + +

− +=  

 
erit 

( ) 2
1 21 2 dx

xcos . xxz cos . l xcos . xx sin . .ζζ ζ ζ − += − − + + ∫  

Hinc ergo pro 

1 2
dx

xcos . xxy ζ− += ∫  

alia reperitur series infinita cum logarithmo connexa, scilicet 
 

( )

( )
2

2
3 41 1 1 1

2 3 4

1 2

2 3 etc

cos .
sin .

sin .

y l xcos . xx

x xxcos . x cos . x cos . . .

ζ
ζ

ζ

ζ

ζ ζ ζ

= − +

+ + + + +
 

 
PROBLEMA 12[a] 

147. Formulam differentialem irrationalem ( )1m ndy x dx a bx−= + per seriem infinitam 

integrare. 
SOLUTIO 
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Sit va c
μ

= ; erit  

( )1 1 vm nb
ady cx dx x ,

μ
−= +  

ubi quidem assumimus c non esse quantitatem imaginariam. Cum igitur sit 
 

( ) ( ) ( )( )2 3

3
22 3

1 1 2 1 2 3
1 1 etc.v v b v v bbn n n nb

a v a v v aa v v v a
x x x x ,

μ
μ μ μ μ μμ − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ = + + + +  

 
erit integrando  

( ) ( )( ) 32 3

3

2
1 1 2 2 31 2 3

etc.
m m n m n m nv bb v v bbx x x x

m v a m n v v aa m n m nv v v a
y c ,μ μ μ μ μμ + + +− − −

⋅ + ⋅ ⋅ + +⋅ ⋅ ⋅
⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

 

 
quae series in infinitum excurrit, nisi v

μ  sit numerus integer positivus. Sin autem casu, 
quo v numerus par, a fuerit quantitas negativa, expressio nostra ita est repraesentanda 

 

( ) ( )11 x 1
nv vv vmm n na

bdy x dx bx a b dx x .
μ μμ μ+ −− −= − = −  

 
Cum igitur sit 
 

( ) ( ) ( )( )2 3

2 3
22 3

1 1 2 1 2 3
1 1 etc.v v a v v abn n n na

b v a v v b v v v b
x x x x ,

μ
μ μ μ μ μμ − − −− − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− = − + − +  

 
erit integrando 

( )

( )
( )

( )

( )

22

21 21 2
etc.

v n v nnm m mv v vv
v aavx vx vx

mv n v b mv v n mv v nv v b
y b .

μ μμμ μ μμ
μ μ μ

− −
+ + +−
+ ⋅ + − + −⋅ ⋅

⎛ ⎞
= − ⋅ + ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
 

Si a et b sint numeri positivi, utraque evolutione uti licet. 
 

EXEMPLUM 1 
148. Formulam 

( )1
dx

xx
dy

−
= per seriem integrare. 

Primo ex superioribus patet esse y = Arc. sin. x, qui ergo angulus etiam per seriem 
infinitam exprimetur. Cum enim sit 
 

( )
2 4 6 813 13 5 13 5 71 1

2 2 4 2 4 6 2 4 6 81
 1 + etc.,  

xx
x x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅−
= + + + +  

erit 
3 5 7 913 13 5 13 5 71

2 3 2 4 5 2 4 6 7 2 4 6 8 9 + etc., x x x xy x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ + ⋅  

 
utroque valore ita definito, ut evanescat posito 0x = . 
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COROLLARIUM 1 

149. Si ergo sit 1x = , ob 21Arc.sin . π=  erit 
 

13 13 5 13 5 71
2 2 3 2 4 5 2 4 6 7 2 4 6 8 91 + etc., π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  
 
At si ponatur 1

2x = , ob 1
2 630Arc.sin . π= ° = erit 

 
3 5 7 9

13 13 5 13 5 71 1
6 2 2 2 3 2 4 2 5 2 4 6 2 7 2 4 6 8 2 9

+ etc., π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + +  

 
cuius seriei decem termini additi dant 0,52359877, cuius sextuplum 3,14159262 
tantum in octava figura a veritate discrepat.  
 

COROLLARIUM 2 
150. Proposita hac formula 

( )
dx
x xx

dy
−

= posito x uu=  fit 

( ) ( )4
2 2

1
udu du

uuuu u
dy ,

−−
= =  

ergo 
2 2  ;y Arc.sin .u Arc.sin . x= =  

tum vero per seriem erit 
 

( )3 5 7 913 13 5 13 5 71
2 3 2 4 5 2 4 6 7 2 4 6 8 92 + etc.  u u u uy u ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ + ⋅  

seu 

( )313 13 51
2 3 2 4 5 2 4 6 72 1 etc.x xx xy x .⋅ ⋅ ⋅

⋅ ⋅ ⋅= + ⋅ + ⋅ + ⋅ +  

 
EXEMPLUM 2 

 
151. Formulam ( )2dy dx ax xx= − per seriem integrare. 

Posito x=uu fit ( )2 2dy uudu a uu= − at per reductionem I (§ 118) est 
2 1 2  1 1 2n , m , a a, b , , v ,μ= = = = − = = unde 

 

( ) ( ) ( )
3
21 1

4 22 2 2uudu a uu u a uu a du a uu ,− = − − + −∫ ∫  

 
et per III sumendo 1 2 1 2 1 2m , a a, b , n , , vμ= = = − = = − =  fit 
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( ) ( )

( )
1
2 2

2 2 ;du
a uu

du a uu u a uu a
−

− = − +∫ ∫  

at est 

( ) 2 22
= xdu u

a aa uu
Arc.sin Arc.sin

−
=∫  

ideoque 
 

( ) ( ) ( )

( ) ( )

3
21 1 1

4 4 2 2

1 1
4 2 2

2 2 2

                                = 2     

x
a

x
a

uudu a uu u a uu au a uu aaArc.sin

u uu a a uu aaArc.sin .

