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1 1 1 dxlx
3) Concerning the integration of the formula j MR extended from
x=0tox=1.
Acta Acad. Imp. Sc. Tom. L. P. I1. Pag. 3-28.

§. 117. A most natural method of treating formulas that consist of the kind j pdxIx,

shall be that they be reduced to other forms of the kind Jqu , in which the letter ¢ shall

be an algebraic function of X; mainly since the rules of integration can be adapted to such
formulas. But a reduction of this kind evidently labours with difficulty, thus when no

function p has been prepared, so that the integral J pdx may be able to be shown

algebraically. Indeed if there were J pdx = P, thus so that the proposed formula shall be

Pdx

" and thus now the whole

JdPIx , that is reduced at once to this expression PIx —j
concern has been replaced by the integration of this formula j P—SX . Truly when the
formula J pdx does not permit an algebraic integration, such as happens in our proposed

formula j ddx_ such a reduction cannot be completely successful. Indeed since there

JO-xx)

shall be I = Asin.X , this reduction will give

dx
J(1-xx)
J-& = Asin.Xx IX — J-% - Asin.X,
VJ(1-xx) X
and thus if after the integral sign the new transcendental function Asin.X may
encountered , whose integration is as equally obscure as that proposed. Whereby since
recently I have found by an unusual method, that

J' dxix [from x=0} _ —%7[|2,

/(1—xx) to x=1
there the expression of the integral is required to be worthy of consideration with greater
attention, because the investigation of that is by no means obvious; from which I have
considered it worth the effort to be showing it truth from other sources, before I set out
that method itself, which has led me to that.

First demonstration of the proposed integrationJ. dxlx

J(1-xx) :

§.118. Because here mainly there is required to be recourse to infinite series, but IX is
denied such a simple resolution formula, instead we may use the substitution

(1-xx) =y, from which there shall become x = /(1-yy) , and hence again
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therefore in this manner, the formula of the proposed integral I —x_ s transformed

J(1-xx)

into the following form

6 8
Wiy ¥y ¥y
Jm(z 4+6+8+etc.)

where, since there shall be y = (1 — XX) , it may be noted the integration must be

extended from y =1 as far as to y = 0; whereby if we wish to interchange these terms of
the integration, it is required to change the sign of the whole formula.

§. 119. But so that we may be less confused by the change of such signs, we will
designate the value sought by the letter S, so that there shall be

_ J'&[ from x=0}
/(17xx) to x=1
and with the substitution made y =, /(1 — XX) , we will have, as in the manner we have

advised :

6
V_ Yy ¥y from y=0
j T ) ( Tt et +etc')[toy=1 }

But within the integrations of these terms, evidently from y=0toy =1, it is understood

well enough, how the individual parts which occur here, are to be reduced to the
following values

j vy 13579 I et
JOoyy) 246810 2

where without doubt % I \/ldy—) , thus so that 1: 7 may express the ratio of the diameter
(1-yy

to the periphery of a circle.

§. 120. Therefore, since if we may introduce these individual values, the following
infinite series will be obtained for the value S sought :

S:_E(LJr 13 | 135 , 1357 +etc)
2122 247 246> 2468
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and thus the whole procedure now has been reduced to this, so that the sum of this
infinite series may be investigated ; which labor perhaps can hardly be seen to be made
less troublesome, than that which had been proposed by us to be carried out. Yet
meanwhile knowledge of the sum of this series can be reached without difficulty in the
following manner by us.

§. 121. Since there shall be

13 54,135
—(1 ZZ)_1+ 22+551 +246z + etc.

if we may multiply each side by dz and integrate, we will obtain

Iz+—zz+ L3 744135 L35 7% +etc.
242 2462

and thus we have been led to our same series, the value of which therefore must be

sought from this expression J. - m —lz , clearly with the integral taken thus, so that it

shall vanish on putting z =0, with which done there may be put z =1, and that series

will be produced:
Ly 1.32+ 1.3.52+ 13572+etc
22 247 246° 2468

Therefore in this way the whole procedure has led to the integration of this integral
dz =adv.

2 J(1-2z2) ’ l-w 2
1 | I+v _ - 1+v

of which is agreed to be —3 1% = - But if in place of v the value \/(1-zz) may

formula I which on putting (1 - Zz) =V passes into this form the integral

be restored, the whole expression, which we need, thus itself will be had :

. [1+ (l—zz)}
J.ZJ 1-2z) z

:C—I[1+ (l—zz)],

—1z+C

where the constant must be taken thus, so that the value may vanish, on putting z =0,
and thus there will be C =12 . On account of which, on putting z =1, the sum of the
series sought will be 12, and hence the value of the proposed integral formula itself will
be :

J‘ dxix 7z|2.
Jlxx 2 )

precisely until I had found the answer by another method, from which it is understood
well enough now, that same truth to be of a higher investigation, and thus worthy of the
greatest attention of the geometers.
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Another demonstration of the proposed integration.

§. 122. Since % shall be the element of the arc of a circle of which the sine = X,
—XX

we may put this same angle = ¢, thus so that there shall be

X =sin.p and —%— =dg,
(1-xx)
and with this substitution made the value of the quantity S, we are looking for, will be

represented thus :
_ . from =0
S= Id(pl sin .qoLo =900 }

Indeed since before the terms were X =0 et X =1, now to these correspond

=0, and ¢ = 90° or ¢ = 7. Therefore here the whole investigation reverts to that, so

that the formula Isin.p may be changed conveniently into an infinite series. Finally we

may put Isin.p =S, and there will become ds = %. But now we know that

COS.Qp
sin.gp

For if we may multiply each side by sin.¢ ; on account of

2sin.2¢+2sin.4p+ 2sin.6¢p + 2sin.8¢ + etc.

2sin.ngsin.g = cos.(n—1)p—cos.(n+1) g, ,

certainly there will become
C0S.¢ = COS.0 + C0S.3¢ + c08.5¢ + cos. 7@+ cos. 9p +etc.

—c08.3¢p —cos.5¢p—cos.7¢p—cos. 9p — etc.

Therefore by calling this series for % into use, there will become
s =C—c05.2¢—7c08.49 —105.69 — 1 c08.8¢— +c0s. 109 — etc.

where since there shall be s =Isin.g, and thus s =0, when sin.p =1, and thus ¢ = Z,
thus it is required to define the constant C, so that on putting

p=7= 90°, there may become S =0, from which it is deduced that

1 1 1 1 —

I'sin.g = —12-c0s.2¢p—1-cos.4¢ -1 cos.6¢ -4 cos.8¢ —etc.

the value of the proposed formulae shall become :
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Idgplsm¢ C—opl2- s1n2(p——sm4go sm6(p

— 55 5in.8¢ — 2 sin. lO(p etc.

which expression since it must vanish on putting ¢ = 0, the constant entered here will be
C =0, thus so that now in general there will become

2sin. Zgo 2sin4¢p  2sin.6p  2sin.8¢

Jd(pl sin.p =—@l2—

42 62 82
_ 2sm.;O(p _ 2s1n.;2¢ _ete.
10 12

But if now here there may be taken ¢ = Z-90°, of all the angles 2¢, 4¢, 6@, 8¢, etc.,
which occur here the sines will vanish, and thus the value sought will be

S= J-d(plsm(p[ mQQOOO} -Z12;

just as also we have shown in the former demonstration.

§. 124. But this same demonstration by the preceding far surpasses not only the value of
the formula proposed by us for the case in which it may be shown for ¢ = 90°, but also it
shall show its true value, whatever angle may be taken for ¢ r, that which can be

transferred to that same formula I% , whose value we will be able to assign
—XX

precisely for any value of X itself. So that if indeed we should require the value of the
formula from X =0 as far as to X = a, the angle & may be sought the sine of which shall
be equal to a itself, and there may be had always :

f"om Q= 0 2sin.2a _ 2sindoa _ 2sin.6a _ 2sin.8a
| sin |2 —2sin2a Ao 6o 8a _ atc.
S J.d¢ S (0 90 — 22 42 62 82 ete

From which it is apparent, whenever there were « = 7 , with i denoting some whole

number, since all the sines will vanish, the value of the formula in these cases can be
expressed by —iﬂ|2 ; but truly in all the other cases the value of our formula will be

expressed well enough by the infinite series . Thus if a = JE may be taken, so that there

shall be o = T the value of our formula will become

INR-Z+3-L+ -S4 2 et

22 6% 102 142 182 2

which series thus may be expressed more elegantly :
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_z|p_1(q_-1L 1 1,1 _ 1 .
4I2 2(1 32+52 72+92 112+etc.),

and thus there occurs here the memorable series

1- L+ L1 jetc,

1
+25 49 © 81 121

O~

whose sum hitherto in no way can be recalled according to known measures.

§.125. Because such an outstanding series has presented itself here as if beyond
expectation, we may establish still other more notable cases, and we may take a = i , SO

that there shall become o =30°= and 1n this case the value of our formula will be :

22 42 8% 10 14 16°

ﬂ|2ff\/— V3 _ N3 B ete

which expression can be shown thus:

—EIZ—ﬁ(l +L-L_ Lyl L L _ L et )

22 42 5272 10 1P
in which series the squares of multiples of three are missing. In a like manner, we may
take a= */_ , so that there shall be o = 60° =%, and the value of our formula produced in

this case W111 become

x5 B L

etc.
22 42 8% 102 14% 167

or it may be expressed in this manner:

S b DY R SO NN S BN DU B O
3I2 4(1 22+42 52+72 82+102 112+etc)

Yet another demonstration of the proposed integration.

