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CHAPER IX 

 
CONCERNING THE DEVELOPMENT OF INTEGRALS 

THROUGH INFINITE PRODUCTS 
 

PROBLEM 43 
356. The value of this integral 

( )1
dx

xx−∫ , which it accepts in the case 1x = , is to be 

developed into an infinite product.  
SOLUTION 

 Just as we have reduced the above formulas of higher powers to the simple, thus here 
we continually induce the formula

( )1
dx

xx−∫  to higher powers. Thus, since on putting  

1x = there becomes 

( ) ( )
1 11

1 1

m mx dx m x dx
mxx xx

− ++
− −

=∫ ∫ , 

 

[Recall from § 118 and § 120, Ch. II, that 
( )

( )
( )

1 11
1 11 1

mm mx xxx dx m x dx
m mxx xx

+ −− −
+ +− −

= +∫ ∫ ] 

there becomes  
 

( ) ( ) ( ) ( )
4 62 4 62 2 4

1 13 13 51 1 1 1
etcdx xxdx x dx x dx

xx xx xx xx
.,⋅ ⋅⋅

⋅ ⋅ ⋅− − − −
= = =∫ ∫ ∫ ∫  

 
from which thus also we conclude that the product becomes indefinitely, if an infinite 
number is taken for i  
 

( ) ( ) ( )
22 4 6 8 2

13 5 7 2 11 1

idx · ····· i x dx
· ····· ixx xx
⋅ ⋅

⋅ ⋅ −− −
=∫ ∫ . 

 
Now in a similar manner from the formula 

( )1
xdx

xx−∫  we may find on ascending [to higher 

powers]  

( )
( )

( )
2 13 5 7 9 2 1

2 4 6 8 21 1

i· · ···· ixdx x dx
· ····· ixx xx

+⋅ +
⋅ ⋅− −

=∫ ∫ , 

 
and I note, that if i is an infinite number, those formulas  
 

( ) ( )
2 2 1

1 1
and

i ix dx x dx
xx xx

+

− −∫ ∫  
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form an equal ratio. For it is evident from the reduction principle, that if m is an infinite 
number, there arises   

( ) ( ) ( )
1 1 3

1 1 1
= =

m m mx dx x dx x dx
xx xx xx

− + +

− − −∫ ∫ ∫  

 
and thus generally,  

( ) ( )1 1
=

m m vx dx x dx
xx xx

μ+ +

− −∫ ∫  

 
whatever the finite difference in size should be between and  vμ . Since therefore there 
becomes  

( ) ( )
2 2 1

1 1
=

i ix dx x dx
xx xx

+

− −∫ ∫  

 
if we put 

( )
( )3 5 7 9 2 l2 4 6 2

2 4 6 8 213 5 2 l and · ii
i· · i M N ,⋅ ⋅ ⋅⋅⋅ +⋅ ⋅ ⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −
= =  

then 

( ) ( )1 1
: : :1dx xdx M

Nxx xx
M N

− −
= =∫ ∫  

on putting 1x = . But 
 

( ) ( ) 21 1
1 andxdx dx

xx xx
,π

− −
= =∫ ∫  

from which it is deduced that 

( )1
dx M

Nxx
.

−
=∫  

 
Because the products  M and N are constructed from an equal number of factors, if the 
first factor 2

1 of the product M by the first factor 3
2 of the product N, the second of that 4

3  

by the second of this 5
4  and thus again we may divide, there is made 

 
6 6 8 82 2 4 4

13 3 5 5 7 7 9 etc· ·M · ·
N · · · · .,= ⋅ ⋅ ⋅ ⋅  

 
from which we obtain for the case 1x = by an infinite product  
 

( )
6 6 8 82 2 4 4

13 3 5 5 7 7 9 21
 etcdx · ·· ·

· · · ·xx
. .π

−
= ⋅ ⋅ ⋅ ⋅ =∫  
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COROLLARY 1 
357. Hence for the value of π  we have elicited the same infinite product, which now 
some time ago Wallis found and the truth of which we have confirmed in the 
Introductione [Book I, Ch. XI, § 185] preceding in several ways ; and thus there shall be  
 

6 6 8 82 2 4 4
13 3 5 5 7 7 92  etc· ·· ·
· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  

 
COROLLARY 2 

358. There is no difference, in whatever order the individual factors in this product are set 
out, provided none are left out. Thus by taking some number from the beginning, the 
remainder can be set out in order, just as   

4 6 6 8 8102 2 4
2 1 3 3 5 5 7 7 9 9 etc· · ··

· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
or 

2 6 4 8 610 8122 4
2 13 3 5 5 7 7 9 911 etc· · · ··

· · · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
or 

4 6 6 8 8102 2 4
2 3 15 3 7 5 9 7 11 etc· · ··

· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
or 

2 6 4 8 610 8122 4
2 3 5 1 7 3 9 511 713 etc· · · ··

· · · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
 

SCHOLIUM 
359. Hence the fundamental of this development consists in this, that the value of the 
integral 

( )1

ix dx
xx

α+

−∫ shall be the same with i denoting an infinite number, in whatever 

manner the finite number α may be varied. And this indeed has been shown from the 
reduction  

( ) ( )
1 11

1 1

i ix dx i x dx
ixx xx

− ++
− −

=∫ ∫ , 

 
if two different values α are taken. But then there is no doubt, why this integral

( )
1

1

ix dx
xx

+

−∫  

should not be contained between these integrals
( )1

ix dx
xx−∫  and

( )
2

1

ix dx
xx

+

−∫  as if  limits, which 

since the are equal to each other, by necessity all the intermediate formulas also from the 
same must be equal. And this can be extended wider to more complicated formulas, thus 
so that by denoting the infinite number i then there shall be 
 

( ) ( )1 1

i i

k kn n

x dx x dx

x x
.

α+

− −
=∫ ∫  
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But since there is [the equality of these integrals as established in Ch. 8] 
 

( ) ( )
1 1

1 1

m n m

n k n kn n n n

x dx m x dx
m k

x x
,

+ − −

− −+
− −

=∫ ∫  

these formulas are equal on putting m = ∞  ; from which also the equality in other cases, 
in which or 2 or 3 etcn n n .,α α α= = = is considered; if moreoverα holds some mean 
value, also the mean value of this formula must hold a certain value between equal values 
and thus will be equal to these themselves. Therefore we are able to resolve the following 
problems from this established principle. 
 

PROBLEM 44 
360. To express the ratio of these two integrals 

( ) ( )1 11 1
k n k n

n nm n nx dx x and x dx xμ
− −

− −− −∫ ∫  

by an infinite product of  factors in the case x = 1. 
 

SOLUTION 
Since there shall be 

( ) ( )1 11 1
k n k n

n nm n m n nm k
nx dx x x dx x

− −
− + −+− = −∫ ∫  

 
in the case x = 1, the value of the integrals of this can be reduced to an integral infinitely 
removed in this manner  
 

( )
( )( )( ) ( )

( ) ( ) ( ) ( )

1

2 m 1
2

1

1

k n
n

k n
n

m n

m k m k n m k n k in m in n n
m m n m n m in

x dx x

x dx x ,

−

−

−

+ + + + + ⋅⋅⋅⋅ + + + + −
+ + ⋅⋅⋅⋅ +

−

= −

∫

∫
 

 
where we assume i to denote an infinite number. Moreover in a similar manner for the 
other formula proposed there shall be  
 

( )
( )( )( ) ( )

( ) ( ) ( ) ( )

1

2 1
2

1

1

k n
n

k n
n

n

k k n k n k in in n n
n n in

x dx x

x dx x ,

μ

μ μ μ μ μ
μ μ μ μ

−

−

−

+ + + + + ⋅⋅⋅⋅ + + + + −
+ + ⋅⋅⋅⋅ +

−

= −

∫

∫
 

 
and these integrals of these final formulas are equal on account of the infinite exponents  
not withstanding the inequality of the numbers and ;m μ then these two equal infinite 
products are constructed from a number of factors. Whereby if the first are divided by the 
first, the second by the second and so forth, the ratio of the two proposed integrals can be 
expressed thus : 
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( )
( )

( )
( )

( )( )
( )( )

( )( )
( )( )

1
2 2
2 21

1
etc

1

k n
n

k n
n

m n
m k n m k n n m k n

m k m n k n m n k nn

x dx x
.,

x dx x

μ μ μ
μ μ μμ

−

−

−
+ + + + + + +
+ + + + + + +−

−∫
= ⋅ ⋅ ⋅

−∫
 

 
if indeed both integrals are thus determined, so that they vanish on putting x = 0, then 
there is now put in place x = 1; moreover it is necessary for the letters    m, , n, kμ  to 
denote positive numbers. 
 

COROLLARY 1 
361. If the difference of the numbers m andμ is equal to a multiple of n, then in the 
product found, the infinite factors cancel each other and there remains a finite number of 
factors, as if m nμ = + , there is had 
 

( )( )
( )

( )( )
( )( )

( )( )
( )( )

2 3 2
2 2 3 etc.,m n m k m n m k n m n m k n

m m k n m n m k n m n m k n
+ + + + + + + +

+ + + + + + + +
⋅ ⋅ ⋅  

which is reduced to m k
m
+ . 

 
COROLLARY 2 

362. Moreover the value of this product by necessity is finite, since it is expressed from 
the ratio of the integral formulas, from which it is apparent, as the numerators and 
denominators in the individual factors are alternately greater or smaller.   
 

COROLLARY 3 
363. If we put 1 3 4 and  2m , , n kμ= = = = , then  
 

( )

( )

4

4

1

1

3 3 7 7 15151111
15 5 9 913 1317 etc ;

dx

x

xxdx

x

.
−

−

⋅ ⋅ ⋅⋅= ⋅ ⋅ ⋅ ⋅

∫
⋅ ⋅ ⋅ ⋅

∫
 

moreover we have found above that the product of these two formulas to be equal to 4
π . 
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PROBLEM 45 

364. To express the value of this integral ( )1 1
k n

nm nx dx x
−

− −∫ taken on putting  x = 1, by 

an infinite product. 
 

SOLUTION 
 Since in the preceding problem the ratio of this integral to that other infinite product 
shall be assigned,   

( )1 1
k n

nnx dx xμ
−

− −∫  

in this the exponent μ thus is taken, so that it is possible for the integral to be shown. 
Hence nμ =  is taken  and the integral is made equal to  

( ) ( )1 11 1
k

k n n
n xn

k kC x
− −

− − =  

thus determined so that it vanishes on putting x = 0 ; now there is put x = 1, as the 
postulated condition,  and because this integral becomes equal to 1

k , and thus we have in 
the case x = 1 the expression for the proposed form of the formula  
 

( ) ( )
( )

( )
( )( )

( )
( )( )

2 3 21 1
2 2 31 etc.,

k n
n n m k n m k n n m k nm n

k m k n m n k n m n k nx dx x
−

+ + + + +−
+ + + + +

− = ⋅ ⋅ ⋅ ⋅∫  

 
since the individual factors can be distributed to be represented thus : 
 

( ) ( )
( )( )

( )
( )( )

( )
( )( )

2 3 4 21
2 2 3 31 etc.,

k n
n n m k n m k n n m k nm n n

mk m n k n m n k n m n k nx dx x
−

+ + + + +−
+ + + + + +

− = ⋅ ⋅ ⋅ ⋅∫  

 
COROLLARY 1 

365. Since in this expression the letters m and k are permutable, it follows also that these 
integrals are equal to each other on putting x = 1 : 
 

( ) ( )1 11 1
k n m n

n nm n k nx dx x x dx x
− −

− −− = −∫ ∫ , 

 
as we have now elicited the equality above in § 349  .  
 

COROLLARY 2 
366. Since the value of our formula, if m n k= − , is equal to the value of this integral 

1

1

k

n
z dz

z

−

+∫  on putting z = ∞ , if on account of m k n+ = we put 2 2andn nm kα α+ −= = ,  

then we have :  
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( ) ( )
1 1 1 1

2 2 1 11 1

4 2 4 4 6 6 8
9 25 49 etc.

m k k m

n n n n
n nn n

x dx x dx z dz z dz
z zx x

n nn nn nn
nn nn nn nn

α α

αα αα αα αα

− − − −

+ − + +− −

⋅ ⋅ ⋅
− − − −

= = =

= ⋅ ⋅ ⋅ ⋅

∫ ∫ ∫ ∫
 

 
Which product can also be expressed in this manner  

 

( )( ) ( )( ) ( )( )
2 2 4 4 6 62

3 3 5 5 7 etc.,n n n n n n
n n n n n n nα α α α α α α

⋅ ⋅ ⋅
− + − + − + −

⋅ ⋅ ⋅ ⋅  

 
because hence also by § 351 it expresses the value of  

2
m
n nn sin. ncos .π απ

π π= . 

