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CHAPTER XVII 

 
CONCERNING THE USE OF RECURRING SERIES IN 

INVESTIGATING  THE ROOTS OF EQUATIONS 
 

332. The most celebrated DANIEL BERNOULLI has indicated a good use of recurring 
series in investigating the roots of equations of any order, in Vol. III  of the Comment. 
Acad. Petropol., where he has shown how the values of the true roots of each algebraic 
equation, of whatever dimensions it should be,  are able to be found approximately with 
the help of recurring series. Which discovery affords the maximum utility in innumerable 
cases, that I have decided to explain here carefully, so that it may be understood in which 
cases it may be able to be used. Yet sometimes more than the expected happens, so that 
no root of the equation may be able to be found by the aid of this method. On which 
account, so that the strength of this method may be seen more clearly, we will consider 
the whole fundamentals from the properties of recurring series, which it depends on. 
 
333. Because all recurring series arise from the expansion of certain rational fractions, the 
this fraction shall be 

2 3 4

2 3 4
 etc.

1  etc.
,a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

=  

 
from which the following series arises  
 

2 3 4 5 etc.,A Bz Cz Dz Ez Fz+ + + + + +  
 
the coefficients of which ,   A, B, C, D etc., thus may be determined, so that there shall be   
 

,
,

,
,

etc.

A a
B A b
C B A c
D C B A d
E D C B A

α
α β
α β γ
α β γ δ

=
= +
= + +
= + + +
= + + + +

 

 
Moreover the general term or the coefficient of the power nz  found from the resolution 
of the proposed fraction into simple fractions, the denominators of which shall be the 
factors of the denominators 
 

31 etc.z zz zα β γ− − − − , 
 
as has been shown in Ch. XIII. 
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334. But the form of the general term chiefly depends on the nature of the simple factors 
of the denominator, whether they shall be real or imaginary, and whether they shall not be 
equal to each other or whether two or several shall be equal. So that we may run through 
which various cases, in the first place we may put all the factors of the denominator to be 
simple both to be real as well as unequal to each other. Therefore all the simple factors 
for the denominator  
 

(1 )(1 )(1 )(1 ) etc.pz qz rz sz− − − − , 
 
from which the proposed fraction may be resolved into the simple fractions 
 

1 1 1 1 etc.pz qz rz sz− − − −
B C DA + + + +  

 
With which known, the general term of the recurring series will be, see § 215,    
 

( )etc.n n n n nz p q r s= + + + +A B C D ; 

 
which we may set nPz= ; clearly P shall be the coefficient of the power nz  and Q, R etc. 
of the following so that the series becomes 
 

2 3 1 2 etc.n n nA Bz Cz Dz Pz Qz Rz+ ++ + + + ⋅ ⋅ ⋅ + + + +  
 
335. Now we may put n to be a very large number, or the series to be continued to many 
more terms. Because the powers of unequal numbers therefore become more unequal, by 
which the greater they are made, so great will be the differences in the powers  

, , ,  etc.n n np q rA B C , so that that, which arises from the greatest of the numbers  p, q, r 
etc., will surpass the rest in magnitude and before which the rest definitely vanish, if n 
were an infinitely great number. Therefore since the numbers  p, q, r etc. shall be unequal 
to each other, we may put p to be the maximum among these. And therefore, if n shall be 
an infinite number, there becomes 
 

nP p= A ; 
 
but if n were an exceedingly large number, only approximately will there be nP p= A . 
Truly in a similar manner there will be  

1nQ p += A  
And thus 
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Q
P p= . 

 
From which it is apparent, if the recurring series were now produced, the coefficient of 
each term divided by the preceding will be approximately the value of the maximum 
letter p shown. 
 
336. Therefore if the denominator in the proposed fraction  
 

2 3 4

2 3 4
 etc.

1  etc.
a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

=  

 
may have all the factors real and unequal to each other, thus from the recurring series 
arising a single factor will be able to be known, evidently this one 1 pz− , in which the 
letter p  has the greatest value of all. And nor are the coefficients of the numbers  a, b, c, 
d etc. introduced into the calculation here, as whatever of these may be put in place, yet 
finally the same true value of the letter p is found. Then indeed at last the value of  p will 
become known, when the series may be continued to infinity ; yet meanwhile, if now 
more  terms of this were formed, from that a closer value of p will become known, from 
which the number of terms may become greater, and from that the more that letter p may 
exceed the remaining letters q, r, s etc. Therefore truly there is the matter whether this 
maximum letter  p should be governed by a  + or a  − sign,  because the powers of this 
will increase equally. 
 
337. Now in so far as this investigation is clear enough, it will be able to be applied to 
find the root of some algebraic equation. For from the known factors of the denominator 
 

3 41 etcz zz z zα β γ δ− − − − − . 
 

the roots of this equation may be assigned readily 
 

2 3 41 etc. 0z z z zα β γ δ− − − − − = , 
 
thus so that, if  1 pz−  were a factor, one the root of this equation shall become 1

pz = . 

Therefore since the maximum number p may be found from the recurring series, from the 
same place the minimum root of the equation   
 

2 3 41 etc. 0z z z zα β γ δ− − − − − =  
 

will be found. Or if there may be put 1
xz =  so that this equation may be produced  
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1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − = , 

 
with the aid of the same method the maximum root x p=  of this equation may be 
elicited. 
 
338. Therefore if this equation may be proposed 
 

1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − = , 
 

which may have all the roots real and unequal to each other, the maximum root of this 
may be found in the following way. The fraction  
 

2 3 4

2 3 4
 etc.

1  etc.
a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

 

 
may be formed from the coefficients of this equation. And hence the recurring series may 
be formed by assuming an arbitrary number or, which amounts to the same, by assuming 
the initial terms as you wish. Which shall become  
 

2 3 1 2 etc.n n nA Bz Cz Dz Pz Qz Rz+ ++ + + + ⋅ ⋅ ⋅ + + + +  
 
and the fraction Q

P  will give a largest value of the root x for the proposed equation closer 
to that, for which the number n  shall be a greater number. 

 
EXAMPLE 1 

This equation shall be proposed  
3 1 0xx x− − = , 

 
of which it is required to find the maximum root. 