§. 126. The angle ¢ may be introduced into our formula , the cosine of which shall be
= X, or there shall become X =cos.¢, and our formula will adopt this form —I del cos.p,

[i.e. QL) = _S?Iil—n(f = —1] which integral being extended from ¢ =90° as faras to ¢ =0 .
—XX
But if we may interchange these limits, the value S, which we seek, may be expressed

thus :
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_ from ¢=0
S = J-d(pl cos.(pLo =900 }
So that we may convert this | cos.¢ into a suitable series, as before we may put
s =1cos.¢ and here will become ds = _dosing \foreover it is agreed to be put by the

cos.@

series

sin.g _ 2sin.2 ¢ —2sin.4 @ + 2sin.6 ¢ — 2sin.8 @ + etc.

cos.¢
Since in general there shall become

2sin.ng cos.p =sin.(nN+1)+sin.(n—1)g,
if we may multiply each side by cos. ¢, there shall become

sin.@ = 2sin.2 @ cos.p — 2sin.4 ¢ cos.@ + 2sin.6 ¢ cos . — 2sin.8 ¢ cos.¢ + etc.
=sin.3¢ —sin.5¢ +sin.7¢ —sin.9¢ + etc.
+sin.p —sin.3¢ +sin.5¢ —sin.7@ +sin.9¢ —etc.

whereby since there shall be ds = —32502 1o there will become
_ _dpsing - . G :
ds = Seosp = 2sin.2 pd @ + 2sin.4pd @ — 2sin.6 od ¢ + 2sin.8 pd @ + etc.
_ cos.2¢ cosdep | cos.69 cos8p  cos.l0¢p
s=C+— St T T3 etc.

Therefore because s =1cos.@, clearly on putting ¢ =0, there must become S =0, from
which it is deduced that :

1
3
and thus there will become

2 4 . .
i cos.2¢  cos go_+_ cos.6p  cos 8¢’+etc.

I cos.p= ; 3 3 7

which series multiplied by d¢ and integrated produces

_ L sin.2¢ sindg  sin.bp sin.8¢ | sin.l0p
S—J.d(olcos.(p—C Pl2+=—= e t1g >t —ete

which expression since it vanishes at once on putting ¢ =0, thence it is apparent that
C =0, and thus we will have :

_ 1[sin2¢ sindg  sin.6p sin.8¢p | sin.10¢
J.d(plcos.(o——g0|2+5( T R A eyl e —etc.
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Therefore on taking a =2 =90°, as before there becomes S =—Z12. Truly in addition

also this integral can be extended to any limit.

§. 127. But if we may subtract the latter formula from the preceding one, we may in
general come upon this integration:

Id(pl tan.p = —sin.2¢)—3%sin.6(/)—5%sin.10go—etc.

from which it is apparent that this integral vanishes in the cases ¢ = 0° and in general
when ¢ = '7” Therefore after we have demonstrated this same integration in three ways,

this same analysis, which had been introduced first by me, I am going to set out here
clearly.

Analysis leading to the integration of the formula j i and to others of a

J(1-xx)

similar kind.

§. 128. This whole analysis relies on the following lemmas pointed out by me now some

time ago: For the sake of brevity, putting (1 —x" ) = X, if hence the two integral

formulas may be formed J.XX P~ldx and Iqu_ldx , which may be extended from the limit

X =0 as far as to the limit X =1, the ratio of these values can be reduced to a product from
an infinite number of factors put together in the following manner:

[XxP7ldx  (m+p)q (m+p+n)(g+n) (m+p+2n)(g+2n) etc
j'qu*Idx ~ p(m+q) (p+n)(m+g+n) (p+2n)(m+g+2n)

where clearly the factors both of the numerators, as well as of the denominators, may be
increased continually by the same amount n. But here, it is to be understood properly, the
truth of this lemma cannot remain, unless the individual m, n, p and g denote positive
numbers, which still always must be regarded as whole numbers.

§. 129. Concerning these two integral formulas, extended from the limit
X =0 as far as to the limit X =1, two separate cases are especially noteworthy, in which
the integration actually succeeds, and the absolute true value can be assigned. The first

special case occurs, if there were p =n, thus to that the formula shall become IXxn_ldx.

For on putting X" = y there will become

X=(1- y)% , and X" 'dx =1dy
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and thus this same formula emerges %jdy (1-y) » , equally from the limit

y =0 being extended as far as to y =1, which again on putting 1-y = z will be changed

into this formula —% j 71 dz , extending from the limit z=1as farasto z=0 ; therefore

clearly the integral of this is —% zn +% ; from which on putting z =0 the value will

become % Consequently, for the case p=n, we will have :

J.Xxn_ldx[ from x=0} _1.

to x=1 m’

and thus if there were either p =n or g = n; the absolute integral becomes known.

§. 130. The other noteworthy case is when p = n—m, thus so that the formula being

integrated shall become ijn_m_ldx; since then, if there may be put

-1

x(l—x”)?or X _—vy,

1

(o
so that on putting
X = 0 there shall become y = 0, but on putting X =1 there shall be y =00 ; then moreover
there will become

n-m__ x™m n-m
y - n-m _XX D)

e

from which the formula requiring to be integrated will be I y
will be

n-m dx

- Therefore since there

n

X— =y, there will become X—nn =y,

(I—Xn)" 1-x

from which it is deduced that x" = 1ynn , and thus nlx =nly -1 (1 +y" ) , the differential of
+y

which produces
dx __ dy
X y(l +y" )

with which value substituted our formula being integrated will become

J- yn—m—ldy
ey

with the limits extending from y =0 as far as to y = co, which formula thus is most
noteworthy, because it is freed from all irrationality.
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§. 131. Therefore because in this case for the rational formula we have deduced, it is
agreed from the elements of the integral calculus, its integration can be resolved always
by logarithms and circular arcs, then truly for this case thus I have shown not so long

ago, the integration of this formula I XlLlndx , extending from X =0 to X =0, to be reduced
+X

to the value —Z%— ; therefore with the application made for our case, we will have :

. 9
in .Mz

-m-1
J‘yn "dy — /4 —_ T .
n . (n-m iy Mz 2

1+y nsm.( n)” nsin.= =

on which account for the case p =n—m the value of the integral can be expressed in the
following manner; and there will be:

. fromx =0
JXX“ m 16X|: j|: .”m,[ )
tox=1 nSln.T

because the same evidently is understood, if there were g =n—-m.

§. 132. From these premises, again we may put for the sake of brevity:

J.XXpildX fromx =0 _p
tox=1

and

-1 fromx=0
J.Xx dx =Q,

tox=1

and the lemma established by us presents this equation :

p _ (m+p)g .(m+ p+n)(g+n) . (m+p+2n)(g+2n)

Q p(m+q) (p+n)(m+g+n) (p+2n)(m+qg+2n)
hence therefore with logarithms taken we deduce

IP-IQ=1(m+p)-Ip+I(m+p+n)-I(p+n)+I(m+p+2n)-I(p+2n)+etc.
+lg—1(m+q)+1(q+n)—(m+qg+n)+I(q+2n)-I(m+q+2n)+etc.

and this equation will always be found, whatever values may attributed to the letters m,
n, p and q, provided they were positive.

§. 133. Therefore since in general this equality may remain, also there will be
agreement about the truth, when some of these letters m, n, p, and q are made infinitely
small, or may be considered as variables. Hence on this account we will consider only the
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quantity p as variable, thus so that the remaining letters m, n and g will remain constant,
and thus also the quantity Q will be constant while the other P is varied; from which by
differentiation we may arrive at this equation

dp_dp _dp  dp _dp _dp _ dp
P m+p p  m+p+n  p+n - m+p+2n p+2n
B et

m+p+3n  p+3n

where the whole calculation is reduced to that, how the differential of the formula P,
which is integral, will be required to be expressed.

§. 134. Therefore since P shall be the integral formula involving the quantity X only as the
variable, since in its integration the exponent p must be treated as constant, finally after
the integration the quantity P can be considered as a function of the two variables X and p
; from which the question arises from this: it shall be required to investigate how the

expression (g—g) is accustomed to be expressed, which if it may be indicated by the letter

I1, the equation found before will adopt this form :

+ etc.

m+p p  mM+p+n  p+n m+p+2n_p+2n

I 1 1 1 1 1 1
P

Hence indeed the infinite series can be replaced by a finite expression without difficulty
in this manner : There may be put :

_v™P P

T m+p p  m+p+n  p+n - m+p+2n p+2n

m+p+n p+n m+p+2n p+2n
v —Yy v —Y + etc.

thus so that by setting v =1 the letter S may show the value sought % for us ; but truly on

differentiation it will give us :

ds _ Vm+ p-1 _Vp—l +Vm+ p+n-1 _Vp+n—1 +Vm+ p+2n-1 _Vp+2n—1

& +etc. ,

of which the sum of the infinite series clearly is :

_ _ v vi—1
ymHp l_vp 1 _
; .

=" 1-v

Hence therefore we may conclude to become in turn :

. J- vp_l(vm—l)dvj
1-v"
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the integration of which formula is required to be extended from v=0 as farastov=1 ;

and thus we will have
I vp‘l(vm—l)dv fromv =0
Bl 1" Ttov=1 .

§. 135. Moreover, for the value (g—g) requiring to be investigated, which we have

indicated here by the letter I1, it is now well established from the principles of the
calculus applied to functions of two variables , with the differential of the integral

o=

formula P = ij P~ldx to be obtained arising from the variation of the variable p itself, if

the formula XxP™ put after the sign of the integral, may be differentiated from the
variation of p itself, and the element dp may be prefixed by the integration sign; but
because truly X does not contain p, here it must be treated as a constant: indeed with the

differential of the power X P hence arising will become X p_ldplx; which on this
account, this differentiation there may arise dP =dp j XxP'dxix , thus so that finally after

the integral sign the factor Ix will be attached, from which clearly there becomes

from x = 0
H=J‘Xxp‘1dxlx{ rom X }

tox=1

hence, therefore, the following general theorem may be put in place.

General Theorem .

m-n

§. 136. On putting X = (1 - x”) " for the sake of brevity, if all the following integral

formulas may be extended from the limit X =0 to the limit X =1, the following equality
shall always be agreed to be true :

ijp_ldex xp‘l(xm—l)dx
XxPldx I 1-x"
J

for nothing stands in the way, whereby otherwise we may write X in place of v, since
these values depend only on the limits of the integration.