 
COROLLARY 3 

367. Or if we put simply k n m= − , there is made 
 

( ) ( )

( ) ( )( ) ( )( )

1 1 1 1

1 11 1

4 91
2 3 2 4 etc.,

m n m m n m

m n m n n
n nn n

x dx x dx z dz z dz
z zx x

nn nn nn
n m m n m n m n m n m n m

− − − − − −

− + +− −

− − + − + −

= = =

= ⋅ ⋅ ⋅ ⋅

∫ ∫ ∫ ∫
 

 
which arises from the first form found.  Hence therefore this form stands, if there is put  

1 and x z .= = ∞  
 

SCHOLIUM 1 
368. Moreover in the Introductione  from the multiplication of angles we arrive at  
 

( )( )( )( )4 9 161 1 1 1 etcm m mm mm mm mm
n n nn nn nn nnsin . .,π π= − − − − ⋅  

 
and since 

( )n m m
n nsin . sin .π π− = ,  

on account of n m k− = there is also  
 

( )( )( )( )4 9 161 1 1 1 etcm k kk kk kk kk
n n nn nn nn nnsin . .,π π= − − − − ⋅  

 
which is reduced to this form  
 

( )( ) ( )( ) ( )( )2 2 3 3
4 9 etcn k n k n k n k n k n km k

n n nn nn nnsin . . .π π − + − + − += ⋅ ⋅ ⋅  
 
and for  k with its own value restored 
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( ) ( ) ( )( ) ( )( )2 3 2  4
4 9 etcm n m n m n m n m n mm

n n nn nn nnsin . n m .,π π − + − + −= − ⋅ ⋅ ⋅ ⋅  
 
from which clearly for m

nn sin. π
π the same product is found, that expresses the value of our 

integration, and thus we have a new demonstration for that excellent theorem above [§ 
351], by prevailing on many devious routes to be   
 

( ) ( )
1 1 1 1

1 11 1

m n m m n m

m n m n n m
n nn n n

x dx x dx z dz z dz
n sin.z zx x

.π
π− − − − − −

− + +− −
= = = =∫ ∫ ∫ ∫  

 
SCHOLIUM 2 

369. In order that our formula extends further, we put k
n v

μ= or n
vk μ=  and  

we obtain 
 

( ) ( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

1 3 4 221
2 2 3 3

2 3 4 2 5 3
2 2 3 3 4 4

1 etc

etc

v mv n v mv n vmv nm n v
m m n v m n v m n v

mv n mv n nv mv n nv mv n nvv
m m n v m n v m n v m n v

x dx x .

.

μ
μ μμ

μ μ μ μ

μ μ μ μ
μ μ μ μ μ

− + + + ++−
+ + + + + +

+ + + + + + +
+ + + + + + + +

− = ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

∫  

 
in which expression the letters   and   m, n , vμ are permutable except for the first factor, 
which is not connected with the rest by the law of continuation ; and if we multiply by n, 
the interchange will be perfect, from which we conclude  
 

( ) ( )1 11 11 1
m

v nm n vn x dx x v x dx x
μ

μ− −− −− = −∫ ∫  

 
which equality is reduced to that observed above in the case v n= . It will be helpful to 
consider carefully particular cases, which we have chosen from the values of   and  vμ . 
 

EXAMPLE 1 
370. Let 1  and  2vμ = =  and there becomes 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

2

2 2 3 2 3 4 2 52 2
3 5 2 7 31 1

etc
m

n mn n

m n m n m nx dx dx
m nm n m n m nx x

. ,
−

−

+ + +
+ + +− −

= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
which expression can be more conveniently represented by  
 

( )
( )
( )

( )
( )

( )
( )

1 4 2 6 2 3 8 2 52
3 2 2 5 2 4 7 2 61

etc
m

n

m n m n m nx dx
m m n m n m nx

.,
− + + +

+ + +−
= ⋅ ⋅ ⋅ ⋅∫  
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from which the most specific cases are deduced :  
 

( ) ( )

( ) ( )

( )

23 23

3

4 6 6 82 4
3 3 5 5 7 71 1

4 5 611 817 10 23 2
3 8 514 7 20 9 26 31 1

4 7 613
310 511

            2 etc                        

            2 etc          

            1

dx dx
xx xx

dx dx
x x

xdx
x

. ,

. ,

⋅ ⋅⋅
⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅
⋅ ⋅−

= ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫
∫ ∫

∫ ( )

( ) ( )

( )

23

34 24

4

819 10 25 2
6 7 22 9 28 3 1

4 3 6 7 811 1015 1
3 5 5 9 713 917 21 1

6 8 812 10164 4 1
3 6 510 714 9181

etc         

            2 etc           

            1 etc           

dx
x

dx dx
x x

xdx
x

. ,

. ,

.

⋅ ⋅
⋅ ⋅ −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅−

⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫

∫ ∫

∫ ( )

( ) ( )

( )

2

4 4

3

4

2 1

4 6 6 8 8102 4
3 3 5 5 7 7 9 9

4 5 6 9 813 10172 1
3 3 7 511 715 919 2 11

4 6 610 8142
4 3 8 5121

or                      1 etc

            etc           

            

dx
x

xxdx dx
xxx

x dx
x

,

.,

. ,

−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅
⋅ ⋅−

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅

∫

∫ ∫

∫ 1018 1
716 9 20 2etc           . .⋅
⋅ ⋅⋅ ⋅ =

 

 
 

EXAMPLE 2 
371. Let 1 and 3vμ = = and there becomes 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

2 33

2 3 3 3 4 4 3 73 3
4 7 2 10 3

1 1
etc

m

n mn n

m n m n m nx dx dx
m nm n m n m n

x x
. ,

−

−

+ + +
+ + +

− −
= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

from which the following most specific cases are deduced  
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( ) ( )

( ) ( )

2 323

2 23 33 3

3 2 5 311 417 5 23 3
1 4 3 7 5 10 7 13 7 2 11

3 2 6 315 5 334 24
1 4 4 7 7 1010 1313

1 1

3 2 6 5 9
1 4 4

            etc        

            etc       

or                       

dx dx
xx

dx dx

x x

. ,

. ,

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅
⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫

∫ ∫

( ) ( )2 33 33

812 1115
7 7 1010 1313

3 2 9 318 4 27 5 36
2 4 5 7 8 1011 1314 11

3 3 6 6 9 912 1215
2 4 5 7 8 1011 1314

etc        

            etc       

or                        etc        

       

xdx dx
xx

.

. ,

.

⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

( ) ( )

( ) ( )

2 34 33 4

2 34 43

3 2 7 319 4 31 5 43 3
1 4 5 7 9 1013 1317 4

1 1

213 3 25 4 37 5 49 3
4 7 711 1015 1319 4 11

      etc   

           1 etc              

dx dx

x x

xxdx dx
xx

. ,

. .

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫ ∫

∫ ∫

 

 
EXAMPLE 3 

372. Let 2 and 3vμ = = and there becomes 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

33

2 3 2 3 3 5 4 3 83 3
2 5 8 2 11 31 1

etc
m

n mn n

m n m n m nx dx xdx
m nm n m n m nx x

. ,
−

−

+ + +
+ + +− −

= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
from which the following specific cases are deduced  
 

( ) ( )

( ) ( )

2 33

23 33 3

3 2 7 313 419 5 25 3
2 5 3 8 5 117 14 9 21 1

3 2 9 318 4 27 5 36
2 5 4 8 7 1110 14131 1

3 3 6 6 9
2 4 5 7

            etc        

            etc       

or                      

dx xdx
x x

dx xdx
x x

. ,

.

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫

∫ ∫

( ) ( )3 33 3

9 1212
810 1113

3 3 21 4 30 5 39212
4 5 5 8 8 1111 14141 1

3 4 6 7 9 1012 1315
4 5 5 8 8 1111 1414

etc        

            etc       

or                       etc        

            

xdx xdx
x x

.,

.

.,

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

( ) ( )

( ) ( )

34 33 4

2

4 33 4

3 3 23 4 35 5 47 3211
2 5 5 8 9 1113 1417 41 1

217 3 29 5 53 31 4 41
2 5 7 811 1115 1419 41 1

 etc   

            etc            

dx xdx
x x

x dx xdx
x x

. ,

. .

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫ ∫

∫ ∫
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EXAMPLE 4 

373. Let 1 and 4vμ = = and there is made 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

3 44

2 4 3 4 5 4 4 94 4
5 9 2 13 3

1 1
etc

m

n mn n

m n m n m nx dx dx
m nm n m n m n

x x
. ,

−

−

+ + +
+ + +

− −
= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
from which the following specific cases are produced : 

( ) ( )

( )

3 424

334

2 6 314 5 304 4 22
1 5 3 9 5 13 7 17 9 11

4 3 6 7 811 10154
1 3 5 5 9 713 917

2 7 319 4 31 54
1 5 4 9 7 1310

1

            etc        2

or

                           etc

            

dx dx
xx

dx

x

.

.,

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

∫ ∫

∫ ( )

( ) ( )

( ) ( )

233

3 33 34

3 34 44 4

43 4
1713 3

1

3 23 4 35 5 47211 4
5 5 9 8 1311 1714 3 11

2 8 3 24 4 40 5 564
1 5 5 9 9 1313 1717

1 1

etc     

            etc       

             etc     

or

       

xdx

x

xdx xdx
xx

dx dx

x x

.

.

.

⋅
⋅

−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫

∫ ∫

∫ ∫

( )343

612 8 20 10 284 4 4
1 5 5 9 9 1313 1717

2 8 612 1016 14 204
1 5 5 9 9 1313 1717

216 3 32 4 48 5 644
3 5 7 911 1315

1

                     etc

or

                            etc

             xxdx

x

.

.,

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅∫ ( )441719 1

4 8 616 8 24 10 324
3 5 7 911 1315 1719

4 8 812 1216 16 204
3 5 7 911 1315 1719

etc    

or

                            etc

or

                            etc

dx
x

.

.

.

⋅ −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

∫

 

 
And now the case 3 and 4vμ = =  is contained in these and in the preceding.  
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SCHOLIUM 

374. These other formulas, in which I have introduced the letters and vμ , do not extend 

beyond that first considered ; for the series depend on the fractions and m
n v

μ , which 
since they are always to be recalled with a common denominator, it is sufficient to 
consider the formulas  
 

( ) ( )
1 1

1 1

m k

n k n mn nn n

x dx x dx

x x

− −

− −
− −

=∫ ∫ .  

 
Therefore since the value of these in the case 1x = is equal to this product 
 

( )
( )

( )
( )( )

( )
( )( )

2 3 21
2 2 3 etcn m k n m k n n m k n

k m k n m n k n m n k n . ,+ + + + +
+ + + + +

⋅ ⋅ ⋅  

 
if we permute the factors in the individual members of the numerator and we partition the 
members otherwise, the same product adopts this form : 
 

( ) ( )
( )( )

( )
( )( )

( )
( )( )

2 2 3 3
2 2 3 3 etcm k n m k n n m k n n m k n

mk m n k n m n k n m n k n . .,+ + + + + + +
+ + + + + +

⋅ ⋅ ⋅  

 
which is considered more convenient to be remembered. In a similar manner since there 
shall be  
 

( ) ( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )

1 1

1 1

2 2 3 3
2 2 3 3 etc

p q

n q n pn nn n

x dx x dx

x x

p q n p q n n p q n n p q n
pq p n q n p n q n p n q n . .,

− −

− −
− −

+ + + + + + +
+ + + + + +

=

= ⋅ ⋅ ⋅

∫ ∫
 

 
that form on division by this will be  
 

( )
( )

( )
( )

( )( )( )
( )( )( )

( )( )( )
( )( )( )

1

1

1

1

2 2 2
2 2 2

                                

etc

k n
n

q n
n

m n

p n

x dx x

x dx x

pq m k p n q n m k n p n q n m k n
mk p q m n k n p q n m n k n p q n .,

−

−

−

−

−

−

+ + + + + + + + +
+ + + + + + + + +

∫

∫

= ⋅ ⋅ ⋅

 

 
all the members are retained by the same rule. But hence extraordinary combinations of 
formulas of this kind can be deduced, which in order that they are easier to be kept in 
mind,  for the sake of brevity I will use in the following shorthand form. 
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DEFINITION 

375. The value of the integral formula ( )1 1
q n

np nx dx x
−

− −∫ , that it takes on putting  x = 1, 

we may indicate for the sake of brevity by this sign ( )p
q , where it has to be realised that I 

assume a certain exponent n to remain the same, in the comparison of several formulas of 
this kind. 
 