The fraction may be formed :  
 

1 3
a bz

z zz
+

− − , 
 

from which on putting  1, 2 for the two first terms this recurring series may arise 
 

1, 2, 7, 23, 76, 251, 829, 2738 etc. 
 
 
Therefore  

2738
829  
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will be approximately equal to the maximum root of the proposed equation. But the value 
of this fraction expressed in decimal parts is  
 

3,3027744; 
 
the true maximum root of the equation is  
 

3 13
2 3,3027756+= = , 

 
which exceeds the root found by one part in a million only. Moreover it is to be noted the 
fractions Q

P  to be alternately greater and less than the true root. 
 
[i.e. from § 333, we have 3 and 1α β= = ; The coefficients A, B, C, etc. can be replaced 
in general by the suffixed terms, a notation that was not yet in use :  
 

i.e. 1 1 1 23 ; 1; 2 ;for 3.n n ns s s s s n+ −= + = = ≥  Thus, 
 

1; 3 1 2 ; 6 1 7 ; 21 2 23 etc.]A a B A b C B A D C Bα α β α β= = = + = − = = + = + = = + = + =
 

 
EXAMPLE 2 

 This equation shall be proposed  
 

3 1
23 4x x− = , 

 

the roots of which show the sines of three arcs, of which the sine of the triple arc is 1
2

. 

With the equation adapted to this form  
30 1 6 8x x= − ∗+  

 
[The * sign indicates that a power is missing.] 
of this the smallest root may be sought, so that we remain with whole numbers, so that it 

will be no need for 1
x

to be put in place of  x. Therefore this fraction may be formed 

 

31 6 8
a bx cxx

x x
+ +
− ∗+
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with which there may be taken as it pleases for the three initial terms 0, 0, 1, because in 
this way the calculation will be carried out the most easily, this recurring series may arise 
with the powers of z omitted, because there is a need for the coefficients only, 
 

0,  0,  1,  6,  36,  208,  1200,  6912,  39808,  229248 . 
 
Therefore an approximation to the minimum root will be  
 

39808 311
229248 1791 0,1736460= = , 

 
which has to be the sine of the angle 10°; but this from tables is 0,1736482, which 
exceeds the root found by the part 22

10 000 000 . 

But this same root can be found more easily by putting 1
2

x y= , so that the equation 

may be produced  
31 3 0y y− ∗+ = , 

 
from which treated in a like manner, the series arises  
 

0,  0,  1,  3,  9,  26,  75,  216,  622,  1791,  5157 etc . 
 

Therefore the approximate smallest root will be  
 

1791 199
5157 573 0,3472949y = = = , 

from which there becomes 
 

1
2 0,1736475x y= = , 

 
which approaches three times closer than the preceding. 
 
[Here, and elsewhere, we have used the corrected arithmetical values from earlier 
editions.] 
 

EXAMPLE 3 
 

If the maximum root is desired from the same proposed equation 
 

30 1 6 8x x= − ∗+ , 
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on putting 

2
yx =  this will become 3 3 1 0.y y∗− + =  

The maximum root of this equation may be found from the recurring series, of which the 
scale of the relation is  0, 3, −1, for which therefore with the three initial terms taken as 
you wish,  
 

1,  1,  1,  2,  2,  5,  4,  13,  7,  35,  8,  98,  11  etc− .; 
 

[i.e. 1 1 2 1 2 30 3 ; 1; 1; 1;for 4.n n n ns s s s s s s n+ − −= + − = = = ≥ ] 
 

in which series it is indicated, since one comes upon negative terms, that the maximum 
root is to be negative; for there is 
 

sin.70 0,9396926x = − ° = − . 
 

Whereby a reason for this can be had from the initial terms in this manner :  
 

1, 2 , 4, 7, 14, 25, 49, 89, 172, 316, 605 etc− + − + − + − + − + ., 
 
from which there will be 
 

605  605
316 632and 0,957y x− −= = = − , 

 
which differs markedly from the truth. 
 
 
339. The reason for this disagreement is mainly, that the roots of the proposed equation 
shall be : 

sin.10 ,  sin.50  and sin.70° ° − ° , 
 

[since the angles shown 3×  each have the same sine; ] 
 
of which the two greatest roots differ little from each other, so that with the powers, to 
which we have continued the series, the second root sin. 50° at this stage may maintain an 
unusual ratio to the maximum root and thus may not vanish before that root. Hence which 
also depends on the jump in value, as the other values found become exceedingly large 
and exceedingly small. Thus on taking  
 

316
172y −=  

there becomes 
158 79

172 86 0,919x − −= = = − . 
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because now the powers of the maximum root alternately become positive and negative, 
alternately too the powers of the second root are added and taken away ; on account of 
which, so that this discrepancy shall become unnoticed, the series must be continued 
much further. 
 
340. Truly another remedy can be brought to this inconvenience by changing the equation 
with the aid of a suitable substitution into another form, of which the roots themselves 
shall not be so close. Thus if in the equation 

30 1 6 8x x= − + , 
 
the roots of which are  − sin.70°, + sin.50°, + sin.10°, there may be put 1x y= − , and the 
roots of the equation 
 

30 8 24 18 1y yy y= − + −  
 

will be 1 sin. 70 ,  1 sin. 50 ,  1 sin. 10− ° + ° + °  and thus the minimum root of this will be  
1 sin.70− ° , since still  this sin. 70° shall be the maximum root of the preceding equation, 
and 1 sin.50+ °  now is the maximum root, since sin. 50° was before the middle root. And 
in this manner some root by substitution can become changed  in a maximum or 
minimum root of the new equation, and thus will be able to be found by the same method 
treated here. Therefore because in this example the root 1 sin.70− °  is much less than the 
two remaining, also it will easily become known approximately by the recurring series. 
[Thus, by examining a related function of the initial function translated horizontally, a 
maximum root may be chosen further apart from the other roots.] 