§. 137. Therefore in this manner we have deduced [XXx P~laxix according to the

integration of formulas of this kind, in which the logarithmic quantity IX after the integral
sign belongs as a factor, the value of which may be expressed by the two regular integral
formulas, since there shall become :
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xp_l(xm—l)dx

n 2

IXX P~ldxIx = JXX P~Tdx J

1-x

with the integral clearly extended from X =0 to X =1 , where for the sake of brevity we
m-n

have put (1 - Xn) " =X. Hence therefore we derive two particular theorems for both the

memorable cases established above.
Particular theorem I, where p=n.

§. 138. Because above we have seen in the case p=n the integral j Xx"x = %, with

this value substituted we will have the same elegant equation satisfied:

1
J.Xxn_ldxlx - LJ'M
m - ’

-1
Xn
while clearly both integrals are extended from x=0to x=1.
Particular theorem II, where p=n-m.

§. 139. Because for this case, where p=n-—m, we have shown above that there shall be

IXxn_m_ldx =7

. b
nsin.MZ

n
now we are led to the following most noteworthy integration:

x”_m_l(xm—l)ax

n 3

IXxn‘m‘laxlx ==z

nsin % 1-x

if indeed both these integrals may be extended from X =0 as far as to x=1 ; where it is

required to be remembered that
m-n

X=(1—x”) "

§. 140. Therefore here it may be noted properly, the general theorem extends the widest,
because three indefinite exponents are present in that, clearly m, n and p, which can be

put in place by us quite arbitrarily, which therefore may be defined in an infinite number
of ways as it pleases, provided the individual values may be given to be positive, thus so

that the value of this formula IXX P=ldxIx , as it will be required to be regarded as
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transcendental on account of the factor IX, may be able to be expressed always by the
ordinary integral formulas , which since they shall be the most general, it will be worth
the effort to present some special cases.

I. Establishing the case where m=1and n=2.

§. 141. Therefore in this case there will become X = \/1—) , so that for this case from

(1-xx

the general theorem there will become :
J.xp’laxlx _ _I xPlox J. xPlax
\/(l—xx) \/(l—xx) l+x 2

if indeed these individual integrations may be extended from X =0 to x =1. Therefore
since here only the exponent p is left to our choice, hence we will illustrate by the
following examples.

Example 1., where p=1.

§. 142. Therefore in this case the above equation will adopt this form
oxlx ox .| xox
J.\/(l—xx) B J‘\/(l—xx) J-HX

where, with the integration extended from X=0 to x =1, it is noted to become,

andJ.HX =12;

N

J- alx fromx =0 __zy
V(l—xx)_ tox =1 o227

which is that formula itself, that we have treated at the start of this dissertation, and the
truth of which we have corroborated now in a three-fold demonstration.

thus so that we shall have,

§. 143. The same value may be permitted to be deduced from the second particular
theorem, where there was p =n—m, if indeed now on account of

n=2 and m =1 there will become p =1 ; for hence since X = , that same theorem

1
(1-xx)

becomes

.[ olx_ _ I@:_zu
JJ(1-xx) 251n7 1+x 2
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Example II., where p=2.

§. 144. Therefore in this case the equation will adopt this form :
xoxlx . _ Xox . | xox
J-\/(l—xx) - J.\/(l—xx) J.1+X

Now truly with the integrations extended from X =0 to X =1, it is known that

J.\/%—landj.xax—l—IZ

thus so that we may
J~ from x = 0
XOXIx =12-1.
V=x¢) | to x =1
. . . XaX . . . .
§. 145. Because in this integral formula j —m, it can be shown algebraically, since it

shall be =1— (1 - XX), the value sought can also be determined by the customary

reductions, since there shall be

J-\/%:[ (l—xx)}lx—j%"[l— (l—xx)},

and on putting X =1, there will be
J‘ XOXIX :_J‘ﬁ[l_ (1—XX)i|
VJ(1-xx) X ’

the integrand may be made into the form 1— (1 — XX) =z, from which it is deduced that
62(1 z)

T o(2-2)°

Xx =2z — 12z, therefore 2Ix =1z +1(2-z), and thus there will become 6 from

which with the values substituted there will be
o oz(1-2)
+I X[ (1-xx ] +I )

therefore which value will become = C—z—1(2—-2). Since therefore on putting

X =0 there becomes z =0, the constant will be C =+ 12 therefore on making x =1,
because then there becomes fit z =1, this value of the integral will be 12—1, just as
before.
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§. 146. The theorem supplies the same value brought forwards above earlier, where there
was P =n=2; thence indeed at once there becomes

J' XOxIx J'_x_ax
/(1—xx) 1+x”
But we have seen before that I% =1-12 ; thus so that the value 12 —1may also be

produced.
Example III., where p=3.

§. 147. Therefore in this case the equation advanced in the general case adopts this
form :

Moreover through the most noteworthy reductions there is agreed to be :

fromx =0
J‘ XXOX 1.z
Jox) [ o x =1 22
1

but indeed through a spurious fraction, ** is resolved into these parts X -1+, from
1+X 1+X

which there becomes

J‘Lﬁx:%xx—XH(HX)a

1+XxX

which integral now vanishes on putting X =0 ; therefore on making X =1 its value will

-1

become = 3

+12 ; on account of which, the integral we seek will be

f =0
P T

Example V., where p=4.

§. 148. Therefore in this case the above equation adopts this form :
J‘ X oxlx — _j xox . ﬂ
J(1-xx) JO-x) d X

Moreover, by the most noteworthy reductions, there is agreed to become :
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J~ Sox fromx =0 5
Vi) [ to x=1 e
. . 3. .
then truly the spurious fraction < is resolved into these parts XX —X+1 ——L from
+X 1+X
which by integrating there becomes :
Iﬁzlf —LIxx+x=1(1+x)
+x 3 2 >
from which the value of the formula [when x=1] will become = %— 12. With these
values substituted we arrive at this integration :
J- 3ox fromx =0 =_2(i_|2)_
Vi) [to  x=1 3\6
Example V., where p=5.
§. 149. Therefore in this case the above equation adopts this form:
J‘ x*oxlx — _j x*ox j@
VJ(1-xx) JO-x) J s
Moreover there is agreed to be:
Aox fromx =0 13z
-[ Ji-x) |0 x=1]| 242
. 4 .
then truly the left over fraction fjr—x clearly can be resolved into these parts :
x> —xx+X—1+ — , from which on integrating there becomes
ox _1vd 133 Lyy
jﬁ_zx X+ XX x+1(1+x),
from which the value of the formula becomes = —-L +12. Therefore with these values

12
substituted this integration will be produced :

J‘x46xlx fromx =0 :_ﬁ.ﬂ(u_l)
/(l—xx) to x=1 24 2 12)°
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Example VI., where p=6.

§. 150. Therefore in this case the above equation adopts this form:

Jos =g [

But there is agreed by these notable reductions to become

j Soxix fromx =0 _24.x
Jo-x) [0 x=1| 33 2’

. 5. .
then truly the extra fraction — is resolved into these parts :

X —x3 o xx—x+1--L,
X+1

from which on integrating we obtain :

5
Xox — 1S 14,13 1
J-_1+X __SX —4X +3X 2XX-FX |(1+X),

from which the value of this formula [when x =1] will become = % —12 ; from which

with the values substituted , this integration will be produced:
J~ Saxlx fromx =0 :ﬁ-ﬂ(ﬂ—m)
Ji=x) [0 x=1| 33 2160 '
[In the original text, the factor 7- has been omitted. ]

II. The case established when m=3 and n=2.

§. 151. Here therefore there becomes X = (1 — XX) , from which our general theorem

will present us with this equation :

Ix"”@xlxm :pr‘lax-m~jw,

where since there shall be :

ol _ =xx=x=1 _ _y_ 1

1—XxX X+1 X+17

the last formula of the integral will become :



Volume IV Euler's Foundations of Integral Calculus (Post. Pub. 1845)
Supplement 3¢ to Book I, Ch. 4: Integration of Log. & Exponential Formulas.

Tr. by lan Bruce : October 28, 2016: Free Download at 17centurymaths.com.

J pax JXS+>?X’
which integrated from x=0to X=1 gives:

1 [x"ax
p+1 I+x
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on account of which we will have :

- a bl
J.xp oxIX - J(1—xx) pr OX - 1 xx) (p+1 jxmfx).

Hence therefore it will help to observe the following examples.

Example 1., where p=1.

§. 152. Therefore in this case the final product emerges, %+ 12, thus so that there shall

J.axlx, J(1—xx) = —(%+ I2) : J.axq [(1—xx).
Moreover, for the formula j oxy/(1-xx) we may put in place /(1—-xx) =1-vx, and

there becomes :

become:

x=72L and \/(1-xx) = 2%,
and OX = 22’5\1,;;:) , from which here becomes GX,/( 28\: :WW

the integral of which is resolved into these parts :

2v
(o) 1+W + Arc.tang.v;
which expression, since it must be extended from X =0 as far as to X =1, the first limit
will be v =0, and the other truly will be v=1 ; thus so that from that the integral may be
extended from v =0 as far as to v =1. But indeed that expression will vanish at once on
putting v =0, and moreover on putting V=1, and the value of the integral will become

on account of which we will have

T mem{fromx—0}:_%.(%“2).

to x=1
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§. 153. Indeed here we have presented the calculation in a long winding way, in order

that the reduction has led to the rationality of the formula (1 - XX) ; but truly the only
aspect of the formula JAaxw /(1-xx) is declared at once, that expresses the area of the

quadrant of the circle, of which the radius =1, which we know to be —7-. This reduction

may be used henceforth:
forli=3m) = i) 4 [ s

the value of which from extending from x =0 to x =1 manifestly gives Z.

Example 1., where p=2.