COROLLARY 1 
376. Therefore in the first place it is apparent that ( ) ( )p q

q p=  and each formula to be  

 
( ) ( )

( )( )
( )

( )( )
2 2

2 2 etcp q n p q n n p q n
pq p n q n p n q n .,+ + + + +

+ + + +
⋅ ⋅ ⋅  

 
of which the progression of the members is clear, while the individual factors both of the 
numerator and the denominator are increased continually by the same number n, thus in 
order that from the known first member the sequences are easily formed.  
 

COROLLARY 2 
377. Then if there shall be p n= , on account of the integration formula it is clear that  
 

( ) ( ) ( ) ( )1 1likewiseq pn n
q n q n p p,= = = =  

Again since 

( )1 1
p

n
p
n

p n
n sin.

x dx x ,π
π

−
− − =∫  

 
on account of   or  q n p p q n− = − + = then  
 

( ) ( ) p
n

p n p
n p p n sin .

.π
π−

− = =  

 
Whereby the value of the formula ( )p

q  can be determined completely, as long as either 
 ,   or p n q n, p q n.= = + =  
 

COROLLARY 3 
378. Because we have found this reduction also [§ 345]  
 

( ) ( )1 11 1
q n q n

n npp n n p n
p qx dx x x dx x ,

− −
+ − −

+− = −∫ ∫  

it follows that 
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( ) ( )p n p p
q p q q
+

+=  

and hence 

( ) ( ) ( ) ( )p q p n p n q n p
q p p q n q p q n q n ,− − −

+ − + − −= = =  

then indeed also  

( ) ( )( )
( )( ) ( )2

p n q np p n
q q np q n p q n ,− − −

−+ − + −
= ⋅  

 
from which the numbers p et q  can always be taken less than n.  
 

PROBLEM 46 
 
379. To find different products from the two formulas of this kind, which are equal to 
each other.   
 

SOLUTION 
 
 Hence the numbers are sought a, b, c, d and p, q, r, s, so that it happens that 

( )( ) ( )( )pa c r
b d q s= ,  

which, since  
 

( ) ( )
( )( ) ( ) ( )

( )( )

( ) ( )
( )( ) ( ) ( )

( )( )

etc etc

etc etc

n a b n n c d na a b c c d
b ab d cda n b n c n d n

n p q n n r s np p q r sr
q pq s rsp n q n r n s n

., .,

., .,

+ + + ++ +
+ + + +

+ + + ++ +
+ + + +

= ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅
 

 
comes about, if  

( )( ) ( )( )a b c d p q r s
abcd pqrs
+ + + +=  

or 
( )( ) ( )( )abcd p q r s pqrs a b c d ,+ + = + +  

 
thus in order that, since there are six factors on both sides,  individual factors shall be 
equal to individual factors. Hence from the four abcd and pqrs it is necessary that at least 
two are equal; and thus let s d= and being effected, it is required that  
 

( )( ) ( )( )abc p q r d pqr a b c d .+ + = + +  
 
 I. The other factor r is taken; which since it is unable to be equal to c, because 
otherwise it should make ( ) ( )c r

d s= , there is put in place r = b, so that there becomes 



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 391 

 
( )( ) ( )( ) ;ac p q b d pq a b c d+ + = + +  

 
here neither p nor q can be equal to p q+ , hence there must be put : 
 1) Either p q a b+ = + , so that there shall be ( ) ( )ac b d pq c d ,+ = + because neither c 

nor b d+ can be equal to c d+ ; for there becomes either ( ) ( )0  or    and ;cr
s dd b c= = =  

there is left ( )  and  a c d pq c b d= + = + and thus   and  p b d q c= + = , from which there 
is made  

( )( ) ( )( )c d c b d b
b d c d .+ +=  

 
2) Or ( ) ( )hence  ;p q c d , ac b d pq a b+ = + + = + here c can neither be equal to  p nor q ; 

since there then  arises ( ) ( )p c
q d=  ; from which there is made c a b= + , so that  

( ) hence   pq a b d , p a, q b d , r b, s d ,= + = = + = =  consequently 
 

( )( ) ( )( )a a b b d b
b d a d .+ +=  

 
 II. Because r a= does not differ from the preceding on account of the 
interchangeability of a and b , there is put in place 

( ) ( )( ) and there is produced  r p q abc d p q pq a b c d .= + + + = + + Because r is unable to 
be equal to c, then the factor d p q+ +  cannot be put equal either to p or q or to c d+ ; 
hence there is left ( ) and  ;d p q a b abc pq c d+ + = + = +  where, because c cannot be 
equal to c d+ and p and q enjoy being in the pair arrangement, there becomes p c= ; then 

( )( )  and  q a b c d ab c d a b c d= + − − = + + − − , from which 
   a c d , q b, p c, r b c, s d ,= + = = = + = and thus there is prepared 

 
( )( ) ( )( )c d c c b c

b d b d .+ +=  

 
COROLLARY 1 

380. These solutions are returned almost the same and hence the three equal products of 
the two formulas are elicited :  
 

( )( ) ( )( ) ( )( )c c d c b c b b d
d b b d d c

+ + += =  

or in terms of the letters  p, q, r 
 

( )( ) ( )( ) ( )( )p p q q q r p p r
q r r p r q .+ + += =  



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 392 

 
COROLLARUM 2 

381. If these formulas are set out in infinite products, there is found :   
 

( )( ) ( )
( )( )( )

( )
( )( )( )

4 2
2 2 2 etc.,nn p q r n nn p q r np p q p q r

q r pqr p n q n r n p n q n r n
+ + + + + ++ + +

+ + + + + +
= ⋅ ⋅ ⋅  

 
from which it appears that the three letters p, q, r can be permuted among themselves in 
any way, and hence it is possible to include these three formulas. 
 

COROLLARY 3 
382. We can restore these integral formulas and the three following products are equal to 
each other :  

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

1 1 1 1

1 1
                 

p p q q q r

n q n r n r n pn n n nn n n n

p p r

n r n qn nn n

x dx x dx x dx x dx

x x x x

x dx x dx

x x
.

− + − − + −

− − − −

− + −

− −

− − − −

− −

⋅ = ⋅

= ⋅

∫ ∫ ∫ ∫

∫ ∫
 

 
COROLLARY 4 

383. This case is noteworthy, in which p q n+ = ; then indeed on account of   
 

( ) ( ) ( ) ( )1  and p
n

p q pn
r r r q n sin . π

π+ = = =  

these three products become equal to p
nnr sin .

.π
π  Clearly there shall be  

 

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

n p n p r p p r

pn r n p n r pn n n nn n n n n

x dx x dx x dx x dx
nr sin .x x x x

.π
π− − − + − − + −

− − −
− − − −

⋅ = ⋅ =∫ ∫ ∫ ∫  

 
SCHOLIUM 

384. That threefold property of the products from the two formulas is to be noted 
especially, and for the various numbers to be put in place of p, q, r the following specific 
equalities are obtained :  
 

p q r  
1 1 2 ( )( ) ( )( )31 2 2

1 2 1 1=  

1 2 2 ( )( ) ( )( )32 2 4
1 2 2 1=  

1 2 3 ( )( ) ( )( ) ( )( )3 3 5 32 4
1 3 2 1 1 2= =

1 1 3 ( )( ) ( )( )3 31 4
1 2 1 1=  
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2 2 3 ( )( ) ( )( )3 52 4
2 3 2 2=  

1 3 3 ( )( ) ( )( )3 3 64
1 3 3 1=  

2 3 3 ( )( ) ( )( )3 5 3 6
2 3 3 2=  

1 1 4 ( )( ) ( )( )51 4 4
1 2 1 1=  

1 2 4 ( )( ) ( )( ) ( )( )6 52 4 4 4
1 3 2 1 1 2= =

1 3 4 ( )( ) ( )( ) ( )( )3 5 74 4 4
1 4 1 3 3 1= =

1 4 4 ( )( ) ( )( )5 84 4
1 4 4 1=  

2 2 4 ( )( ) ( )( )62 4 4
2 4 2 2=  

2 3 4 ( )( ) ( )( ) ( )( )3 5 7 64 4
2 4 3 2 2 3= =

2 4 4 ( )( ) ( )( )6 84 4
2 4 4 2=  

3 3 4 ( )( ) ( )( )3 6 74
3 4 8 3=  

3 4 4 ( )( ) ( )( )7 84 4
3 4 4 3 .=  

 
 
 
Which formulas prevail for all the numbers n, and if numbers greater than  n occur, we 
have seen above that these can be reduced to smaller numbers. 
 

PROBLEM 47 
385. To find diverse products from three formulas of this kind, which are equal to each 
other.  
 

SOLUTION 
The product ( )( )( )p p q p q r

q r s
+ + +  may be considered, which set out gives  

 
( )

( )( )( )( )
3

etc,n p q r s np q r s
pqrs p n q n r n s n

+ + + ++ + +
+ + + +

⋅ ⋅  

 
which it is evident holds the same value, in whatever way the four letters are 
interchanged among themselves. Then indeed the same product is set out from this 
product ( )( )( )p p qr

q s r s ,+
+  where the same permutation is in place. Hence all these products 

are equal to each other :  
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( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

p p q p q r p p r p q r p p s p q s
q r s r q s s q r

p p q p q s p p r p q s p p s p r s
q s r r s q s r q

q q r p q r q q s p q s p r sr sr
r p s s p r s p q

q q r p q s q q s q r s q r sr sr
r s p s r p s q p

, , ,

, , ,

, , ,

, , .

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + ++

+ + + + + + + ++

 

 
The products of other forms with the help of the preceding properties hence arise at once;   
indeed there is  

( )( ) ( )( )p q p q r r sr
r s s p q .+ + + +

+=  

 

Then also this product ( )( )( )p p q p r
q r s

+ + set out for the first member gives ( )( )
( )

p q r p r s
pqrs p r
+ + + +

+
 

in which both p and r as well as q and s can be permuted between themselves, thus so that 
there shall be  
 

( )( )( ) ( )( )( )p p q p r p rr sr
q r s s p q .+ + ++=  

 
SCHOLIUM 

386. However wide this is considered to be allowed, yet no new comparisons are 
supplied, which now are not present in the preceding. Finally indeed the equality  
 

( )( )( ) ( )( )( )p p q p r p rr sr
q r s s p q .+ + ++=  

 
arises from the multiplication of these : 
 

( )( ) ( )( ) ( )( ) ( )( )p p q p p r p p r r sr
q r r q r s s p, .+ + + += =  

 
Now the first form is apparent from this example : the equality 
 

( )( )( ) ( )( )( )p p q p q r p r sr sr
q r s s p q

+ + + + ++=  

 
arises from the multiplication of these :  
 

( )( ) ( )( ) ( )( ) ( )( )p p q p r s p q p q rr s r sr
q r s p q r s s p q, .+ + + + + ++ +

+ += =  
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But these comparisons are especially useful and to be reduced in turn according to the 
values of diverse formulas of the same order or to a given number n, so that integration 
need hardy ever be recalled, from which given the rest can be defined by these.   
 
 

PROBLEM 48 
387. To show the simplest formulas, to which the integration of all the cases contained in 
the form 

( )
( )

1

1

p

n qnn

p x dx
q

x

−

−
−

= ∫  

can be reduced. 
 

SOLUTION 
 First there is ( ) 1n

p p= , from which these cases may be had :  

 
( ) ( ) ( ) ( ) ( )1 1 1 1

1 2 2 3 3 4 4 5 51 etcn n n n n, , , , .= = = = =  

-- ---- - 
Then there is ( ) p

n

p
n p n sin. π

π
− = , from which the values of all the formulas are known, 

which we may indicate :  
 

( ) ( ) ( ) ( )1 2 3 4
1 2 3 4 etcn n n n, , , .α β γ δ− − − −= = = =  

 
Now these are not sufficient for setting out all the remaining cases, since in addition it is 
required to consider these :  
 

( ) ( ) ( ) ( )2 3 4 5
1 2 3 4 etcn n n nA, B, C, D .− − − −= = = =  

 
and from these all the rest can be determined with the aid of the equations shown above ;  
from which it helps to know these chiefly :  
 

( )( ) ( )( )
( )( ) ( )( )

( )( )( ) ( )( )( )1
1 1

                 

           

n a n n a n a b
a b b a

n a n a b n b n a b
a b b a

n a n b n a b n b n a n a b
a b a b a a

,

,

.