− = − − + − +

− − +

∫
 

Ergo 
( ) ( )1

2 2
2    x

a
y x a ax xx aaArc.sin .= − − +  

 
Pro serie autem invenienda est 
 

( )
( )

1
2

1 3
2

3

2

1131 11
2 2 2 4 4 2 4 6 8

2 1

     = 1 etc 2

x
a

x xx x
a aa a

dy dx ax

x dx . a⋅ ⋅⋅
⋅ ⋅ ⋅

= −

− ⋅ − ⋅ − ⋅ −
 

hincque integrando 
 

5 7 93 2 2 22
3

2 2 113 22 1 11
3 2 5 2 2 4 7 4 2 4 6 9 8

  = etc 2x x x
a aa a

y x . a⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛ ⎞
− ⋅ − ⋅ − ⋅ −⎜ ⎟

⎝ ⎠
 

seu 

( )2 3 4

3
1131 11

3 2 5 2 2 4 7 4 2 4 6 9 8
  = etc 2 2x x x x

a aa a
y . ax .⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− ⋅ − ⋅ − ⋅ −  

 
COROLLARIUM  

152. Integrale facilius inveniri potest ponendo x a v= − , unde fit 
 

( )dy dv aa vv= − −  
et per reductionem III [§ 118] 
 

( ) ( )
( )

1 1
2 2

dv
aa vv

dv aa vv v aa vv aa
−

− = − +∫ ∫  

hinc 
( )1 1

2 2
v
ay C v aa vv aaArc.sin .= − − −  

seu 
( ) ( )1 1

2 22 ;a x
ay C a v ax xx aa Arc.sin . −= − − − −  
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ut igitur fiat y = 0 posito x = 0, capi debet 1

2 1C aa Arc.sin .= , ita ut sit 
 

( ) ( )1 1
2 22 .a x

ay a x ax xx aa Arc.cos . −= − − − +  
Est vero 

1
22

x a x
aa

Arc.sin . Arc.cos . .−=  

 
COROLLARIUM 2 

153. Si ponamus 2
ax = , fit  3

8 6 ;aa aay π−= +  series autem dat 
 

( )3 5 7
1131 1 11

2 3 2 5 2 2 4 7 2 2 4 6 9 2
  = 2 etcy aa . ,⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − − −  

unde colligitur 

( )3 4 6
3 3 1131 1 11

4 3 2 5 2 2 4 7 2 2 4 6 9 2
  = 6 etc ;.π ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ − − − −  

 
at per superiorem [§ 149] est 
 

( )2 4 6
13 13 51

2 3 2 2 4 5 2 2 4 6 7 2
  = 3 1 etc ,.π ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ + + +  

 
ex quarum combinatione plures aliae formari possunt. 
 

EXEMPLUM 3 
 
154. Formulam 

( )1
dx

xx
dy

+
=  per seriem integrare. 

Integrale est ( )( )1y l x xx= + + ita sumtum, ut evanescat posito 0x = . 

At ob 

( )
2 4 613 13 51 1

2 2 4 2 4 61
1 etc.  

xx
x x x⋅ ⋅ ⋅

⋅ ⋅ ⋅+
= − + − +  

 
erit idem integrale per seriem expressum 
 

3 5 713 13 51
2 3 2 4 5 2 4 6 7 etc. x x xy x ⋅ ⋅ ⋅

⋅ ⋅ ⋅= − ⋅ + ⋅ − ⋅ +  
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EXEMPLUM 4 
155. Formulam 

( )1
dx
xx

dy
−

=  per seriem integrare. 

Integratio dat ( )( )1y l x xx= + − quod evanescit posito 1x = . Iam ob 

 

( ) 3 5 7
13 13 51 1 1

2 2 4 2 4 61
etc.  x x x xxx

⋅ ⋅ ⋅
⋅ ⋅ ⋅−

= + + + +  

erit idem integrale 
 

2 4 6
13 13 51

2 2 2 4 4 2 4 6 6
etc.  

x x x
y C lx ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + − − − −  

 
quod ut evanescat posito x = 1, constans ita definitur, ut fiat 
 

( ) ( ) ( )2 4 6
13 13 51 1 1 1

2 2 2 4 4 2 4 6 61 1 1 etc.  
x x x

y lx ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + − + − + − +  

 
COROLLARlUM 

156. Posito 1x u= + fit 
 

( ) ( )

( )

1
2

3

222

13 13 51
2 2 2 4 4 2 4 6 82

1

    1 etc.

du du u
uu uu

du u uu u
u

dy

,

−

+

⋅ ⋅ ⋅
⋅ ⋅ ⋅

= = +

= − ⋅ + ⋅ − ⋅ −
 

 
unde integrando habebitur 
 

3 5 7
2 2 22 13 2 13 5 21 1

2 3 2 2 4 5 4 2 4 6 7 82
  = 2 etcu u uy u .⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎛ ⎞

− ⋅ + ⋅ − ⋅ +⎜ ⎟
⎝ ⎠

 

seu 

( )31 13 13 5
2 3 2 2 4 5 4 2 4 6 7 8  = 1 +etc 2u uu uy . u .⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− + −  

 
EXEMPLUM 5 

157. Formulam 
( )1 n

dx
x

dy
−

= per seriem integrare. 

Per integrationem fit 

( )( ) 1
1 1

11 1 n nn x
y − −− −
= −  
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facto y = 0, si 0x = , seu 
( ) 11 1

1

nx
ny
− +− −
−=  

Iam vero per seriem est 
 

( ) ( )( )( )1 1 22 3
1 2 1 2 31 etc.n n n n ndy dx nx x x ,+ + +
⋅ ⋅ ⋅= + + + +  

unde idem integrale ita exprimetur 
 

( ) ( )( )3 42 1 1 2
2 1 2 3 1 2 3 4 etc.n n x n n n xnxy x ,+ + +

⋅ ⋅ ⋅ ⋅ ⋅= + + + +  
 
Hinc autem quoque manifesto fit 

( )
( )n l

1
1

1 1
x

n y −−
− + = . 