§. 154. In this case therefore the final factor becomes

L+j@:£_|2;

3 1+Xx 3
and thus we will have

j@xlx,/(l—xx) :—(é—lz)-jxax (1-xx):
but there can be seen, to be

IxaxJ(l— xx) =C—1(1- xx)% ,

which value extending from x=0to X =1 gives 1, thus so that we shall have

Joue im0 70 —-4(3-12),

to Xx=1

III. Setting out the case where m=1 and n=3.

1

———, from which the general
{7

§.155. Therefore in this case there will become X =

theorem gives us this equation :
j xP~1oxlx _I xP~lox .J‘xp_l(x—l)ax
2 2 IV
(IR R

where the final formula is reduced to this :
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thus so that we may have :

J‘ xPloxix | _xPloxix J‘ xPlox .
2 2 XX+X+1

(IR E

thus we may attach the following examples.

Example 1., where p=1.

oX
XX+X+1 2

§.156. In this case the latter becomes the indefinite integral of which is found

to be = Arc.tang. /3 , which value on putting x =1 will go into % ; on account of

B 2+X

which in this case we will have

but truly the formula of the integral J‘% involves an unusual transcending
)

quantity, which cannot be expressed either in terms of logarithms or by circular arcs.

Example II, where p=2.

§.157. Therefore in this case the final factor will be I 1+);6+XXX , which is resolved into

these parts

1| 2xox+ox 1 OX
2 ) x+xx 2 ) 1+x+xx?
where the integral of the first part is

LI(1+x+xx) =213 (clearly on putting x=1);

and truly the integral of the other part is %ﬁ , with which value substituted we will

have

1-X

el
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Now truly the same integral formula can be assigned by the reduction I indicated initially
above ; since here there shallbe m=1 and n=3, truly we have assumed p =2, then

there will become p =n-m. But above §. 131. we have found, in this case the integral to
become

__
- . b
nsin. Mz
n

which value in our case will become

T _2rx
3sin.§ 33°

Therefore with this value substituted, we will be able to express our formula in terms of
known separate quantities, in this manner :

xoxlx__| fromx=0 z z
J.WLO x:l} :_ﬁ(lgj_ﬁ)'

IV. The evaluation in the case where m=2and n=3.

§.158. Therefore in this case there will be X = ( 1 3) , from which the general
Il 1-x

theorem presents this same equation
J xP1oxix :j xP~1ox _jxp_l(xx—l)ax
(= R

where the latter form may be changed into this :

. j K lox(1x).

I+X+xx °?

from which there becomes

I xP~1oxix :_I xPlox 'J‘xp‘lax(ljux)_
3/( 1_)(3) %/( 1—x3) I+x+xx 2
from which we may set out the following examples.

Example 1., where p=1.

ox(1+x)
I+X+xx’

of which the

§. 159. Therefore in this case, the latter member will become j

integral may be set out into these parts :
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from which evidently for the case x =1 there is produced %(B +L) ; on which account

33

our equation will become

L(alx_lxﬁ):_% (13+55 Iﬁ

But in this integral formula, on account of m =2 and n =3, because we have assumed
p =1, there will become p =n-m; hence for this case by §. 131, the value of this

formula can be expressed absolutely, and there will become

It

consequently also in this case we follow this form through absolute magnitudes :

s\“

Jﬁ{:fm Xx__o} {13+5%)

§. 160. But if we may combine this form with the latter part of the preceding case, which
likewise can be expressed absolutely, the sum of these will give in the first place

x@xlx 6x|x — _2#3.
\/ \/ 33
but if the latter may be taken from the former, this equation will arise :
j xoxIx _j oxlx__ _ 2zx
27
\/ 1)

Since in this way we have been led to simple enough expressions, it will be worth the
effort to represent both the equations in other forms, in which both the integral parts may
be able to be joined conveniently into one; clearly we may put
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=z, from which there becomes —2%— = 7z, and thus the first formula adopts
3 1-x° 3 3)?
(1) (1)
3
3

this form J.Lf(x'x, truly the latter that J.L;('X; then indeed we will have 1)‘— =77, from
—X

which there shall be x> = 12—33, and thus
+Z

Ix:lz—%l(1+z3):l3(1jz3),

and hence again:
OX _ 0z 7202 _ 1

X z 1+2° Z(1+23)°

whereby with these values used, the first integral formula will emerge :
J' 72
1+ Z3 3 (1+ 13) ’
truly the other will be
I o2 R
H—Z3 3 (1+ 23)

§. 161. But since the integrals must be extended from x=0 to X=1, it is to be observed,
in the case X =0 to become z =0, but truly in the case X =1 to produce z = oo, thus so that

it shall be necessary to have extended the same new formulas from z =0 to z =c. From
which consideration the first of these formulas must give

z@z_| ; fromz=0 :_”|3+ﬂ
l+Z3 3(1+Z3) to 7 = o0 3\/5 277

truly the latter

oz |__z fomz=01__ A3
1+2° 3(1+Z3) to z=oo 33 27

Hence the sum of these formulas therefore will be

J'(1+Z)52,| 7 _ 273
142° %/(1+Z3) ENE

but truly the difference

J'az(z—l) Nz _ 271
1+23 %/(1_‘_23) 27
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§. 162. Now here it will be useful to observe, this same logarithm | \/(273) can be
3(1+z

conveniently converted into a simple infinite series ; for since there shall become

| z 1 L|1+z3
%/(1+z3) 371428 3047

truly by setting out this series no use is provided in resolving the integral

| 2 =_l(L_L+L_;+;_etC_)
22 2% 320 4?0 5B ’

since the powers of z occur in the denominators, and thus the individual parts thus cannot
be integrated so that they vanish on putting z=0.

[Euler makes the implicit assumption that xlogx = 0 when x =0 is zero throughout this
work.]

Example II., where p=2.

xox(1+x)
14+ X+Xx

§. 163. Therefore in this case the latter factor becomes I , which can be split into

the two parts I@x —I X of which the integral extended from x=0 to x=1 is

1+ X+XX

[ /2
=1 337

Hence therefore we are led to this equation :

But here it is to be noted, this same integral formula cannot be shown explicitly in any
way, unless it may involve some particular transcending quantity.

V. Evaluating the case, when m=2andn=4.

§. 164. Therefore in this case there will be X = ﬁ , from which our general theorem
1-x

J' xP~loxix :_I xPlox _J.xplax.
\/( 1—x4) \/( 1—x4) I+xx 2

will give us this equation
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xP(x™-1)dx
[Recall from §. 137, that IXX PldxIx = J.XX P-1gy. J.#, where in this case

1-x"
X=—=~1—1]

=3

but truly the first particular problem for this case gives

j X oxlx :_lJ.x36x
3/( 1—x4) 2 | 1+xx

But since there shall be

there shall be absolutely,

3 [ fromx =0
.[ /E( 16_)(:‘(‘) o x _1} =-3(1-12),

but truly here the case agrees with §. 144. treated above. If indeed here we may put
XX =y, with which done the terms of the integration remain y =0 and y =1, there will

be Ix=1ly and xdx = £ dy ; with which values substituted our equation will be changed
into this form :

e L orj—yay =121
4..‘\/( 1-yy) #(1-12). (1-yy) ’
precisely as above.

§. 165. Truly the other particular theorem adapted to the present case will give :

I XOXIx :_lj XOX_.
2
/( 1—x4) 4 | 1+xx

thus truly

J‘%ﬂ (1+xx) =112,

thus so that we may have:

ol fromx =0 __z
J /(Xl_ﬁxxét)[to J gl

Indeed if here as before we may put xx =y, there will be obtained
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W ___zp

V(1-yy)

which is the case treated above in §.142. For these two cases the exponent p was an even
number, from which it will be convenient to set out the odd cases.

Example 1., where p=1.
§.166. Therefore in this case the latter formula of the integral becomes

J o =Arc.tang.X, thus so that on putting X =1 there may be produced Arc.tang.Xx =7

then truly our equation will become

I+

clearly with the integrations extended from x =0 to x =1; where the formula j

expresses the arc of a rectangular elastic curve, and thus cannot be shown explicitly.

Example II., where p=3.

§. 16 1. In this case therefore the latter formula of the integral will be
J XX J- X — J -2, which may be split into these two parts J@x —I X of which the

1+Xxx 1+X+xx’

integral on putting X =1 becomes =1-Z, thus so that now our equation may emerge

J‘ XXOXIx =_(1_l),J‘ XXOX i
IR N T
of which the formula of the integral equally cannot be shown to be expressed other than

by a rectangular elastic curve.

§.168. But nevertheless these two examples for inextricable formulas may be taken
together, yet now some time ago I have shown, the product of these two integrals

le HXX@X

to be equal to the area of a circle, of which the diameter =1, or to be = 4 ; on account of

which with both examples taken together, we arrive at this remarkable theorem
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Joo) e 1o

Moreover it is readily apparent, innumerable other theorems of this kind can be obtained
from this source, which considered by themselves, must be considered to be the most
remarkable derived.
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3) De integratione formulae j ix _ “ab x =0 ad x =1extensa.

J-xx)

Acta Acad. Imp. Sc. Tom. I. P.II. Pag. 3-28.

§. 117. Methodus maxime naturalis hujusmodi formulas J pdxlx tractandi in hoc

consistit, ut eae ad alias hujusmodi formas Jqu reducantur, in quibus littera  sit functio
algebraica ipsius X; quandoquidem regulae integrandi potissimum ad tales formulas sunt
accommodatae. Hujusmodi autem reductio nulla prorsus laborat difficultate, quando
functio p ita est comparta, ut integrale j pdx algebraice exhiberi queat. Si enim fuerit

J pdx = P, ita ut formula proposita sit J- dPIx, ea sponte reducitur ad hanc expressionem

Plx— J P—SX, sicque jam totum negotiuin a integrationem hujus formulae JP—)‘?(, est

perductum. Quando vero formula j pdx integrationem algebraicam non admittit,

quemadmodum evenit in nostra formula proposita I ddx__ | talis reductio successu

J(1-xx)

penitus caret. Cum enim sit I = Asin.X , ista reductio daret

dx
J(1-xx)
J‘& = Asin.XxIx - J‘% - Asin.X,
{J(1=xx) X
sicque post signum integrationis nova quantitas transcendens Asin.X occcurreret, cujus
integratio aeque est abscondita ac ipsius propositae. Quare cum nuper singulari methodo
invenissem esse

j dxlx [ab x:o} _ _%”u’

Jaox0) Lad x=1

expressio integralis eo majori attentione digna est censenda, quod ejus investigatio
neutiquam est obvia; unde operae pretium esse duxi ejus veritatem etiam ex aliis fontibus
ostendisse, ante quam ipsam methodum, quae me eo perduxit, exponerem.