− − − +

− − − − − −

− − − − − − − − −
− −

=

=

=

 

 
From which first on putting 1a b= + there is found : 
 

( ) ( )( ) ( )1
1 1:n n a n n a

a a a a ,− − −
− −=  



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 396 

where ( ) ( )1
1 1

n
a a− −= , and thus by the formulas assumed ( )1n

a
−  is defined  . 

From the second on putting b = 1 there is found : 
 

( ) ( )( ) ( )1 1 1
1 :n a n n a n a

a a a .− − − − − −=  

 
From the third on putting b = 1 there is deduced : 
 

( ) ( )( )( ) ( )( )1 1 1 2
1 1 1 1:n a n n a n a n a n

a a a a
− − − − − − − −
− −=  

 
and thus all the formulas ( )2

1
n a

a
− −
− are found and from these again on putting 2b = into the 

third :  
 

( ) ( )( )( ) ( )( )2 2 2 3
1 2 1 2:n a n n a n a n a n

a a a a ,− − − − − − − −
− −=  

 
from which the forms ( )3

1
n a

a
− −
− are found  and thus again all ( )n a b

a
− −  , clearly for which 

form everything is completed. But the labour for the first equations is greatly reduced.  
For on finding ( )2

1
n a

a
− −
− there is deduced from the first ; 

( ) ( )( ) ( )2 2 2
2 2 :n n a n n a

a a a a ,− − − − −
+ +=  

and now for the second : 
( ) ( )( ) ( )2 2 2

2 2 :n a n n a n a
a a .− − − − − −=  

 
and in a similar manner from the formulas ( )3

1
n a

a
− −
− found these are derived :  

 
( ) ( )( ) ( )
( ) ( )( ) ( )

3 3 3
3 3

3 3 3
1 3

:

:

n n a n n a
a a a a

n a n n a n a
a a a

,

.

− − − − −
+ +

− − − − − −
−

=

=
 

 
 

COROLLARY 1 
388. From the equation ( ) ( ) ( )1 1

1 1:n n a n a
a a a a
− − −

− −=  there are defined :  

 
( ) ( ) ( ) ( )1 1 1 1

2 1 3 2 4 3 5 4
n n n n

A B C D, , ,β γ δ ε− − − −= = = = etc., 

 
now from the equation ( ) ( )( ) ( )1 1 1

1 :n a n n a n a
a a a
− − − − − −=  these formulas 
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( ) ( ) ( ) ( )2 3 4 5

1 1 1 1 etcn A n B n C n D, , , .α α α α
α β γ δ

− − − −= = = =  

 
COROLLARY 2 

389. The equation ( ) ( )( )( ) ( )( )1 1 1 2
1 1 1 1:n a n n a n a n a n

a a a a
− − − − − − − −
− −=   gives  

 
( ) ( ) ( ) ( )3 4 5 6

1 2 3 4 etcn AB n BC n CD n DE
A A A A, , , .α α α α

β γ δ ε
− − − −= = = = , 

 
from which these formulas are found ( ) ( )( ) ( )2 2 2

2 2 :n n a n n a
a a a a ,− − − − −
+ +=  that is, 

 
( ) ( ) ( ) ( )2 2 2 2

3 1 4 2 5 3 6 4 etcA A An n n A n
AB BC CD DE, , , .γβ δγ ζεεδ

α α α α
− − − −= = = =  

 
and also these ( ) ( )( ) ( )2 2 2

2 2 :n a n n a n a
a a ,− − − − − −=  which are 

 
( ) ( ) ( ) ( )3 4 5 6

2 2 2 2 etcAB BC CD DEn n n n
A A A A, , , .βα βα βα βα

αβ βγ γδ δε
− − − −= = = =  

 
COROLLARY 3 

390. Then the equation  ( ) ( )( )( ) ( )( )2 2 2 3
1 2 1 2:n a n n a n a n a n

a a a a
− − − − − − − −
− −=  

 gives 
( ) ( ) ( ) ( )4 5 6 7

1 2 3 4 etcABC BCD CDE DEFn n n n
AB AB AB AB, , , .,αβ αβ αβ αβ

βγ γδ δε εζ
− − − −= = = =  

 
hence                        ( ) ( )( ) ( )3 3 3

3 3 :n n a n n a
a a a a
− − − − −
+ += gives 

 
( ) ( ) ( )3 3 3

4 1 5 2 6 3 etcAB AB ABn n n
ABC BCD CDE, , , .βγδ γδε δεζ

αβ αβ αβ
− − −= = =  

 
 

and from  ( ) ( )( ) ( )3 3 3
3 3 :n a n n a n a

a a
− − − − − −=  there are deduced 

 
( ) ( ) ( )5 6 7

3 3 3 etcBCD CDE DEFn n n
AB AB AB, , , .αβγ αβγ αβγ

βγδ γδε δεξ
− − −= = =  
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EXAMPLE 1 

391. The cases contained in this form  
( )

( )1

222 1

p

q

px dx
q

x

−

−
−

=∫  are set out, where n=2, and 

where   

( ) ( )2p p p
q p q q .+

+=  

 
 It is evident that all these formulas can be extricated either algebraically or by angles ; 
yet by using these rules, because the numbers  p et q must not be in excess of  the two, we 
have the one formula depending on the circle : 
 

( )
2

1
1 22 sin . ,π

π π α= = =  

from which our cases become :  
 

( ) ( )
( )

2 2 1
1 2 2

1
1

1

      

, ,

.α

= =

=
 

 
EXAMPLE 2 

392. The cases contained in this form 
( )

( )1

333 1

p

q

px dx
q

x

−

−
−

=∫  are set out, where 3n = , and 

where   

( ) ( )3p p p
q p q q .+

+=  

 
 Here the main cases, to which the rest can be reduced, are   
 

( ) ( )
( )233 3

22 1
1 13 3 3 1

and dx
sin .

x
,π

π π α
−

= = = = ∫   

with which conceded the remainder are :  
 

( ) ( ) ( )
( ) ( )

( )

3 3 31 1
1 2 2 3 3

2 2
1 2

1
1

1

      

                      
A

, , ,

, ,

A.

αα

= = =

= =

=
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EXAMPLE 3 

393. The cases contained in this formula are set out
( )

( )1

444 1

p

q

px dx
q

x

−

−
−

=∫ , where 4n = , and 

where there is   

( ) ( )4p p p
q p q q .+

+=  

 
These two cases depend on the circle : 
 

( ) ( ) 2
4 4

3 2
1 2 44 42 2

andsin . sin . ,π π
π π π πα β= = = = = =  

 
now in addition there is the need for the single transcendent ( )2

1 A= , from which the 

others can be determined thus :  
 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

4 4 1 4 1 4 1
1 2 2 3 3 4 4

3 3 3
1 2 3 2

2 2
1 2

1
1

1

      

                     

                        

A A

A

, , , ,

, , ,

A, ,

.

β α

α
β

α

β

= = = =

= = =

= =

=

 

 
 

EXAMPLE 4 
394. The cases contained in this form 

( )
( )1

555 1

p

q

px dx
q

x

−

−
−

=∫  are to be set out, where n = 5, 

and where   

( ) ( )5p p p
q p q q .+

+=  

 
These two formulas depend on the circle : 
 

( ) ( ) 2
5 5

34
1 25 5andsin . sin . ,π π

π πα β= = = =  

 
in addition it is required to assume two new transcendents  : 
 

( ) ( )3 2
1 2  and A B,= =  

by which all are determined in the following manner :  
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )
( )

5 5 5 5 51 1 1 1
1 2 2 3 3 4 4 5 5

4 4 4 4
1 2 3 2 4 3

3 3 3
1 2 3

2 2
1 2

1
1

1

      

                     

                       

                           

A B A

B

B

A

, , , , ,

, , , ,

A, , ,

, B,

.

β β α

ββ
α

α
β

α
β

α

β

= = = = =

= = = =

= = =

= =

=

 

 
EXAMPLE 5 

395. The cases contained in this form 
( )

( )1

666 1

p

q

px dx
q

x

−

−
−

=∫  are set out, where n = 6. 

 
 These three formulas depend on the circle :  
 

( ) ( ) ( )2 3
6 6 6

5 34
1 3 2 3 66 6 63 3

 ;sin . sin . sin ., ,π π π
π π π π π πα β γ= = = = = = = = =  

 
then these two transcendents are assumed now :  ( ) ( )34

1 2  and A B= =  

 
and through these all are determined in the following manner :  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

6 6 6 6 6 61 1 1 1 1
1 2 2 3 3 4 4 5 5 6 6

5 5 5 5 5
1 2 3 2 4 3 5 4

4 4 4 4
1 2 3 4 2

3 3 3
1 2 3

2 2
1 2

1

    

             

                              

                           

A B B A
A

B BB

B

B BB

, , , , , ,

, , , , ,

A, , , ,

, B, ,

,

β γ β α

βγ βγ
α α

α
β

α α
γ

α

β

γ

= = = = = =

= = = = =

= = = =

= = =

= =

( )1
1                                      

A

A

,

.

γ

α
β=

 

 
SCHOLIUM 

396. These determinations are allowed to be continued as far as one would wish, in which 
the new kinds of transcending [formulas or functions] introduced must be especially 
noted ; the first of which occurs if  n=3, and it is 

( )
( )233

1
1

1

dx

x−
= ∫  

the value of which we have seen to be given above by the infinite product [§ 371]  
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3 6 5 9 82 12
1 4 4 7 7 10 10 etc.,= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

which from the formula ( )1
1  on account of 3n = is also equal to 

3 5 6 8 9112 1214
11 4 4 7 7 1010 1313 etc  .⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅  

 
Then from the class 4n =  this new transcending form arises :  
 

( )
( ) ( ) ( )3 2 44 44 4

2
1 11 1

xdx dx dx
xx x

,
−− −

= = =∫ ∫ ∫  

 
which is equal to this infinite product  
 

3 4 7 811 1215 1619 3 2 7 615 819411
1 2 5 6 910 1314 1718 2 5 3 9 5 13 7 17 9etc etc. .⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅  

 
From the class n = 5 we obtain these new transcending formulas  
 

( )
( ) ( )

( )
( )

2

4 25 55 5

355

3 5 9 1014 15194
1 13 6 8 1113 1618

1 1

5 9 1014 15192 4
2 2 2 7 7 1212 1717

1

                     etc

and

                    etc

x dx dx

x x

xdx

x

.

.,

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

−

= = = ⋅ ⋅ ⋅ ⋅

= = ⋅ ⋅ ⋅ ⋅

∫ ∫

∫
 

thus so that there becomes : 
( ) ( )3 7 7 17172 2 2 1212

1 2 13 6 8 1113 1618: etc.⋅ ⋅⋅ ⋅
⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅  

The class 6n = supplies these two transcending formulas : 
 

( )
( ) ( ) ( )

3

5 566 336 6

4 1
1 211 1

ydyx dx dx
xx y−− −

= = =∫ ∫ ∫  

on putting xx y=  and 
 

( )
( ) ( ) ( ) ( )

2

2 26 3 363

3 1 1
2 2 31 1 11

dyx dx xdx dz
x y zzx − − −−

= = = =∫ ∫ ∫ ∫  

on taking 3  and  y xx z x= = .  Moreover it is to be observed  that between these and the 
first relation given,  

( ) ( )
( )2 43 63 6

2
2

1 1
2 2ydydx

x y− −
= =∫ ∫ , 

which is [ see § 384]  ( )( ) ( )( )3 34 2
1 2 2 2 ,γ α=  thus so that the first suffices here for the other 

to be granted.  
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CAPUT IX 

 
DE EVOLUTIONE INTEGRALIUM 

PER PRODUCTA INFINITA 
 

PROBLEMA 43 
356. Valorem huius integralis 

( )1
dx

xx−∫ , quem casu 1x =  recipit, in productum infinitum 

evolvere. 
SOLUTIO 

Quemadmodum supra formulas altiores ad simplicem reduximus, ita hic formulam 

( )1
dx

xx−∫  continuo ad altiores perducamus. Ita, cum posito 1x = sit 

( ) ( )
1 11

1 1

m mx dx m x dx
mxx xx

− ++
− −

=∫ ∫  

erit 
 

( ) ( ) ( ) ( )
4 62 4 62 2 4

1 13 13 51 1 1 1
etcdx xxdx x dx x dx

xx xx xx xx
.,⋅ ⋅⋅

⋅ ⋅ ⋅− − − −
= = =∫ ∫ ∫ ∫  

 
unde concludimus fore indefinite 
 

( ) ( ) ( )
22 4 6 8 2

13 5 7 2 11 1

idx · ····· i x dx
· ····· ixx xx
⋅ ⋅

⋅ ⋅ −− −
=∫ ∫  

 
atque adeo etiam, si pro i sumatur numerus infinitus. Nunc simili modo a formula 

( )1
xdx

xx−∫  ascendamus reperiemusque  

( )
( )

( )
2 13 5 7 9 2 1

2 4 6 8 21 1

i· · ···· ixdx x dx
· ····· ixx xx

+⋅ +
⋅ ⋅− −

=∫ ∫  

 
atque observo, si i sit numerus infinitus, formulas istas 
 

( ) ( )
2 2 1

1 1
et

i ix dx x dx
xx xx

+

− −∫ ∫  

 
rationem aequalitatis esse habituras. Ex reductione enim principali perspicuum 
est, si m sit numerus infinitus, fore 
 

( ) ( ) ( )
1 1 3

1 1 1
= =

m m mx dx x dx x dx
xx xx xx

− + +

− − −∫ ∫ ∫  
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atque adeo in genere 
 

( ) ( )1 1
=

m m vx dx x dx
xx xx

μ+ +

− −∫ ∫  

 
quantumvis magna fuerit differentia inter et  vμ , modo finita. Cum igitur sit 

( ) ( )
2 2 1

1 1
=

i ix dx x dx
xx xx

+

− −∫ ∫  

 
si ponamus 

( )
( )3 5 7 9 2 l2 4 6 2

2 4 6 8 213 5 2 l et · ii
i· · i M N ,⋅ ⋅ ⋅⋅⋅ +⋅ ⋅ ⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −
= =  

erit 

( ) ( )1 1
: : :1dx xdx M

Nxx xx
M N

− −
= =∫ ∫  

posito 1x = . At est 
 

( ) ( ) 21 1
1 etxdx dx

xx xx
,π

− −
= =∫ ∫  

unde colligitur 

( )1
dx M

Nxx
.