 
SCHOLION 

 
158. Haec autem cum sint nimis obvia, quam ut iis fusius inhaerere sit opus, aliam 
methodum series eliciendi exponam magis absconditam, quae saepe in Analysi eximium 
usum afferre potest. 

 
PROBLEMA 13 

 
159. Proposita formula differentiali 

( ) 11 vm ndy x dx a bx
μ −−= +  

eius integrale altera methodo in seriem convertere. 
 

SOLUTIO 

Ponatur ( ) vny a bx z
μ

= + ; erit 

 

( ) ( )( )1 1v nn n n
vdy a bx dz a bx bx zdx ,

μ
μ− −= + + +  

unde fit 

( )1 1nm n n
vx dx dz a bx bx zdxμ− −= + +  

seu 

( )1 1m n nvx dx vdz a bx n bx zdx.μ− −= + +  

Iam antequam seriem, qua valor ipsius z definiatur, investigemus, notandum est casu, quo 
x evanescit, fieri 
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1 1v vmdy a x dx a dz,
μ μ− −= =  

ut sit 11 m
adz x dx−= . Statuamus ergo 

 
2 3 etcm m n m n m nz Ax Bx Cx Dx .+ + += + + + +  

 
eritque 

( ) ( )1 2 12 etcm m n m ndz
dx mAx m n Bx m n Cx .+ − + −= + + + + +  

 
Substituantur hae series loco z et dz

dx  in aequatione 
 

( ) 1 1 0n n mvdz
dx a bx n bx z vxμ − −+ + − =  

 
singulisque terminis secundum potestates ipsius x dispositis orietur ista aequatio 
 

( ) ( )
( )

1 1 2 1 2 etc

                                 0
                                                       

m m n m nmvaAx m n vaBx m n vaCx .

v mvbA m n vbB ,
n bA n bBμ μ

− + − + − ⎫+ + + + +
⎪⎪− + + + =⎬
⎪+ + ⎪⎭

 

 
unde singulis terminis nihilo aequalibus positis coefficientes ficti per sequentes 
formulas definientur 
 

10                                      hinc        mamvaA v , A ,− = =  

( ) ( ) ( )
( )

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

2

2
3

 0                        

2  0          

3 2  0        

mv n b
m n va

m n v n b
m n va

m n v n b
m n va

 m n vaB mv n bA , B A,

m n vaC m n v n bB , C B,

m n vaD m n v n bC , D C

μ

μ

μ

μ

μ

μ

+
+

+ +
+

+ +
+

+ + + = = −

+ + + + = = −

+ + + + = = −

 

 
sicque quilibet coefficiens facile ex praecedente reperitur. Tum vero erit 

( ) ( )2 3 etcvn m m n m n m ny a bx x Bx Cx Dx .
μ

+ + += + + + + +  

SOLUTIO 2 
 
Quemadmodum hic seriem secundum potestates ipsius x ascendentem 
assumsimus, ita etiam descendentem constituere licet 
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2 3 4 etcm n m n m n m nz Ax Bx Cx Dx .− − − −= + + + +  
ut sit 

( ) ( ) ( )1 2 1 3 12 3 etcm n m n m ndz
dx m n Ax m n Bx m n Cx .− − − − − −= − + − + − +  

 
quibus seriebus substitutis prodit 
 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 3 12 3 etc

            2         3              4                     
                                                  

m m n m n m nm n vbAx m n vaAx m n vaCx m n vaCx .

n bA m n vbB m n vbC m n vbD
v n bB n
μ

μ μ

− + − + − − −− + − + − + − +

+ + − + − + −

− + +

0
                                            

.
bC n bDμ

⎫
⎪⎪ =⎬
⎪+ ⎪⎭

 
 
Hinc ergo sequenti modo litterae A, B, C etc. determinantur 
 

( ) ( )
10                       ergo       v
bm n v nm n vbA n bA v , A ,μμ

− +
− + − = = ⋅  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

2
3

3
4

  2  0         

2 3  0        

3 4  0        

m n v a
bm n v n

m n v a
bm n v n

m n v a
bm n v n

 m n vaA m n vbB n bB , B A,

m n vaB m n vbC n bC , C B,

m n vaC m n vbD n bD , D C,

μ

μ

μ

μ

μ

μ

− −
− +

− −
− +

− −
− +

− + − + = = ⋅

− + − + = = ⋅

− + − + = = ⋅

 

 
ubi iterum lex progressionis harum litterarum est manifesta.  
 

COROLLARIUM 1 
 

160. Prior series ideo est memorabilis, quod casibus, quibus 
 

( )  0   seu   m
n vm in v n i,μμ+ + = − − =  

 
abrumpitur atque ipsum integrale algebraicum exhibet. Posterior vero abrumpitur, quoties 

0  seu  m
nm in i− = =  denotante i numerum integrum positivum. 

 
COROLLARIUM 2 

 
161. Utraque vero series etiam incommodo quodam laborat, quod non semper in usum 
vocari potest. Quando enim vel m = 0 vel m + in = 0, priori uti non licet, quando vero 
( ) 0  seu  m

n vm in v n i,μμ− + = + = usus posterioris tollitur, quia termini fierent infiniti. 
 

COROLLARIUM 3 
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162. Hoc vero commode usu venit, ut, quoties altera applicari nequit, altera certo in usum 
vocari possit, iis tantum casibus exceptis, quibus et   et  m m

n v n
μ− +  sunt numeri integri 

positivi. Quia autem tum est 1v = , hi casus sunt rationales integri nihilque difficultatis 
habent. 