Prima demonstratio integrationis propositae:
§.118. Quoniam hic potissimum ad series infinitas est recurrendum, formula autem Ix

talem resolutionem simplicem, respuit, adhibeamus substitutionem, ./ (1 - XX) =Y, unde

fit x=/(1-yy) , hincque porro

dxlx

{(1=xx)

hoc igitur modo, formula integralis proposita J. transformatur in

sequentem formam
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6 8
W,y ¥,y
J.m( 4+6+8+etc.j

ubi, cum sit y =,/(1—xx) , notetur integrationem extendi debere, ab

y =1 usque ad y = 0; quare si hos terminas integrationis permutare velimus, signum
totius formae mutari oportct.

§. 119. Quo autem minus tali signorum mutatione confundamur, designemus valorem
quesitum littera S, ut sit

s=[ s

atque facta substitutione y = /(1—xx) , habebimus, uti modo monuimus

.z>|“<

oy by=0
i =g +etc)[ dy:l]

(¥

Sub his autem integrationis terminis, scilicct ab y =0 ad y =1, jam satis notum est,
singulas partes, quae hic occurrunt, ad sequentes valores reduci

J' yCdy _135 7

(1-y) 246 2
8

J‘ ydy 1357«
(1-yy) 2468 2

I YOy 135709 I efc.
JOmyy) 246810 2

ubi nimirum est = j , itaut 1: 7 exprimat rationem diametri ad peripheriam

circuli.

§. 120. Quodsi ergo singulos istos valores introducamus, pro valore quaesito S
impetrabimus sequentem seriem infinitam

S:_Q(L_'_ 13 | 135 |, 1357 +etc)
2\22 247 246 2468

sicque nunc totum negotimum eo est reductum, ut istius seriei infinitae summa
investigetur ; qui labor fortassc haud minus operosus videri potest, quam id ipsum, quod
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nobis exsequi est propositum. Interim tamen ad cognitionem summae hujus seriei haud
difficulter sequenti modo nobis pertingere licebit.

§. 121. Cum sit
1 —1+ zz+13z4+1352 +etc.

(=) 24.6

si utrinque per dz multiplicemus et integremus, obtinebimus

I @ —lz+Lzz+137 +2143652 +etc.

zyJ(1-22) 2 2. 42

sicque ad ipsam seriem nostram sumus perducti, cujus ergo valor quaeri debet ex hac

expressione j 9__ |z ,integrali scilicet ita sumto, ut evanescat posito Z =0, quo
z2,J(1-22)

facto statuatur z =1, ac prodibit ipsa series

L2+ 1.32+ 1.3.52+ 13572+etc
2 2.4 2.4.6 24.6.8

Hoc igitur modo totum negotium perductum est ad istam formulam integralem

: N —av_
IZ \/ﬁ quae posito ,/(1—zz) =V transit in hanc formam v » Cujus integrale constat
11y gy _ltv : : _ :
esse —5 [ oy = I—m. Quodsi loco Vv restituatur valor (1 ZZ) , tota expressio, qua

indigemus, ita se habebit

J st i) (i_zz)} _lz+C

:C—I[1+ (1—22)},

ubi constans ita accipi debet, ut valor evanescat, posito z =0, ideoque erit C=12.
Quamobrem, posito z =1, summa seriei quaesita erit 12, hincque valor ipsius formulae
integralis propositae erit

dxlx _Q__7m|».
jrxx)_s_ Z)2:

prorsus uti longe alia methodo inveneram, ex quo jam satis intelligitur, istam veritatem
utique altioris esse indaginis, ideoque attentione Geometrarum maxime dignam.

Alia demonstratio integrationis propositae.
§. 122. Cum sit % elementum arcus circuli cujus sinus = X, ponamus istum
—XX
angulum = ¢, ita ut sit

X =sin.gp et =% —=dop,

(1-xx)
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atque facta hac substitutione valor quantitatis S, in quem inquirimus, ita repreasentabitur

S= Idgol sin go{ - 0900}.
Cum enim ante termini fuissent X =0 et X =1, iis nunc respondent
p=0¢ctp= 90° sive ¢ = 7. Hic igitur totum negotium eo redit, ut formula Isin.@
commode in seriem infinitam convertatur. Hunc in finem ponamus Isin.p =S, eritque

d
ds = %;(p Novimus autem esse

29 — 2sin.2¢ +2sin 4@+ 25sin.6¢ + 2sin.8¢ + etc.

sin.gp
Si enim utrinque per sin.¢p multiplicemus; ob
2sin.ngsin.g = cos.(n—1)p—cos.(n+1)p,,
utique prodit
COS.9 = C0S.9 +€08.3¢ +c08.5¢ +c0s.7¢p + cos. 9p +etc.

—c08.3¢p—cos.5¢ —cos.7¢p—cos. 9p — etc.

Cos.¢ .

Hac igitur serie pro np L USUM vocata, erit

s =C—c05.2¢9—1c08.49 —105.69 —+c08.8¢— 1 c0s. 109 — etc.

ubi cum sit S =Isin.g, ideoque s =0, quando sin.p =1, ideoque ¢ =%, constantem C ita

definire oportet, ut posito ¢ =7 = 90°, evadat s =0, ex quo colhgltur fore

C=-1+1-d+i-1tetc=-12.

§.123. Cum igitur sit
Isin.p=—12—-cos.2¢ —%cos.4¢) —%cos.6¢) —%COS.S(p— etc.

erit valor formulae propositae

Idgpl sing=C—l2— s1n 2(/)——sm4g0 s1n 6¢

— 55 5in.8¢ — - sin. IO(p etc.

quae expressio cum evanescere debeat posito ¢ =0, constans hic ingressa erit C=0, ita
ut jam in genere sit
2sin. 2go 2sindp  2sin.6¢p  2sin.8¢
Id(plSln p=—0l2- 2 e g
_ 2sin.10¢p  2sin.12¢
10 12

—etc.



Volume IV Euler's Foundations of Integral Calculus (Post. Pub. 1845)
Supplement 3¢ to Book I, Ch. 4: Integration of Log. & Exponential Formulas.

Tr. by lan Bruce : October 28, 2016: Free Download at 17centurymaths.com.

296

Quodsi jam hic capiatur ¢ = =90°, omnium angulorum 2¢, 4¢, 6¢, 8¢, etc., qui hic

occurrunt sinus evanescunt, 1deoque valor quaesitus erit
S=Id¢|sin.¢7 a p=0 ol=—%I12;
ad =90 2

quemadmodum etiam in priore demonstratione ostendimus.

§. 124. Ista autem demonstratio praecedenti ideo longe antecellit, quod nobis non solum
valorem formulae propositae exhibeat casu quo ¢ = 90°, sed etiam verum ejus valorem
ostendat, quicunque angulus pro ¢ accipiatur, id quod ad ipsam formulam propositam
J.ﬂ transferri poterit, cujus adeo valorem pro quolibet valere ipsius X assignare

J(1-xx)
poterimus. Quodsi enim istius formulae valorem desideremus ab x =0 usque ad X =a,
quaeratur angulus « cujus sinus sit aequalis ipsi ¢, atque semper hibebitur

S= J'd | sin { } =—al2— 2sm 2 _ 2sinda _ 2sin.6a _ 2sin.8a —etc.
gising 90" 2? 42 6 8?

Unde patet, quoties fuerit « = %’, denotante i numerum integrum quemcunque, quoniam

omnes sinus evanescunt, valor formulae his casibus finite exprimi per —'T”IZ ; aliis vero
casibus valor nostrae formulae per seriem infinitam satis concinnam exprimetur. Ita si
ut sit o =%, valor nostrae formulae erit

\/— b 4 2

capiatur a =

Z-Z+3 L+ 2242 et

22 62 102 142 182 2

quae series elegantius ita exprimitur

_z|p_1(q_-1L 1 1,1 _ 1 .
4I2 2(1 32+52 72+92 112+etc.),

sicque hic occurrit series satis memorabilis

1,1 1, 1_ 1
9 T35 29 T31 121 TCtC

cujus summam nullo adhuc modo ad mensuras cognitas revocare licuit.

§.125. Quoniam tam egregia series hic se quasi praeter exspectationem obtulit, etiam
alios casus evolvamus notabiliores, sumamusque a =, ut sit & =30°=Z | atque nostrae

formulae hoc casu valor erit
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_£|2_£_£+£+£_£_£+etc
6 22 42 82 102 2 2
quae expressio ita exhiberi potest
Zpp_Bfjpl 1 1,1 1
3 12 i (1+ R PR etc)
in qua serie quadrata multiplorum temarii deficiunt. Sumamus nunc simili modo a = g ,

ut sit & =60° =%, ac valor nostrae formulae hoc casu prodibit

S . . AR

etc.
22 42 8% 10> 14%  16°

sive hoc modo exprimetur

Zpy_ B 11, 1111
3I2 4(1 22+42 52+72 82+102 112+etc)

Adhuc alia demonstratio integrationis propositae.

§. 126. Introducatur in formulam nostram angulus ¢, cujus cosinus sit
= X, sive sit X = cos., et formula nostra induet hanc formam —I del cos.@, quod

integrale a @ =90° usque ad ¢ =0 erit extendendum. Quodsi autem hos terminas
permutemus, valor S, quem quaerimus, ita exprimetur

S= Jd(pl cos q{ad 900}
Ut hic | cos.¢ in seriem idoneam convertamus, statuamus ut ante s =1cos.¢ eritque

_d
ds = C(possm(p@ Constat autem per seriem esse

sin.g _ 2sin.2 @ —2sin.4 @ + 2sin.6 ¢ — 2sin.8 ¢ + etc.