−
=∫  

 
Quia producta M et N ex aequali factorum numero constant, si primum factorem 2

1  

producti M per primum factorem 3
2  producti N, secundum 4

3  illius per secundum 5
4  huius 

et ita porro dividamus, fiet 
 

6 6 8 82 2 4 4
13 3 5 5 7 7 9 etc· ·M · ·

N · · · · .,= ⋅ ⋅ ⋅ ⋅  
 
unde obtinemus pro casu 1x = per productum infinitum 
 

( )
6 6 8 82 2 4 4

13 3 5 5 7 7 9 21
 etcdx · ·· ·

· · · ·xx
. .π

−
= ⋅ ⋅ ⋅ ⋅ =∫  

 
COROLLARIUM 1 

357. Pro valore ergo ipsiusπ  idem productum infinitum elicuimus, quod olim iam 
WALLISIUS invenerat et cuius veritatem in Introductione confirmavimus diversissimis viis 
incedentes; erit itaque 
 

6 6 8 82 2 4 4
13 3 5 5 7 7 92  etc· ·· ·
· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
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COROLLARIUM 2 

358. Nihil interest, quonam ordine singuli factores in hoc producto disponantur, 
dummodo nulli relinquantur. Ita aliquot ab initio seorsim sumendo reliqui ordine debito 
disponi possunt, veluti  

4 6 6 8 8102 2 4
2 1 3 3 5 5 7 7 9 9 etc· · ··

· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
vel 

2 6 4 8 610 8122 4
2 13 3 5 5 7 7 9 911 etc· · · ··

· · · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
vel 

4 6 6 8 8102 2 4
2 3 15 3 7 5 9 7 11 etc· · ··

· · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
vel 

2 6 4 8 610 8122 4
2 3 5 1 7 3 9 511 7 13 etc· · · ··

· · · · · .π = ⋅ ⋅ ⋅ ⋅ ⋅  
 

SCHOLION 
359. Fundamentum ergo huius evolutionis in hoc consistit, quod valor integralis 

( )1

ix dx
xx

α+

−∫  

denotante i numerum infinitum idem sit, utcunque numerus finitus α varietur. Atque hoc 
quidem ex reductione 

( ) ( )
1 11

1 1

i ix dx i x dx
ixx xx

− ++
− −

=∫ ∫  

 
manifestum est, si pro α valores binario differentes assumantur. Deinde autem 
nullum est dubium, quin hoc integrale 

( )
1

1

ix dx
xx

+

−∫ inter haec 
( )1

ix dx
xx−∫  et

( )
2

1

ix dx
xx

+

−∫  

quasi limites contineatur, qui cum sint inter se aequales, necesse est omnes formulas 
intermedias iisdem quoque esse aequales. Atque hoc latius patet ad formulas magis 
complicatas, ita ut denotante i numerum infinitum sit 
 

( ) ( )1 1

i i

k kn n

x dx x dx

x x
.

α+

− −
=∫ ∫  

 
Cum enim sit 

( ) ( )
1 1

1 1

m n m

n k n kn n n n

x dx m x dx
m k

x x
,

+ − −

− −+
− −

=∫ ∫  

hae formulae posito m = ∞ sunt aequales; unde illarum quoque aequalitas casibus, quibus 
vel 2 vel 3 etcn n n .,α α α= = = perspicitur; sin autem α medium quempiam valorem 

teneat, formulae ipsius quoque valor medium quoddam tenere debet inter valores 
aequales ideoque ipsis erit aequalis. Hoc igitur principio stabilito sequens problema 
resolvere poterimus. 
 



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 405 

PROBLEMA 44 

360. Rationem horum duorum integralium ( ) ( )1 11 1
k n k n

n nm n nx dx x et x dx xμ
− −

− −− −∫ ∫  

in casu x = 1 per productum infinitorum factorum exprimere. 
 

SOLUTIO 
Cum sit 

( ) ( )1 11 1
k n k n

n nm n m n nm k
nx dx x x dx x

− −
− + −+− = −∫ ∫  

 
casu x = 1, valor istius integralis ad integrale infinite remotum reducetur hoc modo 
 

( )
( )( )( ) ( )

( ) ( ) ( ) ( )

1

2 m 1
2

1

1

k n
n

k n
n

m n

m k m k n m k n k in m in n n
m m n m n m in

x dx x

x dx x ,

−

−

−

+ + + + + ⋅⋅⋅⋅ + + + + −
+ + ⋅⋅⋅⋅ +

−

= −

∫

∫
 

ubi i numerum infinitum denotare assumimus. Simili autem modo pro altera formula 
proposita erit 
 

( )
( )( )( ) ( )

( ) ( ) ( ) ( )

1

2 1
2

1

1

k n
n

k n
n

n

k k n k n k in in n n
n n in

x dx x

x dx x ,

μ

μ μ μ μ μ
μ μ μ μ

−

−

−

+ + + + + ⋅⋅⋅⋅ + + + + −
+ + ⋅⋅⋅⋅ +

−

= −

∫

∫
 

 
atque hae postremae formulae integrales ob exponentes infinitos aequales erunt non 
obstante inaequalitate numerorum et ;m μ tum vero bina haec producta infinita pari 
factorum numero constant. Quare si singuli per singulos, hoc est primus per primum, 
secundus per secundum [et ita porro] dividantur, ratio binorum integralium propositorum 
ita exprimetur 
 

( )
( )

( )
( )

( )( )
( )( )

( )( )
( )( )

1

1

1 2 2
2 2

1
etc

k n
m n n

k n
n n

x dx x m k n m k n n m k n
m k m n k n m n k n

x dx x
.,

μ

μ μ μ
μ μ μ

−
−

−
−

−∫ + + + + + + +
+ + + + + + +

−∫
= ⋅ ⋅ ⋅  

si quidem ambo integralia ita determinentur, ut posito x = 0 evanescant, tum vero 
statuatur x = 1; litteris autem    m, , n, kμ numeros positivos denotari necesse est. 
 

COROLLARIUM 1 
361. Si differentia numerorum m et μ aequetur multiplo ipsius n, in producto invento 
infiniti factores se destruunt relinqueturque factorum numerus finitus, uti, si m nμ = + , 
habebitur 
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( )( )
( )

( )( )
( )( )

( )( )
( )( )

2 3 2
2 2 3 etc.,m n m k m n m k n m n m k n

m m k n m n m k n m n m k n
+ + + + + + + +

+ + + + + + + +
⋅ ⋅ ⋅  

quod reducitur ad m k
m
+ . 

 
COROLLARIUM 2 

362. Valor autem illius producti necessario est finitus, id quod tam ex formulis 
integralibus, quarum rationem exprimit, patet quam inde, quod in singulis factoribus 
numeratores et denominatores sunt alternatim maiores et minores. 
 

COROLLARIUM 3 
363. Si ponamus 1 3 4 et  2m , , n kμ= = = = , erit 
 

( )

( )

41

41

3 3 7 7 15151111
15 5 9 913 1317 etc ;

dx

x

xxdx

x

.
−

−

∫
⋅ ⋅ ⋅⋅= ⋅ ⋅ ⋅ ⋅∫
⋅ ⋅ ⋅ ⋅  

supra autem invenimus productum harum binarum formularum esse = 4
π  

 
PROBLEMA 45 

364. Valorem huius integralis ( )1 1
k n

nm nx dx x
−

− −∫ , quem posito x = 1 recipit, per 

productum infinitum exprimere. 
 

SOLUTIO 
Cum in problemate praecedente ratio huius integralis ad hoc alterum productum infinitum 
sit assignata,  

( )1 1
k n

nnx dx xμ
−

− −∫  

in hoc exponens μ ita accipiatur, ut integrale exhiberi possit. Capiatur ergo nμ =  et 
integrale fit 

( ) ( )1 11 1
k

k n n
n xn

k kC x
− −

− − =  

ita determinatum, ut posito x = 0 evanescat; ponatur nunc, ut conditio postulat, x = 1, et 
quia hoc integrale erit = 1

k , habebimus formulae propositae integrale casu x = 1 ita 
expressum 

( ) ( )
( )

( )
( )( )

( )
( )( )

2 3 21 1
2 2 31 etc.,

k n
n n m k n m k n n m k nm n

k m k n m n k n m n k nx dx x
−

+ + + + +−
+ + + + +

− = ⋅ ⋅ ⋅ ⋅∫  

 
quod singulos factores partiendo ita repraesentari potest 
 



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 407 

( ) ( )
( )( )

( )
( )( )

( )
( )( )

2 3 4 21
2 2 3 31 etc.,

k n
n n m k n m k n n m k nm n n

mk m n k n m n k n m n k nx dx x
−

+ + + + +−
+ + + + + +

− = ⋅ ⋅ ⋅ ⋅∫  

 
COROLLARIUM 1 

365. Cum in hac expressione litterae m et k sint permutabiles, sequitur etiam haec 
integralia posito x = 1 inter se esse aequalia 
 

( ) ( )1 11 1
k n m n

n nm n k nx dx x x dx x
− −

− −− = −∫ ∫ , 

quam aequalitatem iam supra § 349 elicuimus. 
 

COROLLARIUM 2 
366. Cum formulae nostrae valor, si m n k= − , aequalis sit valori huius 

1

1

k

n
z dz

z

−

+∫  

posito z = ∞ , si ob m k n+ = statuamus 2 2etn nm kα α+ −= = ,  habebimus 
 

( ) ( )
1 1 1 1

2 2 1 11 1

4 2 4 4 6 6 8
9 25 49 etc.

m k k m

n n n n
n nn n

x dx x dx z dz z dz
z zx x

n nn nn nn
nn nn nn nn

α α

αα αα αα αα

− − − −

+ − + +− −

⋅ ⋅ ⋅
− − − −

= = =

= ⋅ ⋅ ⋅ ⋅

∫ ∫ ∫ ∫
 

 
Quod productum etiam hoc modo exponi potest 

 

( )( ) ( )( ) ( )( )
2 2 4 4 6 62

3 3 5 5 7 etc.,n n n n n n
n n n n n n nα α α α α α α

⋅ ⋅ ⋅
− + − + − + −

⋅ ⋅ ⋅ ⋅  

 
quod ergo etiam exprimit valorem ipsius 

2
m
n nn sin. ncos .π απ

π π=  per § 351. 