 
COROLLARIUM 4 

163. Possunt etiam ambae series simul pro z coniungi hoc modo. Sit prior series = P, 
posterior vero = Q, ut capi possit tam z P= quam z Q= . Binis autem coniungendis erit 
z P Qα β= + , dummodo sit 1a β+ = . 

 
SCHOLION 

164. Inde autem, quod duas series pro z exhibemus, minime sequitur has duas series inter 
se esse aequales; neque enim necesse est, ut valores ipsius y inde orti fiant aequales, 
dummodo quantitate constante a se invicem differant. Ita si prior series inventa per P, 

posterior per Q indicetur, quia ex illa fit ( ) vny a bx P
μ

= + , ex hac vero ( ) vny a bx Q
μ

= + , 

certo erit  ( ) ( )vna bx P Q
μ

+ − quantitas constans ideoque ( ) vnP Q C a bx
μ−

− = + . Utraque 

scilicet series tantum integrale particulare praebet, quoniam nullum constantem involvit, 
quae non iam in formula differentiali contineatur. Interim tamen eadem methodo etiam 
valor completus pro z erui potest; praeter seriem enim assumtam P vel Q statui potest 
ac substitutione facta series P ut ante definitur; pro altera vero nova serie 
efficiendum est, ut sit 
 

1 2 1 3 1 4 1   2 3 4 etc
                2         3 0

                                        

n n n nnva x nva x nva x nva x .
n b nvb nvb nvb ,

n b n b n b

β γ δ ε
μ α β γ δ

μ β μ γ μ δ

− − − − ⎫+ + + +
⎪

+ + + + =⎬
⎪+ + + ⎭

 

 
unde ducuntur hae determinationes 
 

( ) ( ) ( )2 3
2 3 4 etc.,v b v b v bb

va va va va, , , ,μ μ μμβ α γ β δ γ δ δ− + − + − +−= ⋅ = ⋅ = ⋅ = ⋅  
 
ita ut prodeat 
 

( ) ( )( )( )2 3

2 3
22 3

2 2 31 +etc.v v vn n nb b b
v a v v v v va a

z P x x xμ μ μ μ μμα + + +
⋅ ⋅ ⋅= + − ⋅ + ⋅ − ⋅  

 
seu 

( ) vnz P a bx
μ

α
−

= + +  
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hincque 
 

( ) v vny P a bx a ,
μ μ

α= + +  

quod est integrale completum, quia constans a mansit arbitraria.  
 

EXEMPLUM 1 
165. Formulam 

( )1
dx

xx
dy

−
=  hoc modo per seriem integrare. 

 Comparatione cum forma generali instituta  1 1 1 2 1 2a ,b , m , n , , vμ= = − = = = = , 

unde posito ( )1y z xx= −  prima solutio 
3 5 7 etcz Ax Bx Cx Dx .= + + + +  

praebet 
6 82 4

3 5 7 91 etcA , B A, C B, D C, E D, .,= = = = =  
unde colligimus 
 

( ) ( )3 5 72 4 62 2 4
3 3 5 3 5 7 etc 1y x x x x . xx ,⋅ ⋅⋅

⋅ ⋅ ⋅= + + + + −  

 
quod integrale evanescit posito 0x = ; est ergo  y Arc. sin .x= . Altera methodus hic 

frustra tentatur ob 1m
n v .μ+ =  

COROLLARIUM 1 
166. Posito 1x = videtur hinc fieri 0y =  ob ( )1 0xx− = ; at perpendendum est fieri hoc 

casu seriei infinitae summam infinitam, ita ut nihil obstet, quominus sit 2y π= . Si 

ponamus 1
2x ,= fit o

630y π= = ideoque 

( )2 3
32 4 62 2 4

6 3 4 43 5 4 3 5 7 4
1 etc. .π ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + + + +  

 
COROLLARIUM 2 

167. Simili modo proposita formula 
( )1

dx
xx

dy
+

=  reperitur 

 

( ) ( )3 5 72 4 62 2 4
3 3 5 3 5 7 etc 1y x x x x . xx ,⋅ ⋅⋅

⋅ ⋅ ⋅= − + − + +  

estque 
 
( )( )l y l x xx= + +  

 
EXEMPLUM 2 
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168. Formulam 
( )1
dx

x xx
dy

−
=  hoc modo per seriem integrare. 

 Est ergo 0 2  1   2 1 et 1m , n , , v , a bμ= = = = = = − ; utendum igitur est altera serie 
sumendo 

( )
2 4 6 8

1
etcy

xx
z Ax Bx Cx Dx .− − − −

−
= = + + + +  

 
fitque 

62 4
3 5 71 etcA , B A, C B, D C, .,= = = =  

 
Hinc ergo colligimus 

( ) ( )4 6 8
2 4 61 2 2 4

3 3 5 3 5 7
etc 1xx x x x

y . xx .⋅ ⋅⋅
⋅ ⋅ ⋅

= + + + + −  

At integratio praebet 
 

( )1 1 xx
xy l ,

− −
=  

 
qui valores conveniunt, quia uterque evanescit posito x = 1.  

 
COROLLARIUM 1 

169. Cum autem haec series non convergat, nisi capiatur 1x > , hoc autem casu formula 
( )1 xx−  fiat imaginaria, haec series nullius est usus. 

 
COROLLARIUM: 2 

170. Si proponatur 
( )1
dx

x xx
dy

−
= , eadem pro y series emergit per 1−  multiplicata 

eritque 

( ) ( )4 6 8
2 4 61 2 2 4

3 3 5 3 5 7
etc 1xx x x x

y . xx .⋅ ⋅⋅
⋅ ⋅ ⋅

= + + + + −  

 
Posito autem 1

ux =  erit 
( )1

du
uu

dy −
−

= et y C Arc.sin .u= −  seu 

1
xy C Arc.sin .= −  

 
ubi sumi oportet C = 0, quia series ilIa evanescit posito x = ∞ , ita ut sit 

1
xy Arc.sin .= − , quae cum superiori [§ 165] convenit statuendo 1

x u= . 
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EXEMPLUM 3 

171. Formulam 
( )4

dx
a bx

dy
+

=  hoc modo per seriem integrare. 