 
EXAMPLE 4 

 
To find the minimum root of the equation  
 

30 8 24 18 1y yy y= − + − , 
 

which taken from unity will leave the sine of the angle 70°. 
There may be put 1

2y z= , so that there shall be 
 

30 6 9 1z zz z= − + − , 
 
the smallest root of which shall be found by a recurring series, of which the scale of the 
relation is  9, − 6, +1; but for the maximum root to be found the scale of the relation must 
be taken to be  6, − 9, +1. Therefore for the minimum this series will be formed 
 



EULER'S  
INTRODUCTIO IN ANALYSIN INFINITORUM  VOL. 1  

Chapter 17.  
 Translated and annotated by Ian Bruce.                                page 571 

 
[i.e. 1 1 2 1 2 39 6 ; 1; 1; 1;for 4.n n n ns s s s s s s n+ − −= − + = = = ≥ ] 

 
1,  1,  1,  4,  31,  256,  2122,  17593,  145861 etc . 

 
Therefore it will be approximately  
 

17593
145861 0,12061483z = =  

and 
0,06030741y =  

And 
 

sin.70 1 0,93969258y° = − = , 
 

which does not disagree with the truth except in the final figure. Therefore from this 
example it is understood, how much use a suitable transformation of the equation with the 
help of a substitution brings to finding the root, and which with this agreed upon, the 
method treated not only places bounds on the maximum and minimum roots,  but also 
may be able to show all the roots. 
 
341. Therefore with the approximate root of some equation thus now known ; so that for 
example the number k may differ minimally from some root, there may be put,  

  or  x k y x y k− = = +  and in this manner an equation will be produced, the smallest root 
of which will be x k= − ; which therefore if it may be sought by a recurring series, so that 
it may be easily done, because this root will be much smaller than the rest, if to that k 
may be added, the true root of x will be found for the proposed equation. Truly this 
artifice is so commonly known that its use may be retained, even if the equation contains 
imaginary roots. 
 
342. Moreover in the first place without this artifice a root cannot be known, for which 
another equal root is given, but with the contrary sign. Clearly, if an equation of which 
the maximum root is p, may have the same root  − p, then, even if the recurring series 
will be continued to infinity, yet this root  p on no account will be obtained. Let there be, 
so that we may illustrate by an example, the proposed equation  
 

3 2 5 5 0x x x− − + = , 
 

of which the maximum root is 5 , besides which truly the root 5−  is present also. 
Therefore if we may use the method prescribed before for finding the maximum root, and 
we may form the recurring series from the scale of the relation 1, +5, − 5,  this will be 
 

1,  2,  3,  8,  13,  38,  63,  188,  313,  938,  1563 etc. , 
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[i.e. 1 1 2 0 1 2 35 5 ; 0 ; 1; 2 ; 3 ;for 4.n n n ns s s s s s s s n+ − −= + − = = = = ≥ ] 
 
where it is not reaching any constant ratio.  
 
[Otherwise from § 333, we recall that  
 

2 3 4
2 3 4

2 3 4 5  etc.
1  etc.

etc.,a bz cz dz ez
z z z z

A Bz Cz Dz Ez Fz
α β γ δ
+ + + + +
− − − − −

= + + + + + +  

 
In this case we have, in order to find the maximum root, to use the equation :  
 

2 31 5 5 0x x x− − + = ; 
 

2
2 3 4

2 3 4 5
1  etc.

etc.,a bz cz
z z z z

A Bz Cz Dz Ez Fz
α β γ δ

+ +
− − − − −

= + + + + + +  and thus 

 
1, 5 and, 5α β γ= = = − ; it follows that  

 
1; 2 ; 3 7 4 ; 3 10 5 8 ; 8 15 10 13,  etc.]A a B A b C c c D Eα= = = + = = = + ∴ = − = + − = = + − =

 
Truly the alternating terms of the series adopt an equal ratio ; of which if any one may be 
divided by the preceding, the square of the maximum root is found ; for thus there is 
approximately  

1563 938 313
313 188 635 = = = . 

 
Therefore as many times as the alternate terms themselves only give a constant ratio, so 
the square of the of the root sought will be obtained. But the root 5x = itself is found by 
putting  x = y +2, from which there becomes 
 

31 3 5 – 0y yy y− − = , 
 
the minimum root of which is found from the series  
 

1,  1,  1,  9,  33,  145,  609,  2585,  10945 etc. : 
 
for it is approximately  
 

2585
10945 0,2361;= =  
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but 2,2361 is approximately 5= , which is the maximum root of the equation. 
 
343. Although the numerator of the fraction, from which the recurring series may be 
formed, depends on our choice, yet a most suitable arrangement of that is put in place, so 
that the value may be quickly shown approximately. For since with the assumed factors 
of the denominator as above (§334) the general term of the recurring series shall be  
 

( )etc.n n n nz p q r= + + +A B C , 

 
these coefficients , ,A B C  may be determined by the numerator of the fraction, so that  
A  may obtain either a large or a small value ; in the first case the maximum root p is 
found quickly, in the latter case truly slowly. Also one can also take a numerator,  so that 
in short A vanishes, in which case, even if the series may be continued indefinitely, yet it 
will on no account reach the maximum root p. But this comes about, if the numerator is 
taken thus, so that it may have the same numerator 1 pz−  itself; thus indeed it may be 
completely removed from the calculation. Thus if the equation may be proposed 
 

3 6 10 3 0x xx x− + − = , 
 
of which the maximum root is 3= , and thence the fraction is formed 
 

2 3
1 3

1 6 10 3
z

z z z
−

− + −
 

 
so that the scale of the recurring series shall be  6, −10, + 3, and the series will be  
 

1,  3,  8,  21,  55,  144,  377  etc. , 
 

[i.e. 1 1 2 0 1 26 10 3 ; 0 ; 1; 3 ;for 2n n n ns s s s s s s n+ − −= − + = = = ≥ ] 
 
the terms of which do not converge at once to the ratio 1 : 3. For the same series arises 
from the fraction  

1
1 3z zz− +

 

 
and therefore the maximum root of the equation 
 

2 3 1 0x x− + =  
is found. 
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344. One can thus also assume a numerator, so that some root of the equation may be 
found by a recurring series, which can be done, if the numerator were a product from all 
the factors of the denominator except that, to which the root corresponds, as we wish. 
Thus if in the former example the numerator may be taken 1 3z zz− + , the fraction 
 

2 3
1 3

1 6 10 3
z zz

z z z
− +

− + −
 

will give this recurring series  
 

1,  3,  9,  27,  81,  243  etc ., 
 

which, since it shall be geometric, will show at once the root 3x = . For that fraction is 
equal to this simple fraction 

1
1  3z−

 

 
Hence it is apparent, if the initial terms, which for argument’s sake it is allowed to 
assume, thus may be taken, so that they make a geometric progression, the exponent of 
which is equal to one of the roots of the equation, then the whole recurring series 
becomes geometric and thus that same root can be shown, even if it shall be neither a 
maximum nor a minimum. 
 