 
COROLLARIUM 3 

367. Vel si simpliciter ponamus k n m= − , fiet 
 

( ) ( )

( ) ( )( ) ( )( )

1 1 1 1

1 11 1

4 91
2 3 2 4 etc.,

m n m m n m

m n m n n
n nn n

x dx x dx z dz z dz
z zx x

nn nn nn
n m m n m n m n m n m n m

− − − − − −

− + +− −

− − + − + −

= = =

= ⋅ ⋅ ⋅ ⋅

∫ ∫ ∫ ∫
 

 
quae ex forma primum inventa oritur. Haec ergo aequalitas subsistit, si ponatur 

1 et x z .= = ∞  
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SCHOLION 1 

368. In Introductione  autem pro multiplicatione angulorum inveneram 
 

( )( )( )( )4 9 161 1 1 1 etcm m mm mm mm mm
n n nn nn nn nnsin . .,π π= − − − − ⋅  

 
et cum  

( )n m m
n nsin . sin .π π− = ,  

ob kn m− = erit etiam  
 

( )( )( )( )4 9 161 1 1 1 etcm k kk kk kk kk
n n nn nn nn nnsin . .,π π= − − − − ⋅  

 
quae reducitur ad hanc formam 
 

( )( ) ( )( ) ( )( )2 2 3 3
4 9 etcn k n k n k n k n k n km k

n n nn nn nnsin . . .π π − + − + − += ⋅ ⋅ ⋅  
 
et pro k suo valore restituto 
 

( ) ( ) ( )( ) ( )( )2 3 2  4
4 9 etcm n m n m n m n m n mm

n n nn nn nnsin . n m .,π π − + − + −= − ⋅ ⋅ ⋅ ⋅  
 
unde manifesto pro m

nn sin . π
π idem reperitur productum, quod valorem nostrorum 

integralium exprimit, sicque novam habemus demonstrationem pro theoremate illo 
eximio supra [§ 351] per multas ambages evicto esse  
 

( ) ( )
1 1 1 1

1 11 1

m n m m n m

m n m n n m
n nn n n

x dx x dx z dz z dz
n sin.z zx x

.π
π− − − − − −

− + +− −
= = = =∫ ∫ ∫ ∫  

 
SCHOLION 2 

369. Quo nostra formula latius pateat, ponamus k
n v

μ= seu n
vk μ=  et  

nanciscemur 
 

( ) ( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

1 3 4 221
2 2 3 3

2 3 4 2 5 3
2 2 3 3 4 4

1 etc

etc

v mv n v mv n vmv nm n v
m m n v m n v m n v

mv n mv n nv mv n nv mv n nvv
m m n v m n v m n v m n v

x dx x .

.

μ
μ μμ

μ μ μ μ

μ μ μ μ
μ μ μ μ μ

− + + + ++−
+ + + + + +

+ + + + + + +
+ + + + + + + +

− = ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

∫  
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in qua expressione litterae    et   m, n , vμ sunt permutabiles praeterquam in primo factore, 
qui cum reliquis lege continuitatis non connectitur; ac si per n multiplicemus, 
permutabilitas erit perfecta, unde concludimus fore 

( ) ( )1 11 11 1
m

v nm n vn x dx x v x dx x
μ

μ− −− −− = −∫ ∫  

 
quae aequalitas casu v n= ad supra observatam reducitur. Caeterum iuvabit casus 
praecipuos perpendisse, quos ex valoribus   et  vμ desumamus. 
 

EXEMPLUM 1 
370. Sit 1  et  2vμ = =  fietque 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

2

2 2 3 2 3 4 2 52 2
3 5 2 7 31 1

etc
m

n mn n

m n m n m nx dx dx
m nm n m n m nx x

. ,
−

−

+ + +
+ + +− −

= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
quae expressio ita commodius repraesentatur 
 

( )
( )
( )

( )
( )

( )
( )

1 4 2 6 2 3 8 2 52
3 2 2 5 2 4 7 2 61

etc
m

n

m n m n m nx dx
m m n m n m nx

.,
− + + +

+ + +−
= ⋅ ⋅ ⋅ ⋅∫  

 
unde sequentes casus specialissimi deducuntur 
 

( ) ( )

( ) ( )

( )

23 23

3

4 6 6 82 4
3 3 5 5 7 71 1

4 5 611 817 10 23 2
3 8 514 7 20 9 26 31 1

4 7 613
310 511

            2 etc                        

            2 etc          

            1

dx dx
xx xx

dx dx
x x

xdx
x

. ,

. ,

⋅ ⋅⋅
⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅
⋅ ⋅−

= ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫
∫ ∫

∫ ( )

( ) ( )

( )

23

34 24

4

819 10 25 2
6 7 22 9 28 3 1

4 3 6 7 811 1015 1
3 5 5 9 713 917 21 1

6 8 812 10164 4 1
3 6 510 714 9181

etc         

            2 etc           

            1 etc           

dx
x

dx dx
x x

xdx
x

. ,

. ,

.

⋅ ⋅
⋅ ⋅ −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅−

⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫

∫ ∫

∫ ( )

( ) ( )

( )

2

4 4

3

4

2 1

4 6 6 8 8102 4
3 3 5 5 7 7 9 9

4 5 6 9 813 10172 1
3 3 7 511 715 919 2 11

4 6 610 8142
4 3 8 512 71

sive                   1 etc

            etc           

            

dx
x

xxdx dx
xxx

x dx
x

,

.,

. ,

−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅
⋅ ⋅−

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅

∫

∫ ∫

∫ 1018 1
16 9 20 2etc           . .⋅
⋅ ⋅⋅ ⋅ =
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EXEMPLUM 2 

371. Sit 1 et 3vμ = = fietque 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

2 33

2 3 3 3 4 4 3 73 3
4 7 2 10 3

1 1
etc

m

n mn n

m n m n m nx dx dx
m nm n m n m n

x x
. ,

−

−

+ + +
+ + +

− −
= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

unde sequentes casus specialissimi deducuntur 
 

( ) ( )

( ) ( )

2 323

2 23 33 3

3 2 5 311 417 5 23 3
1 4 3 7 5 10 7 13 7 2 11

3 2 6 315 5 334 24
1 4 4 7 7 1010 1313

1 1

3 2 6 5 9
1 4 4

            etc        

            etc       

sive                     

dx dx
xx

dx dx

x x

. ,

. ,

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅
⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫

∫ ∫

( ) ( )2 33 33

812 1115
7 7 1010 1313

3 2 9 318 4 27 5 36
2 4 5 7 8 1011 1314 11

3 3 6 6 9 912 1215
2 4 5 7 8 1011 1314

etc        

            etc       

sive                     etc        

        

xdx dx
xx

.

. ,

.

⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

( ) ( )

( ) ( )

2 34 33 4

2 34 43

3 2 7 319 4 31 5 43 3
1 4 5 7 9 1013 1317 4

1 1

213 3 25 4 37 5 49 3
4 7 711 1015 1319 4 11

     etc   

           1 etc              

dx dx

x x

xxdx dx
xx

. ,

. .

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −−

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫ ∫

∫ ∫

 

 
EXEMPLUM 3 

372. Sit 2 et 3vμ = = fietque 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

33

2 3 2 3 3 5 4 3 83 3
2 5 8 2 11 31 1

etc
m

n mn n

m n m n m nx dx xdx
m nm n m n m nx x

. ,
−

−

+ + +
+ + +− −

= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
unde sequentes casus speciales deducuntur 
 



EULER'S  
INSTITUTIONUM CALCULI INTEGRALIS  VOL. 1  

Part I, Section I,Chapter 9.  
 Translated and annotated by Ian Bruce.                                page 411 

( ) ( )

( ) ( )

2 33

23 33 3

3 2 7 313 419 5 25 3
2 5 3 8 5 117 14 9 21 1

3 2 9 318 4 27 5 36
2 5 4 8 7 1110 14131 1

3 3 6 6
2 4 5 7

            etc        

            etc       

sive                     

dx xdx
x x

dx xdx
x x

. ,

.

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

∫ ∫

∫ ∫

( ) ( )3 33 3

9 9 1212
810 1113

3 3 21 4 30 5 39212
4 5 5 8 8 1111 14141 1

3 4 6 7 9 1012 1315
4 5 5 8 8 1111 1414

etc        

            etc       

sive                     etc        

           

xdx xdx
x x

.,

.

.,

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

( ) ( )

( ) ( )

34 33 4

2

4 33 4

3 3 23 4 35 5 47 3211
2 5 5 8 9 1113 1417 41 1

217 3 29 5 53 31 4 41
2 5 7 811 1115 1419 41 1

  etc   

           etc              

dx xdx
x x

x dx xdx
x x

. ,

. .

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅− −

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫ ∫

∫ ∫

 

 
EXEMPLUM 4 

373. Sit 1 et 4vμ = = fietque 
 

( )
( )
( )

( )
( )

( )
( ) ( )

1

3 44

2 4 3 4 5 4 4 94 4
5 9 2 13 3

1 1
etc

m

n mn n

m n m n m nx dx dx
m nm n m n m n

x x
. ,

−

−

+ + +
+ + +

− −
= ⋅ ⋅ ⋅ ⋅ =∫ ∫  

 
unde sequentes casus speciales prodeunt 
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( ) ( )

( )

3 424

334

2 6 314 5 304 4 22
1 5 3 9 5 13 7 17 9 11

4 3 6 7 811 10154
1 3 5 5 9 713 917

2 7 319 4 314
1 5 4 9 7 1310

1

            etc        2

seu

                           etc

            

dx dx
xx

dx

x

.

.,

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

∫ ∫

∫ ( )

( ) ( )

( ) ( )

233

3 33 34

3 34 44 4

5 43 4
1713 3

1

3 23 4 35 5 47211 4
5 5 9 8 1311 1714 3 11

2 8 3 24 4 40 5 564
1 5 5 9 9 1313 1717

1 1

etc     

            etc       

             etc     

seu

     

xdx

x

xdx xdx
xx

dx dx

x x

.

.

.

⋅
⋅

−

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ −−

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

∫

∫ ∫

∫ ∫

( )343

612 8 20 10 284 4 4
1 5 5 9 9 1313 1717

2 8 612 1016 14 204
1 5 5 9 9 1313 1717

216 3 32 4 48 54
3 5 7 911 1315

1

                       etc

seu

                            etc

             xxdx

x

.

.,

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅∫ ( )44

64
1719 1

4 8 616 8 24 10 324
3 5 7 911 1315 1719

4 8 812 1216 16 204
3 5 7 911 1315 1719

etc    

seu

                            etc

seu

                            etc

dx
x

.

.

.

⋅
⋅ −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

∫

 

 
Atque in his et praecedentibus iam casus 3 et 4vμ = = est contentus. 
 

SCHOLION 
374. Caeterum hae formulae, in quas litteras et vμ introduxi, latius non patent quam 

primum consideratae; series enim pendent a binis fractionibus  et m
n v

μ , quae cum 
semper ad communem denominatorem revocari queant, formulas 
 

( ) ( )
1 1

1 1

m k

n k n mn nn n

x dx x dx

x x

− −

− −
− −

=∫ ∫  

 
perpendisse sufficiet. Cum igitur earum valor casu 1x = aequetur huic producto 
 

( )
( )

( )
( )( )

( )
( )( )

2 3 21
2 2 3 etcn m k n m k n n m k n

k m k n m n k n m n k n . ,+ + + + +
+ + + + +

⋅ ⋅ ⋅  
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si in singulis membris factores numeratorum permutemus et membra aliter partiamur, 
idem productum hanc induet formam 
 

( ) ( )
( )( )

( )
( )( )

( )
( )( )

2 2 3 3
2 2 3 3 etcm k n m k n n m k n n m k n

mk m n k n m n k n m n k n . .,+ + + + + + +
+ + + + + +

⋅ ⋅ ⋅  

 
quae ad memoriam magis accommodata videtur. Simili modo cum sit 
 

( ) ( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )

1 1

1 1

2 2 3 3
2 2 3 3 etc

p q

n q n pn nn n

x dx x dx

x x

p q n p q n n p q n n p q n
pq p n q n p n q n p n q n . .,

− −

− −
− −

+ + + + + + +
+ + + + + +

=

= ⋅ ⋅ ⋅

∫ ∫
 

 
illam formam per hanc dividendo erit 
 

( )
( )

( )
( )

( )( )( )
( )( )( )

( )( )( )
( )( )( )

1

1

1

1

2 2 2
2 2 2

                                

etc

k n
n

q n
n

m n

p n

x dx x

x dx x

pq m k p n q n m k n p n q n m k n
mk p q m n k n p q n m n k n p q n .,

−

−

−

−

−

−

+ + + + + + + + +
+ + + + + + + + +

∫

∫

= ⋅ ⋅ ⋅

 

 
cuius omnia membra eadem lege continentur. Hinc autem eximiae comparationes 
buiusmodi formularum deduci possunt, quae quo facilius commemoran queant, brevitatis 
causa sequenti scriptionis compendio utar. 
 