Cos.@

Cum enim in genere sit
2sin.ng cos.p =sin.(N+1)p+sin.(n—1)p,
si utrinque per cos.¢ multiplicemus, orietur
sin.@ = 2sin.2 @ cos.¢p — 2sin.4 ¢ cos.@ + 2sin.6 ¢ cos . — 2sin.8 ¢ cos.@ + etc.
=sin.3¢ —sin.5¢ +sin.7¢ —sin .9 + etc.
+sin.@ —sin.3¢ +sin.5¢ —sin.7¢ +sin .9p —etc.

desin.g

quare cum sit ds =— , erit nunc
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ds = — 3250 _ _5¢in 2pd g+ 2sin.4pdp — 2sin.6pd @ + 2sin.8pd g + etc.

cos.@

cos.2¢p  cosdg n c0s.6¢  cos.8¢ n cos.10¢p

s=C+— 2 3 4 5

etc.

Quia igitur est s =1cos.@, evidens est posito ¢ =0, fieri debere s =0, unde colligitur

C=—1+%—%+%—%+etc.=—l2;

sicque erit

cos.2¢p cosdp | cos.6¢p cos.8¢
1 > + 3 2 + etc.

lcos.p=—12+

quae series ducta in d¢ et integrata praebet

_ L sin.2¢ sindg | sin.6gp sin.8¢ | sin.l0p
S—Jd(plcos.(p—C Pl2+=—= e+t 1g 3t sp —ete.

quae expressio quia sponte evanescit posito ¢ =0, inde patet fore C =0, sicque
habebimus

_ 1[sin2¢ sindg  sin.6p sin.8¢p | sin.10¢
J.dgolcos.go——g0|2+5( R ? 2 + 2 —etc.

Sumto igitur = 7-=90°, oritur ut ante S=—-7 |2. Praeterea vero etiam hinc integrale ad

quemvis terminum usque extendere licet.

§. 127. Quodsi formulam posteriorem a praecedente subtrahamus, adipiscemur in genere
hanc integrationem

Id(pl tan.p = —sin.2(p—3l2sin.6g0—5i2sin.10go—etc.

unde patet hoc integrale evanescere casibus ¢ = 0° etin genere ¢ = i7”.P0stquam igitur

istam integrationem triplici modo demonstravimus, ipsam Analysin, quae me primum huc
perduxit, hic delucide sum expositurus.

Analysis ad integrationem formulae J dx_ aliarumque similium perducens.

J(1-xx)

§. 128. Tota haec Analysis innititur sequenti lemmati a me jam olim demonstrato: Posito
m-n

n

brevitatis gratia (1 - Xn) =X, si hinc duae formulae integrales formentur

IXX Pldx et Iqu_ldx , quae a termina X =0 usque ad terminum X =1 extendantur, ratio

horum valorum segenti modo ad productum ex infinitis factoribus conflatum reduci
potest
[XxP7ldx  (m+p)g (m+p+n)(g+n) (m+p+2n)(g+2n)

ijq‘ldx ~ p(m+q) ' (p+n)(m+g+n) ) (p+2n)(m+g+2n) ete.
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ubi scilicet singuli factores tam numeratoris, quam denominatoris continuo eadem
quantitate n augentur. Hic autem, probe tenendum est, veritatem istius lemmatis
subsistere non posse, nisi singulae m, n, p et g denotent numeros positivos, quos tamen
semper tanquam integros spectare licet.

§. 129. Circa has duas formulas integrales, a termina X =0 usque ad terminum X =1

extensas, duo casus imprimis seorsim notari merentur, quibus integratio actu succedit,
verusque valor absolute assignari potest. Prior casus locum habet, si fuerit p=n, ita ut

formula sit j Xx"'dx . Posito enim X" =y fiet

m-n
n

X=(1-y) ", etx"'dx="Ldy

sicque ista formula evadet %J. dy(1— y)% , pariter a termino Yy =0 usque ady =1
extendenda, quae porro posito 1 -y = z abit in hanc formulam —%I z2 " dz , a termino

m
Z =1usque ad z =0 extendenam ; ejus ergo integrale manifesto est —# z" +# ; unde

facto z =0 valor erit # Consequenter pro casu p =n habebimus

.[Xxn_ldx X0 =L
ad x =1 m

sicque si fuerit vel p =n vel  =n; integrale absolute innotescit.

§. 130. Alter casus notatu dignus est, quo p = n—m, ita ut formula integranda sit

IXX”_m_ldx; tum enim, si ponatur

x(l—xn)_"lsive (1_;); =y,

at posito X =0 fiety =0, at posito X =1 fiet y = oo ; tum autem erit

n-m dx

unde formula integranda erit I y ~- Cum igitur sit

n
X — 1 X —_yhn
- =Y, ert - =Y,

(I—Xn )ﬁ 1-x

n
unde colligitur X" = ly—n, ideoque nIx =nly —1 (1 +y" ) , cujus differentiato praebet
+y
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dx __dy

quo valore substituto formula nostra integranda erit
J‘ y" "y
PRV
atermina Yy =0 usque ad y = extendenda, quae formula ideo est notatu digna, quod ab
omni irrationalitae est liberata.

§. 131. Quoniam igitur hoc casu ad formulam rationalem sumus perducti, ex elementis
calculi integralis constat, ejus integrationem semper per logarithmes et arcus circulares

. . . . . m-1
absolvi posse, tum vero pro hoc casu non ita pridem ostendi, hujus formulae IX—‘:)‘
1+X

integrale, ab X =0 usque ad X =0 extensum, reduci ad valorem ; facta igitur

. 9
in .2

applicatione pro nostro casu habebimus

'[ y" ™ dy _ i3 __ 7z

n . (n-m)z T pen Mz
l+y nsm.( n) nsin.~-

quamobrem pro casu P =nN-—m valor integralis sequenti modo absolute exprimi potest;

.[Xxn_m_ldx WX g
1 M.
adx=1 nsin -

quod idem manifesto tenendum est, si fuerit =n—-m.

eritque .

§. 132. His praemissis, ponamus porro brevitatis gratia

p-1 abx=0 _
IXX dx =Pet
ad x =1
Iqu_ldx[ab = O} =Q
ad x =1 ’

atque lemma allatum nobis praebet hanc aequationem

p _ (m+p)g (m+p+n)(g+n) (m+p+2n)(q+2n)

Q  p(m+q) (p+n)(m+g+n) (p+2n)(m+q+2n)

hinc igitur sumendis logarithmis deducimus
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IP-IQ=1(m+p)-Ilp+I(m+p+n)-I(p+n)+I(m+p+2n)-I(p+2n)+etc.

+lg—1(m+q)+1(q+n)—(m+qg+n)+I(gq+2n)-1(m+q+2n)+etc.

haecque aequalitas semper locum habebit, quicunque valores litteris m, n, p et q
tribuantur, dummodo fuerint positivi.

§. 133. Cum igitur haec aequalitas in genere subsistat, etiam veritati erit consentanea,
quando quaepiam harum litterarum m, n, p, et q infinite parum immutantur, sive tanquam
variabiles spectantur. Hanc ob rem consideremus solam quantitatem p tanquam
variabilem, ita ut reliquae litterae m, n et  maneant constans, ideoque etiam quantitas Q
erit constans dum altera P variabitur; ex quo differentiando nanciscemur hanc
aequationem

@ _d _dp  _dp _dp _dp _ _dp
P m+p p  m+p+n  p+n - m+p+2n  p+2n
d____dp + etc.

m+p+3n  p+3n
ubi totum negotium eo redit, quaemadmodum differentiale formulae P, quae est
integralis, exprimi oporteat.

§. 134. Cum igitur P sit formula integralis solam quantitatem X tanquam variabilem
involvens, quandoquidem in ejus integratione exponens P ut constans tractari debet,
demum post integrationem ipsam quantitatem P tanquam functionem duarum variabilium

X et p spectare licebit; unde quaestio huc redit, quomodo valorem, hoc charactere (d—P)

dp
exprimi solitum, investigari oporteat, qui si indicetur littera I, aequatio ante inventa hanc
induet formam

+ etc.

m+p p  mM+p+n  p+n m+p+2n_p+2n

jig 1 _1 1 1 1 1
P

Hanc vero seriem infinitam haud difficulter ad expressionem finitam revocare licebit hoc
modo: Ponatur
m+p p ymtpHn yPtn ymt p+2n Vp+2n

s=¥ ¥
m+p p  m+p+n  p+n - m+p+2n p+2n

+ etc.

ita ut facto v =1 littera s nobis exhibeat valorem quaesitum 1L ; at vero differentiatio

nobis dabit

ds _ Vm+ p-1 _Vp—l +Vm+ p+n-1 _Vp+n—1 +Vm+ p+2n-1 _Vp+2n—1

& +etc.

cujus serei infinitae summa manifesto est

_ _ v vi—1
vm+p l_vp 1 _
; .

=" 1-v
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Hinc igitur vicissim concludimus fore

. J- vp_l(vm—l)dv’
1-v"

quae formula integralis a v =0 usque ad v =1 est extendenda; sicque habebimus
m_ J- vp’l(vmfl)dv abv=0
P 1-v" ladv=1

§. 135. Ad valorem autem (g—g) quem hic littera IT idicavimus, investigandum, ex
principiis calculi integralis ad functiones duarum variabilium applicati jam satis notum

est, differentiale formulae integralis P = JXX P~ldx ex sola variabilitate ipsius p oriundum

obtineri, si formula post signum integrationis posita XX Pl ex sola variabilitate ipsius p
differentietur, atque elementum dp signa integrationis praefigatur; at vero quia X non

continet p, hic ut constans tractari debet: potestatis vero X P differentiale hinc natum erit

X p_ldplx; quam ob rem ex hac differentiatione orietur dP = dp I XxPldxIx , ita ut tantum

post signum integrationis factor IX accesserit, ex quo manifestum est, fore

bx=0
H=J.Xxp‘1dxlx{a " }
ad x =1

hinc igitur sequens theorema generale constituere licebit.