 Est hic 1 4  1 2m , n , , vμ= = = =  ideoque posito ( )4y z a bx= +  prior 

resolutio dat 
5 9 13 etcz Ax Bx Cx Dx .= + + + + , 

existente 
 

3 7 111
5 9 13 etcb b b

a a a aA , B A, C B, D C, .,− − −= = = =  
ita ut sit 

( ) ( )5 2 9 3 13

3 4
43 3 7 3 711

5 5 9 5 913
etcx bx b x b x

a aa a a
y . a bx .⋅ ⋅ ⋅

⋅ ⋅ ⋅
= − + − + +  

 
Hic autem quoque altera resolutio locum habet ponendo 
 

3 7 11 15 etcz Ax Bx Cx Dx .− − − −= + + + +  
existente 
 

3 7 111
5 9 13 etca a a

b b b bA , B A, C B, D C, .,− − −−= = = =  
 
unde colligitur 
 

( ) ( )3

3 2 7 3 11 4 15
43 3 7 3 711

5 5 9 5 913
etcx a aa a

bx b x b x b x
y . a bx .⋅ ⋅ ⋅

⋅ ⋅ ⋅
= − − + − + +  

 
quarum serierum illa evanescit posito x = 0, haec vero posito x = ∞ . 
 

COROLLARIUM 1 
172. Differentia ergo harum duarum serierum est constans, scilicet 
 

( )
5 2 9 3 13

3 4

3

3 2 7 3 11 4 15

3 3 7 3 711
5 5 9 5 913 4
3 3 7 3 711

5 5 9 5 913

   etc
Const

etc

x bx b x b x
a aa a a
x a aa a

bx b x b x b x

.
a bx .

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎧ ⎫+ − + − +⎪ ⎪ + =⎨ ⎬
+ − + − +⎪ ⎪⎩ ⎭
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COROLLARIUM 2 

173. Has ergo binas series colligendo habebimus 
 

( )
4 3 3 12 5 5 20

3 2 2 7 3 3 11 4
3 3 7
5 5 9 etca bx a b x a b x C

abx a b x a b x a bx
. ,+ + ⋅ +

⋅ +
− ⋅ + ⋅ − =  

 
ubi, quicunque valor ipsi x tribuatur, pro C semper eadem quantitas obtinetur.  
 

COROLLARIUM 3 
 

174. Ita si a = 1 et b = 1, erit haec series in ( )41 x+  ducta semper  constans, scilicet 

 

( ) ( )4 12 20

3 7 11
41 3 1 3 7 1

5 5 9 etcx x x
x x x

. a bx C.+ + ⋅ +
⋅− ⋅ + ⋅ − + =  

 
Cum igitur posito x = 1 fiat 

( )3 3 7 3 711
5 5 9 5 9131 etc 2 2C .⋅ ⋅ ⋅

⋅ ⋅ ⋅= − + − +  

 
huicque valori etiam ina series, quicunque valor ipsi x tribuatur, est aequalis. 

 
COROLLARIUM 4 

175. Haec postrema series signis alternantibus procedens per differentias facile in aliam 
iisdem signis praeditam transformatur, unde eadem constans  
concluditur 

( )13 13 5 13 5 71
5 5 9 5 913 5 913171+ + +  + etc 2C . ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅= +  

 
quae series satis cito convergit, eritque proxime 13

7C = . 
 

SCHOLION 
176. lsta methodus in hoc consistit, ut series quaedam indefinita fingatur eiusque 
determinatio ex natura rei derivetur. Eius usus autem potissimum cernitur in 
aequationibus differentialibus resolvendis; verum etiam in praesenti instituto saepe 
utiliter adhibetur. Eiusdem quoque methodi ope quantitates transcendentes reciprocae, 
veluti exponentiales et sinus cosinusve angulorum, per series exprimuntur; quae etsi iam 
aliunde sint cognitae, tamen earum investigationem per integrationem exposuisse iuvabit, 
cum simili modo alia praeclara erui queant.  
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PROBLEMA 14 
177. Quantitatem exponentialem xy a= in seriem convertere. 

 
SOLUTIO 

Sumtis logarithmis habemus ly x la= et differentiando 

seudy dy
y dxdx la y la,= =  

unde valorem ipsius y per seriem quaeri oportet. Cum autem integrale completum latius 
pateat, notetur nostro casu posito x = 0 fieri debere y = 1; 
quare fingatur haec pro y series  

2 3 41 etcy Ax Bx Cx Dx .= + + + + +  
unde fit 

2 32 3 4 etcdy
dx A Bx Cx Dx .= + + + + ,  

 
quibus substitutis in aequatione 0dy

dx y la− = erit 
 

2 32 3 4 etc 0A Bx Cx Dx .
la Ala Bla Cla Dla

⎫+ + + + ⎪ =⎬
− − − − − ⎪⎭

 

 
hincque coefficientes ita determinantur 
 

1 1 1
2 3 4 etcA la, B Ala, C Bla, D C la .= = = =  

 
sicque consequimur 
 

( ) ( ) ( )2 3 42 3 4

1 1 2 1 2 3 1 2 3 4 1  etc    x la x la x lax xla
· · · · · ·y a .,= = + + + + +  

 
quae est ipsa series notissima in Introductione data [Introductio in analysin infinitorum, t. 
I, cap.Vll]. 