345. Therefore since, while we search for either a maximum or a minimum root,  besides 
the root expected by us another root may be shown by the recurring series, a numerator of 
this kind must be selected, which shall have no common factor with the denominator, 
which comes about if one may be taken for the numerator, from which the first term of 
the series will be 1= , and from which alone all the following are defined by the scale of 
the relation. And in this way certainly a root of the equation, always either a maximum or 
minimum, may be elicited just as it was proposed. Thus for the proposed equation 
 

3 * 3 1 0y y− + = , 
 

of which the maximum root may be desired, from the scale of the relation  0, +3, −1 by 
beginning from unity the following recurring series arises  
 

1,  0,  3,  1,  9,   6,  28,  27,  90,  109,  297,  417,
                      1000,  1548,  3417,  5644 etc. ,

− + − + − + − + − + −
+ − + −

 

 
[i.e. 1 1 2 0 1 23 ; 0 ; 1; 0 ;for 3.n n ns s s s s s n+ − −= − = = = ≥ ] 
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which will converge to a constant ratio and will show the maximum root to be negative 
and approximately  
 

5644
3417 1,651741y −= = − , 

 
which ought to be 1,8793852= − . [Euler made a slip in his calculation, in that the last 
term was given as −6544, rather than the corrected value −5644 used here in the O.O. 
corrected edition, and from the earlier French translation of J. B. Labey in 1796. Thus, 
the series would need to be carried further for convergence.] But the above ratio has been 
taken [§ 330], because it approaches the true value so slowly, so that therefore the other 
root shall not be much less than the maximum and likewise it shall be positive. 
 
346. With these considered properly, which since in general as well as according to the 
examples we have brought to advise us,  the great usefulness of this method will be seen 
for finding the roots of equations more clearly. Truly the artifices, by which operation 
may be able to be drawn together and with that to be returned more promptly, have been 
indicated too in a satisfactory manner, thus so that nothing further may be required to be 
added, except the cases in which the equation has equal or imaginary roots,  remaining to 
be examined. Therefore we may put the denominator of the fraction 
 

2 3

2 3 4
etc.

1  etc.
a bz cz dz
z z z zα β γ δ
+ + + +

− − − − −
 

 
to have the factor 2(1 )pz− ,with the remaining factors present 1 , 1qz rz− −   etc. 
Therefore the general term of the recurring series hence generated will be  
 

( )( )1  etc. ;n n n nz n p p q= + + + +A B C  

[Recall that the separation of a denominator of the form 
 

( ) ( )( )2
1

1 1 1 ......zp zq zr− − −
 

 
into factors including the square term introduces partial fractions of the form :  
 

( ) ( ) ( )2 1 11
.....zp zqzp − −−

+ +B CA ; 

these can be expanded in series, the nth term of which has the form  
 

( )( )1  etc. .n n n nz n p p q+ + + +A B C ] 
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which value of this kind shall soon be arrived at, if n were an exceedingly great number, 
two cases are to be distinguished, the one in which p is a number greater than the 
remaining numbers q, r etc., and the other, in which  p does not provide the maximum 
root. In the first case, for which  p likewise is the maximum root, on account of the 
coefficient 1n +  the remaining terms ,n np qB C etc. besides do not vanish so quickly 

from that term ; but if q were  > p, then also the term ( )1 nn p+ A  will vanish more slowly 

besides nqC  and thus the investigation certainly will avoid the trouble. 
 

EXAMPLE 1 
Let the proposed equation be 

3 3 4 0x xx− + = , 
 

of which the maximum root 2 occurs twice. 
 Therefore this maximum root may be sought in the manner set out before by the 
expansion of the fraction,  
[i.e. the fraction 3

1
1 3 4z z− ∗+

 is expanded out, according to the iterations of the sequence 

 
1 2 0 1 23 4 ; 0 ; 1; 3 ;for 3.n n ns s s s s s n+ −= − = = = ≥ ] 

 
which will give that recurring series 
 

1,  3,  9,  23,  57,  135,  313,  711,  1593 etc.,  
 

where indeed some term divided by the preceding gives a quotient greater than two [for 
the root]. The ratio of which is readily apparent from the general term. For with the terms 

nqC  etc. rejected from that, the corresponding term of the power nz will be   
 

( )1 n nn p p= + +A B , 
and the following 

( ) 1 12 n nn p p+ += + +A B , 
 
which divided by the first gives  
 

( )
( )

2
1

n
n

p p
+ +
+ +

>
A B

A B
, 

 
unless n now increases to infinity. 
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EXAMPLE 2 
 

Now the equation shall be proposed : 
 

3 5 3 0x xx x− − − =  
 
of which the maximum root is 3= , and the remaining two roots are 1= − . 
The maximum root is sought with the aid of recurring series, the scale of the relation of 
which is 1,  5,  3+ + ; from which there is generated :  
 

1,  1,  6,  14,  47,  135,  412,  1228 etc ., 
 

[i.e. 1 1 2 0 1 25 3 ; 0 ; 1; 1;for 3.n n n ns s s s s s s n+ − −= + + = = = ≥ ] 
 
which thus quickly shows the value 3, because the powers of the smaller root −1, 
even if it may be multiplied by 1n + , yet still will vanish compared with the powers of  3. 
 

EXAMPLE 3 
 

But if the equation may be put in place  
 

3 2 8 12 0x x x+ − − = , 
 

the roots of which are 3,  2,  2− − , the maximum itself will be produced much more 
slowly. 

For this series will arise 
 

1,  1,  9,  5,  65,  3,  457,  347,  3345,  4915 etc− − ., 
 

which still must be continued at length, before the root thence arising will appear to be 
3= . 