Theorema generale.

m-n
§. 136. Posito brevitatis gratia X = (1 - Xn) ", si sequentes formulae integrales omnes a

termina X =0 ad termino X =1 extendantur, sequens aequalitas semper erit veritati
consentanea

ijp_ldex xp‘l(xm—l)dx
XxPdx - ,[ 1-x"
[

nihil enim obstabat, quo minus loco v scriberemus X, quandoquidem isti valores tantum a
terminis integrationis pendent.
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§. 137. Hoc igitur modo deducti sumus ad integrationem hujusmodi formularum

[ Xx Pldxlx , in quibus quantitas logarithmica IX post signum integrationis tanquam factor
inest, quarum valorem exprimere licuit per binas formulas integrales ordinarias, cum sit

m

J.Xx PlaxIx = IXX IO‘ijm,

1-x"

integra libus scilicet ab x =0 ad X =1 extensis, ubi brevitatis gratia

m-n
n

posuimus (1 —x" ) = X . Hinc igitur pro binis casibus memorabilibus supra expositis

bina theoremata particularia derivemus.
Theorema particulare I, quo p=n.

§. 138. Quoniam supra vidimus casu p =n fieri IXXn_ldX = #, hoc valore substituto

habebimus istam aequationem satis elegantem

m

ij”_ldex - #J‘—Xn_l(x _l)dx,

1-x"
dum scilicet ambo integralia ab x =0 ad x =1 extenduntur.
Theorema particulare II, quo p=n-m.

§. 139. Quoniam pro hoc casu, quo p =n—m supra ostendimus esse

JXX”‘m‘ldx= z__

nsin.MZ
n
nunc deducimur ad sequentem integrationem maxime notatu dignam

x"*mfl(xm—l)ax

n b

IXX”_m_laxlx =—Z_
T

nsin “n I-Xx

si quidem haec ambo integralia ab X =0 usque ad X =1 extendantur; ubi meminisse

oportet esse
m-n

X = (1 _xN )T
§. 140. Hic probe notetur, theorema generale latissime patere, propterea quod in eo insunt

tres exponentes indefiniti, scilicet m, n et p, qui penitus arbitrio nostro relinquuntur, quos
ergo infinitis modis pro lubitu definire licet, dummodo singulis valores positivi
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tribuantur, ita ut semper valor hujus formulae integralis JXX PdxIx quam ob factorem

Ix tanquam transcendentem spectari oportet, per formulas integrales ordinarias exprimi
queat, quae cum sint generalissima, operae pretium erit nonnullos casus speciales
evolvere.

I. Evolutio casus quo m=1etn=2.

§. 141. Hoc igitur casu erit X = ——, unde pro hoc casu theorema generale ita se

(1—-xx)
[rro=-a

siquidem singula haec integralea ab x =0 ad X =1 extenduntur. Quoniam igitur hic
tantum exponens p arbitrio nostro relinquitur, hinc sequentia exempla perlustremus.

habebit

Exemplum I. quo p=1.

§. 142. Hoc igitur casu aequatio superior hanc induet formam

e e B e

ubi, integralibus ab X =0 ad x =1 extensis, notum est fieri,

Im I1+x_|2;

J- o _ abx=0 __zp
J=x¢) | ad x=1 2

quae est ea ipsa formula, quam initio hujus dissertationis tractavimus et cujus veritatem
jam triplici demonstratione corroboravimus

ita ut jam habeamus,

§. 143. Eundem valorem elicere licet ex theoremate particulari secundo, quo erat
p=n-m,siquidemnuncobn=2etm=1eritp=1 ; inde enim ob X = , istud

(1-xx)

theorema praebet

I axlx_ I@:_1|2
JJ(1-xx) 251n7 1+x 27

Exemplum II. quo p=2.
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§. 144. Hoc igitur casu aequatio superior hanc induet formam

e N b

Jam vero integralibus ab X =0 ad X =1 extensis, notum est fore

XOX XOX _
-1 I
I JJ(1-xx) et Lex

J' XOxIx abx =0 =12-1
JI=x¢) | ad x =1 B '

XOX

§. 145. Quoniam in hac formula integrale Iﬁ’ algebraice exhiberi potest, cum
—XX

ita ut habeamus

sit=1— (1 - XX), valor quaesitus etiam per reductiones consuetas erui potest, cum sit

J-\/%:[ (l—xx)}lx—j%"[l— (l—xx)},

positoque x =1 erit
J s =[xl ]

ad quam formam integrandam fiat 1—, /(1 - XX) =z, unde colligitur XX =2z -7z, ergo
oz(1-z)
2

2)” quibus valoribus substitutis erit

2[00 )=+ 555

qui ergo valor erit =C—2z—1(2—2). Quia igitur posito X =0 fit z=0, constans erit

— ; oX _
2lx=lz+1(2~2), sicque fiet & =

C =+ 12; facto igitur x =1, quia tum fit z=1, iste valor integralis erit 12—1 , prorsus
ut ante.

§. 146. Eundem valorem suppeditat theorema prius supra allatum, quo erat p=n=2;
inde enim statim fit

Ante autem vidimus essej i‘fi =1-12 ; ita ut etiam hinc prodeat valor quaesitus 12—1.

Exemplum III. quo p=3.

§. 147. Hoc igitur casu aequatio in theoremate generali allata hanc induet formam
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J‘ XXOXIX_ _I Xxox_ . | xxox
\/(l—xx) \/(1—xx) l+x *
Per reductiones autem notissimas constat esse
J‘ XXOX abx = 1.z
NI=x) | ad x =1 22
at vero fractio spuria o resolvitur in has partes X —1+ .+ 1 , unde erit
X% 1 oyy
Ilm =7 XX=x+1(1+x),
quod integrale jam evanescit posito X =0 ; facto ergo X =1 ejus valor erit = —1 S+12;
quamobrem integrale quod quaerimus, erit
I XXOX abx =0 _l(|2_l)_
V=) | ad x =1 4 2
Exemplum IV. quo p=4.
§. 148. Hoc igitur casu aequatio superior hanc induet formam
J' xooxlx J' XX .
\/(l—xx) \/(1 XX) 1+X
Per reductiones autem notissimas constat esse
J- ab x = _2
(1) [adx=1| 3’
tum vero fractio spuria — resolvitur in has partes XX —X+1 —m, unde integrando fit
Xox _ 133 _1 _
I X = X = xx+x =1 (1+x),

ex quo valor formulae erit = %— 12. His ergo valoribus substitutis adipiscimur hanc

bx=
j (1-xx [Zd);_l}=—%(%—lz).

integrationem
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Exemplum V. quo p=5.
§. 149. Hoc igitur casu aequatio superior hanc induet formam
j xoxix — _J' X_OX J'x OX
J(1=xx) JJ(1-xx) l+x
Constat autem esse
J- ox abx=0 _13.z
Ji-) [ ad x=1| 24 27
. - . o
tum vero fractio spuria 1’_‘+—X manifesto resolvitur in has partes X2 — xx+X—1+ m unde
integrando fit
xhox _ 1
J‘ﬁ ZX ——x +1xx—x+1(1+x),
ex quo valor formulae erit = —% +12. His igitur valoribus substitutis prodibit ista

integratio
xtoxix abx=0 _13 .z L
Jo 2 g(2- ).
Exemplum VI. quo p=6.

§. 150. Hoc igitur casu aequatio superior induet hanc formam

,[ \/)((10)::) - _j \/(X15—a>><(x) ' %'

Constat autem per reductiones notas esse

J‘xsaxlx abx=0 _24
Jo-x) lad x=1| 33’

: LS o
tum vero fractio spuria —, resolvitur in has partes

x* %3+ xx— X+1—-L,
X+1

unde integrando nanciscimur

4

X°ox _ 1 5 1y3_1
I—_—x XT X =2+ x=1(1+Xx),

1+Xx 5

1
4
ex quo valor hujus formulae erit = % —12 ; quibus valoribus substitutis prodibit ista

integratio
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bx=0
j%tdi-l}:gs (__Iz)

II. Evolutio casus quo m=3 et n=2.

§. 151. Hic ergo erit X = (1 - XX) , unde theorema nostrum generale nobis praebebit

hanc aequationem

jxp_laxlx-m :jxp_lax-m-jw,

ubi cum sit

3
X" =1 _ —xx=x-1 _ _X_Ll

1—-xx X+1
erit postrema formula integralis
p-1
1+X

quae integrata ab x=0 ad x=1 dat
_1 J' xPlox
p+1 I+x ’

quamobrem habebimus

jxp LaxIx - \J(1-xx) pr 16x (1- xx) (p+1 pr ox ).

Hinc igitur sequentia exempla notasse juvabit.

Exemplum I. quo p=1.

§. 152. Pro hoc igitur casu postremis factor evadet,%+ 12, ita ut sit

Jlaxlx1 [(1—xx) = —(%+ I2) : Iax, [(1=xx).
Pro formula autem jax, [(1—xx) statuatur /(1-xx) =1-vx, fietque

2 1
X= 1+xv’ (1 XX) 1+va’
atque OX =M, unde fiet Ox,/(1-xx) =M
(1+wv) (1+w)

cujus integrale resolvitur in has partes
v
(1+w)? 1+

oy T ArC.tang.v;
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quae expressio, cum extendi debeat ab X =0 usque ad X =1, prior terminus erit V=0,

alter vero terminus est V=1 ; ita ut integrale illud a v =0 usque ad v =1 extendi debeat.
At vero illa expressio sponte evanescit posito V=0, facto autem v =1, valor integralis

erit 7, quamobrem habebimus

N

ad x =1

§. 153. Hic quidem calculum per longas ambages evolvimus, prouti reductio ad

rationalitatem formulae (1 — XX) manuduxit; at vero solus aspectus formulae
Jiax‘ /(1-xx) statim declarat, eam exprimere aream quadrantis circuli, cujus radius =1,

quem novimus esse —Z . Caeterum adhiberi potuisset ista reductio
[ _1y |/ 1 3
I@x (1—XX)—EX (1-XX)+EIﬁ

cujus valor ab x=0 ad x=1 extensus manifesta dat - .