 
SCHOLION 

178. Pro sinibus et cosinibus angulorum ad differentialia secundi gradus 
est descendendum, ex quibus deinceps series integrale referens elici debet. 
Cum autem gemina integratio duplicem determinationem requirat, series ita 
est fingenda, ut duabus conditionibus ex natura rei petitis satisfaciat. Verum 
haec methodus etiam ad alias investigationes extenditur, quae adeo in quantitatibus 
algebraicis versantur, a cuiusmodi exemplo hic inchoemus. 
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PROBLEMA 15 

179. Hanc expressionem ( )( )l
n

y x xx= + + in seriem secundum potestates ipsius x 

progredientem convertere. 
SOLUTIO 

Quia est ( )( )1  ly nl x xx= + + , erit 

( )1
dy ndx
y xx+
= ; 

 
iam ad signum radicale tollendum sumantur quadrata; erit 
 

( ) 2 21 xx dy nnyydx .+ =  
 

Aequatio sumto dx constante denuo differentietur, ut per 2dy diviso prodeat 
 

( ) 21 0ddy xx xdxdy nnydx ,+ + − =  
 

unde y per seriem elici debet. Primo autem patet, si sit x = 0, fore y = 1 
ac, si x infinite parvum, ( )1 1ny x nx= + = + . Fingatur ergo talis series 

2 3 4 5 61  etcy nx Ax Bx Dx Dx Ex .,= + + + + + + +  
ex qua colligitur 
 

3 4 52 3 4 5 6 etcdy
dx n Ax Bxx Cx Dx Ex .= + + + + + +  

et 

2
3 42A 6 12 20 30 etcddy

dx
Bx Cxx D Ex .= + + + + +  

Facta ergo substitutione adipiscimur 
 

3 4 5

3 2 2 2 2

 2 6 12 20 30 42  etc
   2      6     + 12    20            

0
           2      3      4      5           

                       

A Bx Cxx Dx Ex Fx .
               A B C D 

n A B C D

nn – n An – Bn – Cn Dn

⎫+ + + + + +
⎪

+ + + ⎪ =⎬+ + + + + ⎪
⎪− − − ⎭

 

hincque derivantur sequentes determinationes 
 

( ) ( ) ( )1 4 9
2 2 3 3 4 4 5,  ,  ,   etcn nn A nn B nnnnA B C D .,− − −

⋅ ⋅ ⋅= = = =  
ita ut sit 
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( ) ( ) ( )( )

( )( ) ( )( )( )

5

6

1 4 1 92 3 4
1 2 1 2 3 1 2 3 4 1 2 3 4 5

4 16 1 9 25 7
1 2 3 4 5 6 1 2 3 4 5 6 7

1  

   etc

n nn nn nn n nn nn xnn
·

nn nn nn x n nn nn nn

y nx x x x

x .

− − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + + +

+ + +
 

 
 

COROLLARIUM 1 

180. Uti est ( )( )1
n

y x xx= + + , si statuamus ( )( )1
n

z x xx= − + + , 

pro z similis series prodit, in qua x tantum negative capitur; hinc ergo 
concluditur 

( ) ( )( ) 64 4 162 4
2 1 2 1 2 3 4 1 2 3 4 5 61 etcnn nn nn nn nn xy z nn

·x x .− − −+
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  

et 
( ) ( )( ) ( )( )( )51 1 9 1 9 253 7

2 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 etcn nn n nn nn x n nn nn nny z nx x x .− − − − − −−
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + + +  

 
 

COROLLARIUM 2 
181. Si ponatur 1 sinx .ϕ= − ⋅ , erit ( )1 xx cos .ϕ+ =  hincque 

( )1 1
n

y cos . sin . cos .n sin .nϕ ϕ ϕ ϕ= + − ⋅ = + − ⋅  

et 

( )1  1
n

z cos . sin . cos .n sin .nϕ ϕ ϕ ϕ= − − ⋅ = − − ⋅ , 

 
unde deducimus 
 

( ) ( )4 4 4 162 4 6
1 2 1 2 3 4 1 2 3 4 5 61   etcnn nn nn( nn ) nnnncos .n sin . sin . sin . .,ϕ ϕ ϕ ϕ− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − + − +  

 
( ) ( )( )

( )( )

1 1 93 5
1 2 3 1 2 3 4 5

4 1 9 25 7
1 2 3 4 5 6 7

             

                etc

nn nn nn nn nn

nn nn nn ( nn )

sin .n n sin . sin . sin .

sin . .,

ϕ ϕ ϕ ϕ

ϕ

− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − +

− +

 

 
COROLLARIUM 3 

182. Hae series ad multiplicationem angulorum pertinent atque hoc habent singulare, 
quod prior tantum casibus, quibuss n est numerus par, posterior vero, quibus est numerus 
impar, abrumpatur. 
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PROBLEMA 16 

183. Proposito angulo ϕ  tam eius sinum quam cosinum per seriem infinitam 
exprimere. 

SOLUTIO 
Sit   et  y sin . z cos .ϕ ϕ= = ; erit 

( ) ( )1   et  ldy d yy dz d zz .ϕ ϕ= − = − −  
Sumantur quadrata 
 

( ) ( )2 2 2 21   et  ldy d yy dz d zz .ϕ ϕ= − = −  
 
differentietur sumto  dϕ  constante fietque 
 

2 2  et   ddy yd ddz zd .ϕ ϕ= − = −  
 
sicque y et z ex eadem aequatione definiri oportet. Sed pro y sin .ϕ=  observandum 
est, siϕ  evanescat, fieri y = ϕ , pro z cos .ϕ= , si ϕ  evanescat, fieri 

1
21z ϕϕ= −  seu 1 0z ϕ= +  . Fingatur ergo 

3 5 7

2 4 6

etc

1   etc

y A B C .,

z .