 
347. In a similar manner if three factors were equal, thus so that the factor of one 

denominator shall be ( )31 pz− , the  remaining factors 1 , 1qz rz− −  etc., then the general 
term of the recurring series will be  
 

( )( ) ( )1 2
1 2 1  etc. .

n nn n n n n nz p n p p q r
+ +

⋅
⎛ ⎞= + + + + + +⎜ ⎟
⎝ ⎠

A B C D E  

 
Therefore if  p were the maximum root and n were a number so great, that the powers  
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,  n nq r  etc. may vanish besides np , then from the recurring series the root will be 

generated :  
( )( ) ( )
( )( ) ( )

1
2
1
2

2 3 2

1 2 1

n n n

n n n
p

+ + + + +

+ + + + +

A B C

A B C
, 

 
which, unless n shall be a great number and as if infinite, will not indicate the true value 
of p. But the value of this root will be  
 

( )
( )( ) ( )1

2

2
1 2 1

n
n n n

p p+ +

+ + + + +
= +

A B

A B C
 

 
But if moreover p were not the maximum root, then at this point the discovery of the 
maximum may be much more hindered ; from which it follows the equations, which 
contain equal roots, are much more difficult to be resolved by this method, than if all the 
roots were unequal to each other. 
 
348. We may now see, in what manner a recurring series continued to infinity must be 
prepared, when the denominator of the fraction has imaginary factors. 
Let the real factors of the denominator of the fraction  
 

2 3

2 3 4
 etc.

1  etc.
a bz cz dz

z z z zα β γ δ
+ + + +

− − − − −
 

 
be 
 

1 ,  1   etc.qz rz− −  
and from  above the factor 
 

1 2 cos.pz ppzzϕ− +  
 
containing two simple imaginary factors. But if therefore the recurring series arising from 
that fraction were  
 

2 3 1 etc.n nA Bz Cz Dz Pz Qz ++ + + + ⋅⋅⋅+ + + , 
 

the coefficient P, by that which we have established above (see §218), will be   
 

( )sin. 1 sin.
sin.  etc.

n n n n np q r
ϕ ϕ
ϕ

+ +
= + + +
A B

C D  
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Therefore if the number p were less than one of the others q, r etc., thus so that the 
maximum root of the equation  
 

1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − =  
 
shall be real, then that will be found equally by a recurring series, and as if no imaginary 
roots were to be present. 
 
349. Therefore the discovery of the maximum real root will not be disturbed by 
imaginary roots, if these thus were prepared, so that of the two, which make a real factor, 
the product shall not be greater than the square of the maximum root. But if two 
imaginary roots of the same kind shall be present, so that the product of these either is 
equal or thus exceeds the square of the maximum real root, then the investigation set out 
before will tell us nothing,  because the power np  therefore on no account vanishes 
before a similar power of the maximum root, even if the series may be continued to 
infinity. It has been considered to add here examples of this illustrating the cause. 
 

EXAMPLE 1 
Let the proposed equation be 

3 2 4 0x x− − = , 
 
of which it may be required to investigate the maximum root. 

This equation is resolved into two factors 
 

( 2)( 2 2) ;x xx x− + +  
 
from which it has one real root 2 and two imaginary roots, of which the product is 2, less 
than the square of the real root. That on account of the manner so far treated will be able 
to be known. Therefore the recurring series may be formed from the scale of the relation  
0,  2,  4+ + , which will be 
 

1,  0,  2,  4,  4,  16,  24,  48,  112,  192,  416,  832 etc., 
 
from which the real root 2 can become known clearly enough. 
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EXAMPLE 2 
Let the proposed equation be  
 

3 4 8 8 0x xx x− + − = , 
 

of which the one real root is 2, the product of the two imaginary roots truly will be 4=  
and thus equal to the square of the real root 2. 

Therefore we may seek the root by a recurring series;  but so that it may be able to 
come about more easily, we may put 2x y= , so that we may have  

 
3 2 2 1 0y yy y− + − = , 

 
from which the recurring series may be formed 
 

1,  2,  2,  1,  0,  0,  1,  2,  2,  1,  0,  0,  1,  2,  2,  1  etc. ;  
 
in which since the same terms may be returned perpetually, from that nothing other can 
be deduced, unless the maximum root either is not real or imaginary roots are to be given, 
the product of which shall be equal to or exceed the square of the real root. 
 

EXAMPLE 3 
Now let the proposed equation be  

3 3 4 2 0x xx x− + − = , 
 

the real root of which is 1, truly the product of the imaginary roots 2= . 
Therefore from the scale of the relation 3,  4,  2− +  the series 
 

1,  3,  5,  5,  1,   7, 15,  15,  1,  33,  65,  65, 1 etc.;− − − +  
 

will be formed, in which since the terms are made positive and negative in this way and 
that, the real root 1 cannot be found from that in any way. Truly revolutions of this kind 
always show the root that the series must provide to be imaginary ; for here the imaginary 
roots are with a greater power than of the real root 1. 
 
350. Therefore let pp be greater than the square of any real roots in the general fraction 
produced of two imaginary roots, thus so that the remaining powers ,  n nq r  etc. may 

vanish before np , if n shall be an infinite number. Therefore in this case  let there 
become  
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( )sin. 1 sin.

sin.
n n nP p

ϕ ϕ
ϕ

+ +
=
A B

 

 
and 

( ) ( )sin. 2 sin. 1 1
sin.

n n nQ p
ϕ ϕ

ϕ
+ + + +=

A B
 

and thus 
 

( ) ( )
( )

sin. 2 sin. 1
sin. 1 sin.

.
n nQ

P n n
p

ϕ ϕ
ϕ ϕ

+ + +
+ +

=
A B

A B
 

 
Which expression at no time adopts a constant value, even if n shall be an infinite 
number. Indeed the sines of angles perpetually keep changing especially, thus so that 
soon they shall be positive, soon negative. 
 
351. Yet meanwhile if the following fractions ,  SR

Q R  may be taken similar in the same 

manner and thus the letters  and A B  may be eliminated, the same number n may emerge 
from the calculation ; for [see § 352 following for a detailed account of this calculation.] 
 

2 cos.Ppp R Qp ϕ+ = , 
 
will be found, from which there becomes  

2cos. ;Ppp R
Qpϕ +=  

indeed similarly there will be 
 

2cos. Qpp S
Rpϕ += , 

 
from the comparison of which two values there shall become 
 

RR QS
QQ PRp −

−
=  

and 
 

2 22 ( )( )
cos. QR PS

Q PR R QS
ϕ −

− −
= . 
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On which account if the recurring series now were continued to that point, so that before 

np  the powers of the remaining roots vanish, then in this manner the factor of the 
trinomial 1 2 cos.pz ppzzϕ− +  will be able to be found. 
 