DEFINITIO 

375. Formulae integralis ( )1 1
q n

np nx dx x
−

− −∫ valorem, quem posito x = 1 recipit, 

brevitatis gratia hoc signo ( )p
q indicemus, ubi quidem exponentem n, quem in 

comparatione plurium huiusmodi formularum eundem esse assumo, subintelligi oportet. 
 

COROLLARIUM 1 
376. Primum igitur patet esse ( ) ( )p q

q p=  et utramque formulam esse 

 
( ) ( )

( )( )
( )

( )( )
2 2

2 2 etcp q n p q n n p q n
pq p n q n p n q n .,+ + + + +

+ + + +
⋅ ⋅ ⋅  

 
quorum membrorum progressio est manifesta, dum singuli factores tam numeratoris 
quam denominatoris continuo eodem numero n augentur, ita ut ex cognito primo membro 
sequentia facile formentur. 
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COROLLARIUM 2 
377. Deinde si sit p n= , ob formulam integrabilem liquet esse 
 

( ) ( ) ( ) ( )1 1itemq pn n
q n q n p p,= = = =  

Porro cum 

( )1 1
p

n
p
n

p n
n sin.

x dx x ,π
π

−
− − =∫  

 
ob   seu  q n p p q n− = − + = erit 

( ) ( ) p
n

p n p
n p p n sin .

.π
π−

− = =  

Quare valor formulae ( )p
q  absolute assignari potest, quoties fuerit 

vel  vel  vel p n q n p q n.= = + =  
 

COROLLARIUM 3 
378. Quia etiam [§ 345] invenimus hanc reductionem 
 

( ) ( )1 11 1
q n q n

n npp n n p n
p qx dx x x dx x ,

− −
+ − −

+− = −∫ ∫  

sequitur fore 
 

( ) ( )p n p p
q p q q
+

+=  

hincque 

( ) ( ) ( ) ( )p q p n p n q n p
q p p q n q p q n q n ,− − −

+ − + − −= = =  

tum vero etiam  

( ) ( )( )
( )( ) ( )2

p n q np p n
q q np q n p q n ,− − −

−+ − + −
= ⋅  

 
unde semper numeri p et q infra n deprimi possunt.  
 

PROBLEMA 46 
 
379. Invenire diversa producta ex binis huiusmodi formulis, quae inter se 
sint aequalia.  
 

SOLUTIO 
Quaerantur ergo numeri a, b, c, d et p, q, r, s, ut fiat 

( )( ) ( )( )pa c r
b d q s= ,  

quod, cum sit 
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( ) ( )
( )( ) ( ) ( )

( )( )

( ) ( )
( )( ) ( ) ( )

( )( )

etc etc

etc etc

n a b n n c d na a b c c d
b ab d cda n b n c n d n

n p q n n r s np p q r sr
q pq s rsp n q n r n s n

., .,

., .,

+ + + ++ +
+ + + +

+ + + ++ +
+ + + +

= ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅
 

eveniet, si fuerit 
( )( ) ( )( )a b c d p q r s

abcd pqrs
+ + + +=  

seu 
( )( ) ( )( )abcd p q r s pqrs a b c d ,+ + = + +  

 
ita ut, cum utrinque sex sint factores, singuli singulis sint aequales. Ex quaternis ergo 
abcd et pqrs binos ad minimum aequales esse oportet; sit itaque s d= efficique oportet 
 

( )( ) ( )( )abc p q r d pqr a b c d .+ + = + +  
 
 I. Sumatur alter factor r; qui cum ipsi c aequari nequeat, quia alioquin fieret 
( ) ( )c r

d s= , statuatur r = b, ut fiat 

 
( )( ) ( )( ) ;ac p q b d pq a b c d+ + = + +  

 
hic neque p neque q ipsi p q+  aequari potest, poni ergo debet: 
 1) Vel p q a b+ = + , ut sit ( ) ( )ac b d pq c d ,+ = + quia neque c neque 

b d+ ipsi c d+ aequari potest; fieret enim vel ( ) ( )0  vel    et ;cr
s dd b c= = =  

relinquitur ( )  et  a c d pq c b d= + = + ideoque   et  p b d q c= + = , unde conficitur 
 

( )( ) ( )( )c d c b d b
b d c d .+ +=  

 
2) Vel ( ) ( )ergo  ;p q c d , ac b d pq a b+ = + + = + hic c neque ipsi p neque q aequari 

potest; fieret enim ( ) ( )p c
q d=  ; unde fiat c a b= + , ut sit 

( ) ergo   pq a b d , p a, q b d , r b, s d ,= + = = + = =  consequenter 
 

( )( ) ( )( )a a b b d b
b d a d .+ +=  

 
 II. Quia r a= non differt a praecedenti ob a et b permutabiles, statuatur 

( ) ( )( ) fietque  r p q abc d p q pq a b c d .= + + + = + + Quoniam r ipsi c aequari nequit, 
factor d p q+ +  neque ipsi p neque q neque c d+  aequalis poni potest; relinquitur ergo 
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( )  et  ;d p q a b abc pq c d+ + = + = +  ubi, quia c ipsi c d+ aequari nequit ac p et q pari 

conditione gaudent, fiat p c= ; erit ( )( )  et  q a b c d ab c d a b c d= + − − = + + − − , unde 
   a c d , q b, p c, r b c, s d ,= + = = = + = sicque conficitur 

 
( )( ) ( )( )c d c c b c

b d b d .+ +=  

 
COROLLARIUM 1 

380. Hae solutiones eodem fere redeunt indeque tria producta binarum formularum 
aequalia eruuntur 
 

( )( ) ( )( ) ( )( )c c d c b c b b d
d b b d d c

+ + += =  

vel in litteris p, q, r 
 

( )( ) ( )( ) ( )( )p p q q q r p p r
q r r p r q .+ + += =  

 
COROLLARUM 2 

381. Si hae formulae in producta infinita evolvantur, reperietur 
 

( )( ) ( )
( )( )( )

( )
( )( )( )

4 2
2 2 2 etc.,nn p q r n nn p q r np p q p q r

q r pqr p n q n r n p n q n r n
+ + + + + ++ + +

+ + + + + +
= ⋅ ⋅ ⋅  

 
unde patet tres litteras p, q, r utcunque inter se permutari posse, atque hinc ternas illas 
formulas concludere licet. 
 

COROLLARIUM 3 
382. Restituamus ipsas formulas integrales et sequentia tria producta erunt inter se 
aequalia 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

1 1 1 1

1 1
                 

p p q q q r

n q n r n r n pn n n nn n n n

p p r

n r n qn nn n

x dx x dx x dx x dx

x x x x

x dx x dx

x x
.

− + − − + −

− − − −

− + −

− −

− − − −

− −

⋅ = ⋅

= ⋅

∫ ∫ ∫ ∫

∫ ∫
 

 
 

COROLLARIUM 4 
383. Hic casus notatu dignus, quo p q n+ = ; tum enim ob  
 

( ) ( ) ( ) ( )1  et p
n

p q pn
r r r q n sin . π

π+ = = =  

haec tria producta fient p
nnr sin.

.π
π=  Erit scilicet 
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( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

n p n p r p p r

pn r n p n r pn n n nn n n n n

x dx x dx x dx x dx
nr sin .x x x x

.π
π− − − + − − + −

− − −
− − − −

⋅ = ⋅ =∫ ∫ ∫ ∫  

 
SCHOLION 

384. Triplex ista proprietas productorum ex binis formulis maxime est notatu digna ac 
pro variis numeris loco p, q, r substituendis obtinebuntur sequentes aequalitates speciales 
 

p q r  
1 1 2 ( )( ) ( )( )31 2 2

1 2 1 1=  

1 2 2 ( )( ) ( )( )32 2 4
1 2 2 1=  

1 2 3 ( )( ) ( )( ) ( )( )3 3 5 32 4
1 3 2 1 1 2= =

1 1 3 ( )( ) ( )( )3 31 4
1 2 1 1=  

2 2 3 ( )( ) ( )( )3 52 4
2 3 2 2=  

1 3 3 ( )( ) ( )( )3 3 64
1 3 3 1=  

2 3 3 ( )( ) ( )( )3 5 3 6
2 3 3 2=  

1 1 4 ( )( ) ( )( )51 4 4
1 2 1 1=  

1 2 4 ( )( ) ( )( ) ( )( )6 52 4 4 4
1 3 2 1 1 2= =

1 3 4 ( )( ) ( )( ) ( )( )3 5 74 4 4
1 4 1 3 3 1= =

1 4 4 ( )( ) ( )( )5 84 4
1 4 4 1=  

2 2 4 ( )( ) ( )( )62 4 4
2 4 2 2=  

2 3 4 ( )( ) ( )( ) ( )( )3 5 7 64 4
2 4 3 2 2 3= =

2 4 4 ( )( ) ( )( )6 84 4
2 4 4 2=  

3 3 4 ( )( ) ( )( )3 6 74
3 4 8 3=  

3 4 4 ( )( ) ( )( )7 84 4
3 4 4 3 .=  

 
 
 
Quae formulae pro omnibus numeris n valent, ac si numeri maiores quam n occurrant, 
eos ad minores reduci posse supra vidimus. 
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PROBLEMA 47 

385. Invenire producta diversa ex ternis huiusmodi formulis, quae inter se sint aequalia. 
 

SOLUTIO 
Consideretur productum ( )( )( )p p q p q r

q r s ,+ + + quod evolutum praebet 

 
( )

( )( )( )( )
3

etc,n p q r s np q r s
pqrs p n q n r n s n

+ + + ++ + +
+ + + +

⋅ ⋅  

 
quod eundem valorem retinere evidens est, quomodocunque quatuor litterae inter se 
commutentur. Tum vero eadem evolutio prodit ex hoc producto ( )( )( )p p qr

q s r s ,+
+  ubi eadem 

permutatio locum habet. Aequalia ergo sunt inter se omnia haec producta 
 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

p p q p q r p p r p q r p p s p q s
q r s r q s s q r

p p q p q s p p r p q s p p s p r s
q s r r s q s r q

q q r p q r q q s p q s p r sr sr
r p s s p r s p q

q q r p q s q q s q r s q r sr sr
r s p s r p s q p

, , ,

, , ,

, , ,

, , .

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + ++

+ + + + + + + ++

 

 
Producta alterius formae ope praecedentis proprietatis hinc sponte fluunt; 
est enim  

( )( ) ( )( )p q p q r r sr
r s s p q .+ + + +

+=  

 
Deinde vero etiam hoc productum ( )( )( )p p q p r

q r s
+ +  evolutum pro primo membro dat 

( )( )
( )

p q r p r s
pqrs p r
+ + + +

+
 in quo tam p et r quam q et s inter se permutare licet, ita ut sit 

 

( )( )( ) ( )( )( )p p q p r p rr sr
q r s s p q .+ + ++=  

 
SCHOLION 

386. Quantumvis late haec patere videantur, tamen nullas novas comparationes 
suppeditant, quae non iam in praecedenti contineantur. Postrema enim aequalitas 
 

( )( )( ) ( )( )( )p p q p r p rr sr
q r s s p q .+ + ++=  
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oritur ex multiplicatione harum 
 

( )( ) ( )( ) ( )( ) ( )( )p p q p p r p p r r sr
q r r q r s s p, .+ + + += =  

 
Priorum vero formatio ex hoc exemplo patebit : aequalitas 
 

( )( )( ) ( )( )( )p p q p q r p r sr sr
q r s s p q

+ + + + ++=  

 
oritur ex multiplicatione harum 
 

( )( ) ( )( ) ( )( ) ( )( )p p q p r s p q p q rr s r sr
q r s p q r s s p q, .+ + + + + ++ +

+ += =  

 
Istae autem comparationes praecipue utiles sunt ad valores diversarum formularum 
eiusdem ordinis seu pro dato numero n invicem reducendos, ut integratio ad paucissimas 
revocetur, quibus datis reliquae per eas definiri queant. 
 

PROBLEMA 48 
387. Formulas simplicissimas exhibere, ad quas integratio omnium casuum in 
forma  

( )
( )

1

1

p

n qnn

p x dx
q

x

−

−
−

= ∫  

contentorum reduci queat. 
 