ϕ ϕ ϕ ϕ

αϕ βϕ γϕ

= + + + +

= + + + +
 

fietque substitutione facta 
3 52 3 4 5  6 7 etc 0

1                                 
A B C .

A B
ϕ ϕ ϕ ⎫⋅ + ⋅ + ⋅ + ⎪ =⎬

+ + + ⎪⎭
 

et 
2 41 2 3 4 5 6  etc 0

1                       
. ,α βϕ γϕ

α β

⎫⋅ + ⋅ + ⋅ + ⎪ =⎬
+ + + ⎪⎭

 

 
unde colligimus 

1
2 3 4 5 6 7 8 9

1
1 2 3 4 5 6 7 8

, , , etc

   etc  

CA BA B C D .,

, , , .,β γαα β γ δ

−− − −
⋅ ⋅ ⋅ ⋅

− −−−
⋅ ⋅ ⋅ ⋅

= = = =

= = = =
 

 
unde series iam notissimae obtinentur 
 

3 5 7

2 4 6

1 1 2 3 1 2 3 4 5 1 2 7

1 2 1 2 3 4 1 2 6

etc

1    etc

sin . .,

cos . .,

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= − + − +

= − + − +
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SCHOLION 

184. Non opus erat ad differentialia secundi gradus descendere, sed ex formularum 
  et  y sin . z cos .ϕ ϕ= =  differentialibus, quae sunt   et  dy zd dz ydϕ ϕ= = − , eaedem 

series facile reperiuntur. Fictis enim seriebus ut ante 
  

3 5 7 2 4 6etc   et  1 etcy A B C . z .ϕ ϕ ϕ ϕ αϕ βϕ γϕ= + + + + = + + + +  
 
substitutione facta obtinebitur ex priore 
 

2 4 6  1    3 5  7 + etc 0
1                    

A B C . ,ϕ ϕ ϕ
α β γ

⎫+ + + ⎪ =⎬
− − − − ⎪⎭

 

ex posteriore 
 

3 52 4 6  etc 0
1                

. ,
A B

αϕ βϕ γϕ ⎫+ + + ⎪ =⎬
+ + + ⎪⎭

 

unde colliguntur hae determinationes 
 

1
2 3 4 5 6 7, ,  etc  A B, A , B , C .,β γαα β γ− − −= = = = = =  

ideoque 
1 1 1
2 2 3 4 2 3 4 5 6

1 1 1
2 3 2 3 4 5 2 3 4 5 6 7

 , ,       etc

, ,   etc

.,

A B C .,

α β γ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − = + = −

= − = + = −
 

 
qui valores cum praecedentibus conveniunt. Hinc intelligitur, quomodo saepe 
duae aequationes simul facilius per series evolvuntur, quam si alteram seorsim 
tractare velimus. 

 
PROBLEMA 17 

185. Per seriem exprimere valorem quantitatis y, qui satisfaciat huic aequationi 

( ) ( )
ndxmdy
f gxxa byy ++

= . 

 
SOLUTIO 

lntegratio huius aequationis suppeditat 
 

( )( ) ( )( )m
b

nl a byy y b l f gxx x g C,
g

+ + = + + +  

unde deducimus 
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( ) ( )1
2 2

n b n b
m g m gf gxx x g f gxx x ga

h kb b
y

+ + + −⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
constantes h et k ita capiendo, ut sit hk f .= Hinc discimus, si x sumatur 
evanescens, fore 

1
2 2

n b n b
m g m gf x g f x ga

h kb b
y + −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

seu 

( ) ( ) ( ) ( )1
2 2

n b n b n b n b
m g m g m g m gnxk h k h

b m fh k h k
y a a

⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

vel posito y A Bx= + erit 
 

( )n AAb a
m f

B
+

= , 

ita ut constans B definiatur ex constante  
 

( ) ( )1
2

n b n b
m g m gk h

b h k
A a

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

et vicissim 

( ) ( ) ( ) ( )atque
n b n b
m g m gk h

h k
A b a bAA a A b a bAA .= + + = − + +  

 
Nunc ad seriem inveniendam aequatio proposita sumtis quadratis 
 

( ) ( )2 2mm f gxx dy nn a byy dx+ = +  
 
denuo differentietur capto dx constante, ut facta divisione per 2dy prodeat  
 

( ) 2 0mmddy f gxx mmgxdxdy nnbydx .+ + − =  
 
Iam pro y fingatur series 
 

2 3 4 5 etcy A Bx Cx Dx Ex Fx .,= + + + + + +  
 
qua substituta habebitur 
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2 3  2 6 12 20  etc
                                2    6 0
                  2    3

                      

mmfC mmfDx mmfEx mmfFx .
mmgC mmgD .

mmgB mmgC mmgD
nnbA nnbB nnbC nnbD

⎫+ + + +
⎪

+ + ⎪ =⎬
+ + + ⎪

⎪− − − − ⎭

 

 
Cum ergo A et B dentur, reliquae litterae ita determinantur 
 

2

4
2 3 3 4

9 16
4 5 5 6

25  36
6 7 7 8

                             

   

   

  

nnb
mmf

nnb mmg nnb mmg
mmf mmf

nnb mmg nnb mmg
mmf mmf

nnb mmg nnb mmg
· mmf mmf

C A,

D B, E C,

F D, G E,

H F , I G

− −
⋅ ⋅

− −
⋅ ⋅

− −
⋅

=

= =

= =

= =

 

 
sicque series pro y erit cognita. 