Exemplum I. quo p=2.
§. 154. Hoc ergo casu postremus factor fit

1o [xx_4_|o.
3+J-1+x 3 |2’

IaxIXM=—(§—I2)~IX8XM:

perspicuum autem est, esse

sicque habebimus

J'xax,/(l— xx) =C—-%(1- xx)% ’

qui valor ab x=0 ad x =1 extensus praebet 1, ita ut habeamus

Joe =00 270 = -4(4-12)

ad x=1
III. Evolutio casus quo m=1etn=3.
§.155. Hoc igitur casu erit X = %, unde theorema generale nobis praebet hanc

=

aequationem
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xP~ 16x|x xP~ lax xP~ (x-1)ox
ey e

ubi postrema formula reducitur ad hanc

310

| xPlax
XX+X+17
j xP~ laxlx _ J. xP~oxix I xPlox .
2 XX+X+1 °
i/ 1—x \/ l—x3)

sequentia igitur exempla adiungamus.

ita ut habeamus

Exemplum 1. quo p =1.

§.156. Hoc igitur casu postremus factor evadit

f

XX+X+1 , cujus integrale indefinitum

reperitur -2 7 —=Arc.tang.5+ , qui valor posito X =1 abit in 3 \/_ ; quocirca hoc casu

habebimus
I _oxIx . m j oX .
,f 1-X )
at vero formula integralis J. % peculiarem quantitatem transcendentem involvit,
1-x

quam neque per logarithmos, neque per arcus circulares explicare licet.

Exemplum Il quo p=2.

§.157. Hoc igitur casu postremus factor erit J- , qui in has partes resolvatur

1| 2xox+ox 1 OX
2 ) Lx+xx 2 ) Lex+xx?

ubi partis prioris integrale est
L1+ X+ xx) :%|3 (posito scilicet X =1);

T

alterius vero partis integrale est %m , quo valore substituto habebimus

F e ey
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Nunc vero istam formulam integralem commode assignare licet per reductionem supra
initio indicatam; cum enim hic sit m=1 et n =3, tum vero sumserimus p =2, erit
p =n-—m. Supra autem §. 131. invenimus, hoc casu integrale fore

__ =
nsin. Mz
n

2

qui valor nostro casu abit in
T —

2
3sin 2 337

Hoc igitur valore substituto, nostram formulam per meras quantitales cognitas exprimere

poterimus, hoc modo
I xoxIx abx=0 I—L(B—L).
3f( 1—x3)2 ad x =1 33 33
IV. Evolutio casusquo m=2etn=3.

§.158. Hoc igitur casu erit X = ﬁ , unde theorema generale praebet istam
3 1-x

prlaxlx I xP~1ox 'J'xpl(xx—l)ax
%/( 1-x° \/ 1-x° 1-x° ’

ubi forma postrema transmutatur in hanc

aequationem

I+X+xx

B J‘ xPlox(1+x)

unde fiet

I xP1oxix :_I xP1ox .J‘Xplax(HX).
3( 1_)(3) %/( 1_)(3) 14+ X+XX
unde sequentia exempla expediamus.

Exemplum I. quo p=1.

ox(1+x)

1+ X+XX 2

§. 159. Hoc ergo casu membrum postremum erit I cujus integrale in has partes

distribuatur

2xax+6x OX
2 1+x+xx I+ X+XX
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unde manifesta pro casu X =1 prodit 1+ (I 3+ T) quamobrem nostra aequatio erit

g -sleesm) g

In hac autem formula integrali, obm=2etn=3 , quia sumsimus p=1, eritp=n—-m;
pro hoc ergo casu per §. 131. valor istius formulae absolute exprimi poterit, eritque

consequenter etiam hoc casu per quantitates absolutas consequimur
hanc formam

j%{:;l} I(I3+3”f)

§. 160. Quodsi hanc formam cum postrema casus praecedentis, quae itidem absolute
prodiit expressa, combinemus, earum summa primo dabit

j XOXIX j oxlx _ _ _2xl3.
\/ x ) 33
sin autem posterior a priore subtrahatur orietur ista aequatio

j\/x@xlx j\/axlx 2z

Quoniam hoc modo ad expressiones satis simplices sumus perducti, operae pretium erit
ambas aequationes sub alia forma repraesentare, qua binae partes integrales commode in
unam conjungi queant; statuamus

scilicet ——*— =12, unde fit -—*— =17z, sicque prior formula induet hanc speciem

3( 1_x3) 3( 1—x3)

3 . 3
J‘ zXIX . nosterior vero 1stamJ‘ XX - tym vero habebimus 1—3 =7°, unde sit X° = 12—3,
X +Z

ideoque
IX = |z—-|(1+z) |3(Z3),
1+z

hincque porro



Volume IV Euler's Foundations of Integral Calculus (Post. Pub. 1845)
Supplement 3¢ to Book I, Ch. 4: Integration of Log. & Exponential Formulas.

Tr. by lan Bruce : October 28, 2016: Free Download at 17centurymaths.com.

313
X _ 07 _ 7201 . %,
X z 1+ o i)’
quare his valoribus adhibitis, prior formula integralis evadit
j 207 | z .
1+ Z3 3 (1+23) ’
altera vero formula erit
oz, | z
1473 3)
+Z 3 (1+z )
§. 161. Quoniam autem integralia ab X = 0 ad X =1 extendi debent, notandum est, casu
X =0 fieri =0, at vero casu X =1 prodire Z = oo, ita ut novas istas formas a
Z=0ad z = extendi oporteat. Quo observato prior harum formularum dabit
262'| z ax=0 =_7z|3+ﬂ
4z 3 (1+z3) ad X = W3 277
posterior vero
oz |__z az=0 |\ A3 _ar
4203 (1+z3) adz=o0 33 27
Hinc igitur summa harum formularum erit
j(lﬂ)az ez __ 213
1+2° %/(1+Z3) NG
at vero differentia
J‘az(z—l) Nz _ 271
1+23 %/(1_‘_23) 27
§. 162. Hic non inutile erit observasse, istum logarithmum | —2— commode in seriem

infinitam satis simplicem converti posse; cum enim sit

| 73 _ 1|1+z3

3 3 % 1423 B 2’
\/(1+z )

erit per seriem

| 2 =_L(L_L+L_;+;_etc.)
3\ 225 322 472 54
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verum ista resolutio nullum usum praestare potest ad integralia haec per series evolvenda,
propterea quod potestates ipsius Z in denominatoribus occurrunt, ideoque singulae partes
non ita integrari possunt ut evanescant posito z=0.

Exemplum II. quo p=2.

xox(1+x)

§. 163. Hoc igitur casu factor postremus evadit I el

qui in has duas partes

discerpitur jax I o> Cujus ergo integrale ab x =0 ad x =1 extensum est =1 R

Hinc igitur deducimur ad hanc aequationem

j xoxIx :(I_L)'J‘ OX ]

Jo0) 4 20

Hic autem notandum, istam formulam integralem nullo modo absolute exhiberi posse,
sed peculiarem quandam quantitatem transcendentem involvere.

V. Evolutio casus, quo m=2etn=4.

1

T
Fres =Ty e

at vero problema particulare prius pro hoc casu praebet

§. 164. Hoc igitur casu erit X = , unde theorema nostrum generale nobis dabit

hanc aequationem

J. x3oxlx :_ljx36x
3/( 1—x4) 2 | 1+XxX

Cum autem sit

erit absolute
Coxlx_| X=01_ 1-12
.[ /( 1—x4)Ld X:1:| 4( )-

at vero hic casus congruit cum supra §. 144. tractato. Si enim hic ponamus XX =Y, quo
facto termini integrationis manent y =0 ety =1, erit Ix=1ly et xox =1y ; quibus

valoribus substitutis nostra aequatio abibit in hanc formam

1| _yoly

_1(1- - _Y¥Y__ _1p_
i) Ty 4(1 12), sive NE=T) 12-1,
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prorsus ut supra.

§. 165. Alterum vero theorema particulare ad praesentem casum accommodatum dabit
Xoxlx_ _ 7z | _Xox.
[( 1—x4) 4 | 1+xx°
XOX_ _ _1
_[1+xx =1(1+xx) =112,

est vero

ita ut habeamus

Z]2.

j xoxlx__| @ x=0 __z
l( 1—x4) ad x =1 8
Quodsi vero hic ut ante statuamus XX = Y, obtinebitur

oyly —_z|)

Jomy) 2

qui est casus supra §. 142. tractatus. His duobus casibus exponens p erat numerus par,
unde casus impares evolvi conveniet.

Exemplum I. quo p=1.

OX
1+xx

§.166. Hoc igitur casu formula integralis postrema fiet j = Arc.tang.Xx, ita ut

posito X =1 prodeat Arc.tang.x =7 ; tum vero aequatio nostra erit
j Oxlx =_£.J OX
T T

integralibus scilicet ab X =0 ad x =1 extensis; ubi formula j

X

arcum curvae
=y

elasticae rectangulae exprimit, ideoque absolute exhiberi nequit.

Exemplum II. quo p=3.

§. 16 1. Hoc ergo casu formula integralis postrema erit
I K jax — I X qui in has duas partes discerpitur I@x —I X cujus integrale

1+ XX 1+XX 1+X+Xx

posito X =1 fit =1-7, ita ut nunc aequatio nostra evadat
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XXOXIX 1-Z j XXOX
Iyt g
quae formula integralis pariter absolute exhiberi nequit exprimit enim applicatam curvae
elasticae rectangulae.

316

§.168. Quanquam autem haec duo exempla ad formulas inextricabiles perduxerunt,
tamen jam pridem demonstravi, productum horum duorum integralium

J'\/lx I\/xxax

aequari areae circuli, cujus diameter =1, sive esse = 4-; quamobrem binis exemplis

conjungendis, hoc insigne theorema adipiscimur

J\/&xlx j\/xx@xlx :7[_6( _g).

Facile autem patet, innumera alia hujusmodi theoremata ex hoc fonte hauriri posse, quae,
per se spectata, profundissimae indaginis sunt censenda.