352. Because this calculation may be difficult to create with enough training,  

I shall set it out here as a whole. From the value of  Q
P  found there arises  

 
( ) ( )sin. 2 sin. 1 sin.( 1) sin. ,Pp n Pp n Q n Q nϕ ϕ ϕ ϕ+ + + = + +A B A B  

 
from which there becomes 
 

( )
( )

sin. sin. 1
sin. 2 sin.( 1)

.
Q n Pp n

Pp n Q n
ϕ ϕ

ϕ ϕ
− +

+ − +
=A

B
 

 
There will be in an equal ratio  

( ) ( )
( )

sin. 1 sin. 2
sin. 3 sin.( 2)

.R n Qp n
Qp n R n

ϕ ϕ
ϕ ϕ

+ − +
+ − +

=A
B

 

 
From these two values equated there becomes  
 

0 sin. sin.( 3) sin. sin.( 2)
sin.( 1) sin.( 3) sin.( 1) sin.( 2)

 sin.( 1) sin.( 1) sin.( 2) sin.( 2) .

QQp n n QR n n
PQpp n n QQp n n
QR n n PQpp n n

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + − +
− + + − + +
+ + + + + +

 

 
But since there shall be 
 

1 1
2 2

sin. sin. cos.( ) cos.( )a b a b a b= − − + , 

the equation becomes 
 

1 1 1
2 2 2

0 (cos.3 cos. ) (1 cos.2 ) (1 cos.2 )QQp QR PQppϕ ϕ ϕ ϕ= − + − + − , 

 

which divided by 1
2

Q  gives 

 
( )(l cos.2 ) (cos. cos.3 )Ppp R Qpϕ ϕ ϕ+ − = − . 

But there is 
cos. cos.2 cos. sin.2 sin.ϕ ϕ ϕ ϕ ϕ= +  

and 
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cos.3 cos.2 cos. sin.2 sin.ϕ ϕ ϕ ϕ ϕ= − , 
from which 
 

2cos. cos.3 2 sin.2 sin. 4 sin. cos.ϕ ϕ ϕ ϕ ϕ ϕ− = = , 
and 
 

21 cos.2 2 sin.ϕ ϕ− = , 
from which there will be 
 

2 cos.Ppp R Qp ϕ+ =  
both 

2cos.  Ppp R
Qpϕ +=  

and 

2cos.  Qpp S
Rpϕ +=  

 
from which the above values will be produced, clearly 
 

RR QS
QQ PRp −

−
=  

and 
 

22 ( )( )
cos. .QR PS

Q PR RR QS
ϕ −

− −
=  

 
 
353. If the denominator of the fraction, from which the recurring series may be formed, 
may have several trinomial factors equal to each other, then from the general form of the 
terms seen given above it will be apparent that the finding of the roots becomes much 
more uncertain. Yet meanwhile if some one real root were found approximately, then the 
transformations of the equation will elicit always the value the same root much closer. 
For x may be put equal to that value now found  + y and the smallest root for y may be 
sought of the new equation, which added to that value will provide the true value of x. 

 
EXAMPLE 

This equation shall be proposed : 
3 3 5 4 0 ;x xx x− + − =  
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one root of which agreed from that to be almost equal to 1, because on putting  1x =  it 
produces  
 

3 3 5 4 1.x xx x− + − = −  
 
Therefore there may be put 1x y= +  and there becomes 
 

31 2 0y y− − = , 
 
from which for finding the minimum root this recurring series may will be formed, of 
which the scale of the relation will be 2, 0, +1, which will be 
 

1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296  etc. , 
 
from which the minimum root of y will be approximately 
 

1041
2296 0,453397= , 

thus so that there shall be 
 

1,453397x = , 
 

which value so near can scarcely be obtained with equal ease by any other method. 
 
354. But if moreover some recurring series finally may converge closely to a geometric 
progression, then from the law of the progression it will at once be known easily, the root 
of which equation shall become the amount, which arises from the division of one term 
by the preceding . Let 

,  ,  ,  , etcP Q R S T . 
 
be the terms of a recurring series now a great length from a distant beginning, thus so that 
it may be combined with a geometric progression, and there shall become 
 

T S R Q Pα β γ δ= + + +  
 

or from the scale of the relation , , ,a β γ δ+ + + . The value of the fraction may be put 

in place Q
P x=  ;  there will be 

3 4,   and  ,SR T
P P Pxx x x= = =  

 
which by substitution in the above equation will give   
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4 3 2x x x xα β γ δ= + + + , 
 

from which it is apparent the quotient Q
P  finally provides one root of the equation found.  

Truly this and the preceding method indicate,  and indeed it shows as well, that the 

fraction Q
P  gives the maximum root of the equation. 

 
355. Also this method of finding the roots is often useful in practice, if the equation shall 
be infinite. Towards showing which the equation shall be proposed :  
 

3 5 71
6 120 50402

etc.,z z zz= − + − +  

 
the smallest root of which z shall show the arc of 30° or the sixth part of the semi 
circumference of a circle. Therefore the equation may be changed into this form  
 

3 5 7

3 60 25201 2 etc. 0.z z zz− + − + − =  

 
Hence a recurring series therefore may be formed, the scale of which is infinite, evidently 
 

1 1 1
3 60 25202,  0,  ,  0,  ,  0,  ,  0  etc.,− + −  

 
and there will be the recurring series  
 

23 1681 240844
3 3 60 451,  2,  4,  , , ,  etc. : 

 
and therefore there will be approximately 
 

1681 45 1681 3 5043
2408 60 2408 4 9632 0,52356.z ⋅ ⋅

⋅ ⋅
= = = =  

 
But from the known proportion of the circumference to the diameter it must become 

0,523598z = , and thus the root found differs only by the part 3
100 000  from the true 

value. But this comes from the convenient use in this equation, because all the roots of 
this shall be real and the others differ far enough from the minimum. Which condition 
since it may have the rarest place in infinite equations, hence there are few cases where 
this method can be used for their resolution. 
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CAPUT XVII 
 