SOLUTIO 
 Primo est ( ) 1n

p p= , unde habentur hi casus 

 
( ) ( ) ( ) ( ) ( )1 1 1 1

1 2 2 3 3 4 4 5 51 etcn n n n n, , , , .= = = = =  

-- ---- - 
Deinde est ( ) p

n

p
n p n sin . π

π
− = , unde omnium harum formularum valores sunt cogniti, quas 

indicemus 
( ) ( ) ( ) ( )1 2 3 4

1 2 3 4 etcn n n n, , , .α β γ δ− − − −= = = =  

 
Verum hi non sufficiunt ad reliquos omnes expediendos, praeterea tanquam 
cognitos spectari oportet hos 
 

( ) ( ) ( ) ( )2 3 4 5
1 2 3 4 etcn n n nA, B, C, D .− − − −= = = =  
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atque ex his reliqui omnes determinari poterunt ope aequationum supra demonstratarum; 
unde potissimum has notasse iuvabit 
 

( )( ) ( )( )
( )( ) ( )( )

( )( )( ) ( )( )( )1
1 1

                 

           

n a n n a n a b
a b b a

n a n a b n b n a b
a b b a

n a n b n a b n b n a n a b
a b a b a a

,

,

.

− − − +

− − − − − −

− − − − − − − − −
− −

=

=

=

 

 
Ex harum prima posito 1a b= + invenitur 

( ) ( )( ) ( )1
1 1:n n a n n a

a a a a ,− − −
− −=  

ubi ( ) ( )1
1 1

n
a a− −= , ideoque per formulas assumtas definitur ( )1n

a
− . 

Ex secunda posito b = 1 invenitur 
 

( ) ( )( ) ( )1 1 1
1 :n a n n a n a

a a a .− − − − − −=  

 
Ex tertia posito b = 1 deducitur 
 

( ) ( )( )( ) ( )( )1 1 1 2
1 1 1 1:n a n n a n a n a n

a a a a
− − − − − − − −
− −=  

 
sicque reperiuntur omnes formulae ( )2

1
n a

a
− −
− et ex his porro ponendo 2b = in tertia 

 
( ) ( )( )( ) ( )( )2 2 2 3

1 2 1 2:n a n n a n a n a n
a a a a ,− − − − − − − −
− −=  

 
unde reperiuntur formae ( )3

1
n a

a
− −
−  et ita porro omnes ( )n a b

a
− −  , quippe quae forma omnes 

complectitur. Labor autem per priores aequationes non mediocriter contrahitur. Inventa 
enim ( )2

1
n a

a
− −
− ex prima colligitur 

( ) ( )( ) ( )2 2 2
2 2 :n n a n n a

a a a a ,− − − − −
+ +=  

ex secunda vero 
( ) ( )( ) ( )2 2 2

2 2 :n a n n a n a
a a .− − − − − −=  

 
similique modo ex inventis formulis ( )3

1
n a

a
− −
− derivantur hae 

 
( ) ( )( ) ( )
( ) ( )( ) ( )

3 3 3
3 3

3 3 3
1 3

:

:

n n a n n a
a a a a

n a n n a n a
a a a

,

.

− − − − −
+ +

− − − − − −
−

=

=
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COROLLARIUM 1 

388. Ex aequatione ( ) ( ) ( )1 1
1 1:n n a n a

a a a a
− − −

− −=  definiuntur 

 
( ) ( ) ( ) ( )1 1 1 1

2 1 3 2 4 3 5 4
n n n n

A B C D, , ,β γ δ ε− − − −= = = = etc., 

 
ex aequatione vero ( ) ( )( ) ( )1 1 1

1 :n a n n a n a
a a a
− − − − − −=  hae formulae 

 
( ) ( ) ( ) ( )2 3 4 5

1 1 1 1 etcn A n B n C n D, , , .α α α α
α β γ δ

− − − −= = = =  

 
COROLLARIUM 2 

389. Aequatio ( ) ( )( )( ) ( )( )1 1 1 2
1 1 1 1:n a n n a n a n a n

a a a a
− − − − − − − −
− −=   praebet 

 
( ) ( ) ( ) ( )3 4 5 6

1 2 3 4 etcn AB n BC n CD n DE
A A A A, , , .α α α α

β γ δ ε
− − − −= = = = , 

 
unde reperiuntur istae formulae ( ) ( )( ) ( )2 2 2

2 2 :n n a n n a
a a a a ,− − − − −
+ +=  

 
( ) ( ) ( ) ( )2 2 2 2

3 1 4 2 5 3 6 4 etcA A An n n A n
AB BC CD DE, , , .γβ δγ ζεεδ

α α α α
− − − −= = = =  

 
atque etiam istae ( ) ( )( ) ( )2 2 2

2 2 :n a n n a n a
a a ,− − − − − −=  quae sunt 

 
( ) ( ) ( ) ( )3 4 5 6

2 2 2 2 etcAB BC CD DEn n n n
A A A A, , , .βα βα βα βα

αβ βγ γδ δε
− − − −= = = =  

 
COROLLARIUM 3 

390. Tum aequatio ( ) ( )( )( ) ( )( )2 2 2 3
1 2 1 2:n a n n a n a n a n

a a a a
− − − − − − − −
− −=  

 dat 
( ) ( ) ( ) ( )4 5 6 7

1 2 3 4 etcABC BCD CDE DEFn n n n
AB AB AB AB, , , .,αβ αβ αβ αβ

βγ γδ δε εζ
− − − −= = = =  

 
hinc                        ( ) ( )( ) ( )3 3 3

3 3 :n n a n n a
a a a a
− − − − −
+ += praebet  

 
( ) ( ) ( )3 3 3

4 1 5 2 6 3 etcAB AB ABn n n
ABC BCD CDE, , , .βγδ γδε δεζ

αβ αβ αβ
− − −= = =  
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atque ex  ( ) ( )( ) ( )3 3 3
3 3 :n a n n a n a

a a
− − − − − −=  deducuntur 

 
( ) ( ) ( )5 6 7

3 3 3 etcBCD CDE DEFn n n
AB AB AB, , , .αβγ αβγ αβγ

βγδ γδε δεξ
− − −= = =  

 
EXEMPLUM 1 

391. Casus in hac forma  
( )

( )1

222 1

p

q

px dx
q

x

−

−
−

=∫ contentos, ubi n=2, evolvere, ubi est  

( ) ( )2p p p
q p q q .+

+=  

 
 Manifestum est has formulas omnes vel algebraice vel per angulos expediri; his tamen 
regulis utentes, quia numeri p et q binarium superare non debent, unam formulam a 
circulo pendentem habemus 
 

( )
2

1
1 22 sin . ,π

π π α= = =  

unde nostri casus erunt 
 

( ) ( )
( )

2 2 1
1 2 2

1
1

1

      

, ,

.α

= =

=
 

 
EXEMPLUM 2 

392. Casus in hac forma 
( )

( )1

333 1

p

q

px dx
q

x

−

−
−

=∫ contentos, ubi 3n = , evolvere,ubi est  

( ) ( )3p p p
q p q q .+

+=  

 
 Hic casus principales, ad quos caeteri reducuntur, sunt  
 

( ) ( )
( )233 3

22 1
1 13 3 3 1

et dx
sin.

x
,π

π π α
−

= = = = ∫   

qua concessa erunt reliqui 
 

( ) ( ) ( )
( ) ( )

( )

3 3 31 1
1 2 2 3 3

2 2
1 2

1
1

1

      

                      
A

, , ,

, ,

A.

αα

= = =

= =

=
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EXEMPLUM 3 
393. Casus in hac forma 

( )
( )1

444 1

p

q

px dx
q

x

−

−
−

=∫  contentos, ubi 4n = , evolvere, ubi est  

( ) ( )4p p p
q p q q .+

+=  

 
A circulo pendent hae duae 
 

( ) ( ) 2
4 4

3 2
1 2 44 42 2

etsin . sin . ,π π
π π π πα β= = = = = =  

 
praeterea vero una transcendente singulari opus est ( )2

1 A= , unde reliquae ita 

determinantur 
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )

4 4 1 4 1 4 1
1 2 2 3 3 4 4

3 3 3
1 2 3 2

2 2
1 2

1
1

1

      

                     

                        

A A

A

, , , ,

, , ,

A, ,

.

β α

α
β

α

β

= = = =

= = =

= =

=

 

 
EXEMPLUM 4 

394. Casus in hac forma 
( )

( )1

555 1

p

q

px dx
q

x

−

−
−

=∫  contentos, ubi n = 5, evolvere, ubi est  

( ) ( )5p p p
q p q q .+

+=  

 
A circulo pendent hae duae formulae 
 

( ) ( ) 2
5 5

34
1 25 5andsin . sin . ,π π

π πα β= = = =  

 
praeter quas duas novas transcendentes assumi oportet 
 

( ) ( )3 2
1 2  et A B,= =  

per quas omnes sequenti modo determinantur 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )
( )

5 5 5 5 51 1 1 1
1 2 2 3 3 4 4 5 5

4 4 4 4
1 2 3 2 4 3

3 3 3
1 2 3

2 2
1 2

1
1

1

      

                     

                       

                           

A B A

B

B

A

, , , , ,

, , , ,

A, , ,

, B,

.

β β α

ββ
α

α
β

α
β

α

β

= = = = =

= = = =

= = =

= =

=

 

 
EXEMPLUM 5 

395. Casus in hac forma 
( )

( )1

666 1

p

q

px dx
q

x

−

−
−

=∫  contentos, ubi n = 6, evolvere. 

 
 A circulo pendent hae tres formulae 
 

( ) ( ) ( )2 3
6 6 6

5 34
1 3 2 3 66 6 63 3

 ;sin . sin . sin ., ,π π π
π π π π π πα β γ= = = = = = = = =  

 
tum vero assumantur hae duae transcendentes 
 

( ) ( )34
1 2  et A B= =  

atque per has omnes sequenti modo determinantur 
 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

6 6 6 6 6 61 1 1 1 1
1 2 2 3 3 4 4 5 5 6 6

5 5 5 5 5
1 2 3 2 4 3 5 4

4 4 4 4
1 2 3 4 2

3 3 3
1 2 3

2 2
1 2

1

    

             

                              

                           

A B B A
A

B BB

B

B BB

, , , , , ,

, , , , ,

A, , , ,

, B, ,

,

β γ β α

βγ βγ
α α

α
β

α α
γ

α

β

γ

= = = = = =

= = = = =

= = = =

= = =

= =

( )1
1                                      

A

A

,

.

γ

α
β=

 

 
SCHOLION 

396. Has determinationes, quousque libuerit, continuare licet, in quibus praecipue notari 
debent casus novas transcendentium species introducentes; quorum primus occurrit, si 
n=3, estque  

( )
( )233

1
1

1

dx

x−
= ∫  
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cuius valorem per productum infinitum supra [§ 371] vidimus esse 
 

3 6 5 9 82 12
1 4 4 7 7 10 10 etc.,= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

quod ex formula ( )1
1  ob 3n = etiam est 

3 5 6 8 9112 1214
11 4 4 7 7 1010 1313 etc  .⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅  

 
Deinde ex classe 4n =  nascitur haec nova forma transcendens 
 

( )
( ) ( ) ( )3 2 44 44 4

2
1 11 1

xdx dx dx
xx x

,
−− −

= = =∫ ∫ ∫  

 
quae aequatur huic producto infinito 
 
 

3 4 7 811 1215 1619 3 2 7 615 819411
1 2 5 6 910 1314 1718 2 5 3 9 5 13 7 17 9etc etc. .⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅  

 
Ex classe n = 5 impetramus duas novas formulas transcendentes 
 

( )
( ) ( )

( )
( )

2

4 25 55 5

355

3 5 9 1014 15194
1 13 6 8 1113 1618

1 1

5 9 1014 15192 4
2 2 2 7 7 1212 1717

1

                     etc

et

                    etc

x dx dx

x x

xdx

x

.

.,

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

− −

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

−

= = = ⋅ ⋅ ⋅ ⋅

= = ⋅ ⋅ ⋅ ⋅

∫ ∫

∫
 

ita ut sit 
( ) ( )3 7 7 17172 2 2 1212

1 2 13 6 8 1113 1618: etc.⋅ ⋅⋅ ⋅
⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅  

 
Classis 6n = has duas formulas transcendentes suppeditat 
 

( )
( ) ( ) ( )

3

5 566 336 6

4 1
1 211 1

ydyx dx dx
xx y−− −

= = =∫ ∫ ∫  

posito xx y=  et 
 

( )
( ) ( ) ( ) ( )

2

2 26 3 363

3 1 1
2 2 31 1 11

dyx dx xdx dz
x y zzx − − −−

= = = =∫ ∫ ∫ ∫  

sumto 3  et  y xx z x= = .  Notandum autem est inter has et primam 
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( ) ( )
( )2 43 63 6

2
2

1 1
2 2ydydx

x y− −
= =∫ ∫  

relationem dari, quae est [§ 384] 
( )( ) ( )( )3 34 2

1 2 2 2 ,γ α=  

ita ut prima admissa hic altera sufficiat. 