 
EXEMPLUM 1 

186. Functionem transcendentem Arc.sin .xc per seriem secundum potestates ipsius 
x progredientem exprimere. 
 
 Ponatur Arc.sin .xy c= ; erit 

( )1
  et  dy dxlc

y xx
ly lc Arc.sin .x

−
= ⋅ = , hinc 

 
( ) ( )22 2  1dy xx yydx lc− =  

et differentiando 
 

( ) ( )221 0dyy xx xdxdy ydx lc .− − − =  
 
Observetur iam posito x evanescente fore 1xy c xlc= = + ; hinc fingatur 
series 

2 3 4 51 etcy xlc Ax Bx Cx Dx .,= + + + + + +  
 
qua substituta habebitur 

( ) ( ) ( ) ( ) ( )

2 3 4

2 3 2 2 2

  1 2 2 3  3 4   4 5 5 6 etc
                        1 2       2 3    3 4

 = 0,                    2          3      4

    

A Bx · Cx · Dx · Ex .
A · B · C

lc A B C

le lc A lc B lc C lc

⎫⋅ + ⋅ + + + +
⎪

− ⋅ − − ⎪
⎬− − − − ⎪
⎪− − − − − ⎭
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unde reliqui coefficientes ita definiuntur 
 

( ) ( ) ( )

( )( ) ( ) ( )

2 2 2

2 2 2

4 16
1 2 3 4 5 6

1 9 25
2 3 4 5 6 7

                 etc

          etc

lc lc lc

lc lc lc lc
· .

A , C A, E C .,

B , D B, F D .

+ +
⋅ ⋅ ⋅

+ + +
⋅

= = =

= = =

 

 
Sit brevitatis gratia lc γ= eritque 
 

( ) ( )

( )( ) ( )( )

1 42 3 4
1 2 1 2 3 1 2 3 4

1 9 4 165 6
1 2 3 4 5 1 2 3 4 5 6

 1

etc

Arc.sin .xc x x x x

x x .

γ γγ γ γγγγ

γ γγ γγ γ γγ γγ

γ + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + + + +

+ + +
 

 
EXEMPLUM 2 

187. Posito x sin .ϕ= invenire seriem secundum potestates ipsius x progredientem, 
quae sinum anguli nϕ  exprimat. 
 
 Ponatur y sin .nϕ=  ac notetur evanescente ϕ  fieri  et  x y n nxϕ ϕ= = = , 
hoc est 0y nx= + , quod est seriei quaesitae initium. Nunc autem est 
 

( ) ( )1 1
   et   dydx

xx yy
d nd .ϕ ϕ

− −
= =  

Ergo 

( ) ( )1 1
dy ndx

yy xx− −
=  

et sumtis quadratis 
 

( ) ( )2 21 1xx dy nndx yy− = − , 
hinc 

( ) 21 0ddy xx xdxdy nnydx .− − + =  
 

Quare fingatur haec series 
 

3 5 7 9 etc.;y nx Ax Bx Cx Dx= + + + + +  
qua substituta habebitur 
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3 5 7

3

2 3  4 5     6 7  8 9 etc
           2 3        4 5      6 7

=0,
        3            5           7

                       

Ax Bx Cx Dx .
A B C

n A B C

n nnA nnB nnC

⎫⋅ + ⋅ + ⋅ + ⋅ +
⎪

− ⋅ − ⋅ − ⋅ ⎪
⎬− − − − ⎪
⎪+ + + + ⎭

 

unde hae determinationes colliguntur 
 

( ) ( ) ( )1 9 25
2 3 4 5 6 7, ,   etc  n nn nn A nnA B C B . ,− − − − − −
⋅ ⋅ ⋅= = =  

ita ut sit 
( ) ( )( ) ( )( )( )1 1 9 1 9 253 5 7
1 2 3 1 2 3 4 5 6 71 2 3 4 5

 etc

  

n nn n nn nn n nn nn nny nx x x x .− − − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

= − + − +  

sive 
( ) ( )( ) ( )( )( )1 1 9 1 9 253 5 7
1 2 3 1 2 3 4 5 6 71 2 3 4 5

 etc

  

n nn n nn nn n nn nn nnsin .n n sin sin sin sin .ϕ ϕ ϕ ϕ ϕ− − − − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

= − + − +  

 
SCHOLION 

188. Quia haec series tantum casibus, quibus n est numerus impar, abrumpitur, 
pro paribus notandum est seriem commode exprimi posse per productum 
ex sin .ϕ  in aliam seriem secundum cosinus ipsius ϕ  potestates progredientem. 
Ad quam inveniendam ponamus cos . uϕ =  sitque 

( )1sin .n z sin . z uu ,ϕ ϕ= = −  
unde ob 
 

( )1
du

uu
dϕ

−
= −  

erit differentiando 

( )
( )

( )1 1
1ndu cos .n zudu

uu uu
dz uuϕ

− −
− = − −  

 
seu 

( ) 1ndu cos.n dz uu zudu,ϕ− = − −  
quae sumto du constante denuo differentiata dat 
 

( )
( )

2 2 2
1

1 3nndu sin.n
uu

ddz uu ududz zdu nnzduϕ
−

− = − − − = −  

ob 
( )1
sin .n

uu
zϕ

−
= . 

Quocirca series quaesita pro sin .n
sin .z ϕ

ϕ=  ex hac aequatione erui debet  
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( ) 2 21 3 0ddz uu ududz zdu nnzdu ,− − − + =  

 
ubi notandum est, quia u cos .ϕ= , evanescente u, quo casu fit 90ϕ = ° , fore 
vel 0z = , si n numerus par, vel 1  si 4 1  vel 1z , n , zα= = + = − , si 4 1n α= − . Qui singuli 
casus seorsim sunt evolvendi; et quo principium cuiusque serlet pateat, sit 90ϕ ω= °−  et 
evanescente ( )fit    1  90u cos . , sin . , sin .n sin . n n z.ϕ ω ϕ ϕ ω= = = = °⋅ − = Nunc pro 
casibus singulis 

I    si 4        fit    
II   si 4 1   fit       1
III  si 4 2  fit      
IV  si 4 3  fit    1

. n , z sin.n nu
. n , z cos .n
. n , z sin .n nu
. n , z cos .n ,

α ω
α ω
α ω
α ω

= = − = −
= + = =
= + = = +
= + = − = −

 

 
unde series iam satis notae deducuntur. 
 