DE USU SERIERUM RECURRENTIUM 
IN RADICIBUS AEQUATIONUM INDAGANDIS 

 
332. Indicavit Vir Celeb. DANIEL BERNOULLI insignem usum serierum recurrentium 
in investigandis radicibus aequationum cuiusvis gradus in Comment. Acad. Petropol. 
Tomo III, ubi ostendit, quemadmodum cuiusque aequationis algebraicae, quotcunque 
fuerit dimensionum, valores radicum veris proximi ope serierum recurrentium assignari 
queant. Quae inventio cum saepenumero maximum afferat utilitatem, eam hic diligentius 
explicare constitui, ut intelligatur, quibus casibus adhiberi possit. Interdum enim praeter 
expectationem evenit, ut nulla aequationis radix ope huius methodi cognosci queat. 
Quocirca, ut vis huius methodi clarius perspiciatur, ex proprietatibus serierum 
recurrentium totum fundamentum, quo nititur, contemplemur. 
 
333. Quoniam omnis series recurrens ex evolutione cuiusdam fractionis rationalis oritur, 
sit ista fractio 

2 3 4

2 3 4
 etc.

1  etc.
,a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

=  

 
unde oriatur sequens series recurrens 
 

2 3 4 5 etc.,A Bz Cz Dz Ez Fz+ + + + + +  
 
cuius ceofficientes A, B, C, D etc. ita determinantur, ut sit 
 

,
,

,
,

etc.

A a
B A b
C B A c
D C B A d
E D C B A

α
α β
α β γ
α β γ δ

=
= +
= + +
= + + +
= + + + +

 

 
Terminus autem generalis seu coefficiens potestatis nz  invenitur ex resolutione fractionis 
propositae in fractiones simplices, quarum denominatores sint factores denominatoris 
 

31 etc.z zz zα β γ− − − − , 
 
uti cap. XIII est ostensum. 
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334. Forma autem termini generalis potissimum pendet ab indole factorum simplicium 
denominatoris, utrum sint reales an imaginarii, et utrum sint inter se inaequales an eorum 
bini pluresve aequales. Quos varios casus ut ordine percurramus, ponamus primum 
omnes denominatoris factores simplices cum reales esse tum inter se inaequales. Sint 
ergo factores simplices denominatoris omnes 
 

(1 )(1 )(1 )(1 ) etc.pz qz rz sz− − − − , 
 
ex quibus fractio proposita in sequentes fractiones simplices resolvatur 
 

1 1 1 1 etc.pz qz rz sz− − − −
B C DA + + + +  

 
Quibus cognitis erit seriei recurrentis terminus generalis  
 

( )etc.n n n n nz p q r s= + + + +A B C D ; 

 
quem statuamus nPz=  sit scilicet P coefficiens potestatis nz  sequentiumque 
Q, R etc., ita ut series recurrens fiat 
 

2 3 1 2 etc.n n nA Bz Cz Dz Pz Qz Rz+ ++ + + + ⋅ ⋅ ⋅ + + + +  
 
335. Ponamus iam n esse numerum maximum seu seriem recurrentem ad plurimos 
terminos esse continuatam. Quoniam numerorum inaequalium potestates eo magis fiunt 
inaequales, quo fuerint altiores, tanta erit diversitas in potestatibus , , ,  etc.n n np q rA B C , 
ut ea, quae oritur ex maximo numerorum  p, q, r etc., reliquas magnitudine longe superet 
prae eaque reliquae penitus evanescant, si n fuerit numerus plane infinite magnus. Cum 
igitur numeri p, q, r etc. sint inter se inaequales, ponamus inter eos p esse maximum. 
Ac propterea, si n sit numerus infinitus, fiet  
 

nP p= A ; 
 
sin autem n sit numerus vehementer magnus, erit tantum proxime nP p= A . 
Simili vero modo erit 

1nQ p += A  
Ideoque 

Q
P p= . 
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Unde patet, si series recurrens iam longe fuerit producta, coefficientem cuiusque 
termini per praecedentem divisum proxime esse exhibiturum valorem maximae litterae p. 
 
336. Si igitur in fractione proposita 
 

2 3 4

2 3 4
 etc.

1  etc.
a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

=  

 
denominator habeat omnes factores simplices reales et inter se inaequales, ex serie 
recurrente inde orta cognosci poterit unus factor simplex, is scilicet 1 pz− , in quo littera 
p omnium maximum habet valorem. Neque in hoc negotio coefficientes numeratoris a, b, 
c, d etc. in computum ingrediuntur, sed quicunque ii statuantur, tamen denique idem 
verus valor litterae maximae p invenitur. Verus quidem valor ipsius p tum demum 
innotescit, quando series in infinitum fuerit continuata; interim tamen, si iam plures eius 
termini fuerint formati, eo propius valor ipsius p cognoscetur, quo maior fuerit 
terminorum numerus et quo magis littera ista  p excedat reliquas q, r, s etc. Perinde vero 
est, utrum haec maxima littera p fuerit signo + an signo − affecta, quoniam eius potestates 
aeque increscunt. 
 
337. Quemadmodum nunc haec investigatio ad inventionem radicum aequationis cuiusvis 
algebraicae accommodari possit,  satis est perspicuum. Ex factoribus enim denominatoris 
 

3 41 etcz zz z zα β γ δ− − − − − . 
 

cognitis facile assignantur radices aequationis huius 
 

2 3 41 etc. 0z z z zα β γ δ− − − − − = , 
 
ita ut, si factor fuerit 1 pz− , huius aequationis radix una futura sit 1

pz = . 

Cum igitur ex serie recurrente reperiatur maximus numerus p, indidem obtinebitur 
minima radix aequationis  
 

2 3 41 etc. 0z z z zα β γ δ− − − − − = . 
 

Vel si ponatur 1
xz =  ut prodeat haec aequatio 

 
1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − = , 

 
eiusdem methodi ope eruitur maxima huius aequationis radix x p= . 
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338. Si igitur proponatur aequatio haec 
 

1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − = , 
 

quae omnes radices habeat reales et inter se inaequales, harum radicum maxima sequenti 
modo reperietur. Formetur ex coefficientibus huius aequationis fractio  
 

2 3 4

2 3 4
 etc.

1  etc.
a bz cz dz ez

z z z zα β γ δ
+ + + + +
− − − − −

 

 
Hincque formetur series recurrens assumendo pro arbitrio numeratorem seu, quod eodem 
redit, assumendo pro lubitu terminos initiales. Quae sit  
 

2 3 1 2 etc.n n nA Bz Cz Dz Pz Qz Rz+ ++ + + + ⋅ ⋅ ⋅ + + + +  
 
dabitque fractio Q

P  valorem radicis maximae x pro aequatione proposita eo propius, quo 
maior fuerit numerus n. 

 
EXEMPLUM 1 

Sit proposita ista aequatio 
 

3 1 0xx x− − = , 
 

cuius maximam radicem inveniri oporteat. 
Formetur fractio 
 

1 3
a bz

z zz
+

− − , 
 

unde positis duobus primis terminis 1, 2 orietur ista series recurrens 
 

1, 2, 7, 23, 76, 251, 829, 2738 etc. 
 
Erit ergo 

2738
829  

 
proxime aequalis radici aequationis propositae maximae. Valor autem huius 
fractionis in partibus decimalibus expressus est 
 

3,3027744; 
aequationis vero radix maxima est 
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3 13
2 3,3027756+= = , 

 
quae inventam superat tantum una parte millionesima. Ceterum notandum est fractiones 
Q
P  alternatim vera radice esse maiores et minores. 

 
EXEMPLUM 2 

 Proposita sit ista aequatio 
 

3 1
23 4x x− = , 

 

cuius radices exhibent sinus trium arcuum, quorum triplorum sinus est 1
2

. 

Aequatione perducta ad hanc formam 
 

30 1 6 * 8x x= − +  
 

quaeratur huius, ut in numeris integris maneamus, radix minima, ita ut non 

opus sit pro x ponere 1
x

. Formetur ergo haec fractio 

 

31 6 * 8
a bx cxx

x x
+ +
− +

 

 
ex qua sumendis pro lubitu tribus terminis initialibus 0, 0, 1, quia hoc modo calculus 
facillime expeditur, orietur haec series recurrens omittendis potestatibus ipsius z, quia 
tantum coefficientibus opus est, 
 

0,  0,  1,  6,  36,  208,  1200,  6912,  39808,  229248 . 
 

Erit ergo proxime aequationis radix minima 
 

39808 311
229248 1791 0,1736460= = , 

 
quae propterea esse deberet sinus anguli 10°; hic autem ex tabulis est 0,1736482, qui 
superat radicem inventam parte 22

10 000 000 . 

Facilius autem haec eadem radix inveniri potest ponendo 1
2

x y= , ut prodeat aequatio 
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31 3 * 0y y− + = , 

ex qua simili modo tractata oritur series 
 

0,  0,  1,  3,  9,  26,  75,  216,  622,  1791,  5157 etc . 
 

Erit ergo proxime aequationis radix minima 
 

1791 199
5157 573 0,3472949y = = = , 

unde fit 
 

1
2 0,1736475x y= = , 

qui valor fere ter propius accedit quam praecedens, 
 

EXEMPLUM 3 
 

Si desideretur eiusdem aequationis propositae 
 

30 1 6 * 8x x= − +  
 

radix maxima, ponatur 
2
yx =  eritque 3 * 3 1 0.y y− + =  

Cuius aequationis radix maxima reperietur per seriem recurrentem, cuius scala relationis 
est 0, 3, −1, unde ergo oritur sumptis tribus terminis initialibus pro arbitrio 
 

1,  1,  1,  2,  2,  5,  4,  13,  7,  35,  8,  98,  11  etc− .; 
 
in qua serie cum ad terminos negativos perveniatur, id indicio est maximam 
radicem esse negativam; est enim 
 

sin.70 0,9396926x = − ° = − . 
 

Quare huius ratio in terminis initialibus est habenda hoc modo  
 

1,  2 , 4, 7, 14, 25, 49, 89, 172, 316, 605 etc− + − + − + − + − + ., 
 
ex qua erit 
 

605  605
316 632et 0,957y x− −= = = − , 

 
quae a veritate vehementer abludit. 
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339. Ratio huius dissensus potissimum est, quod aequationis propositae 
radices sint . 

sin.10 ,  sin.50   et  sin.70° ° − °, 
 

quarum binae maximae tam parum a se invicem discrepant, ut in potestatibus, 
ad quas seriem continuavimus, secunda radix sin. 50° adhuc notabilem teneat rationem ad 
radicem maximam ideoque prae ea non evanescat. Hinc que etiam saltus pendet, quod 
alternatim valores inventi fiant nimis magni et nimis parvi. Sic sumendo 
 

316
172y −=  

Fit 
158 79

172 86 0,919x − −= = = − . 
 
Nam quoniam potestates radicis maximae alternatim fiunt affirmativae et 
negativae, alternatim quoque potestates secundae radicis adduntur et tolluntur; 
quamobrem, quo haec discrepantia fiat insensibilis, series vehementer ulterius debet 
continuari. 
 
340. Aliud vero remedium huic incommode afferri potest transmutando aequationem ope 
idoneae substitutionis in aliam formam, cuius radices sibi non amplius sint tam vicinae, 
Sic si in aequatione 

30 1 6 8x x= − + , 
 
cuius radices sunt − sin.70°, + sin.50°, + sin.10°, ponatur 1x y= − , aequationis 
 

30 8 24 18 1y yy y= − + −  
 

radices erunt 1 sin. 70 ,  1 sin. 50 ,  1 sin. 10− ° + ° + °  ideoque eius radix minima erit 
1 sin.70− ° , cum tamen haec sin. 70° esset radix maxima aequationis praecedentis, atque 
1 sin.50+ °  nunc est radix maxima, cum sin. 50° ante esset media. Atque hoc modo 
quaevis radix per substitutionem in maximam minimamve radicem novae aequationis 
transmutari ideoque per methodum hic traditam inveniri poterit. Quia praeterea in hoc 
exemplo radix 1 sin.70− °  multo minor est quam binae reliquae, etiam facile per seriem 
recurrentem proxime cognoscetur. 
 

EXEMPLUM 4 
 

Invenire radicem minimam aequationis 
 

30 8 24 18 1y yy y= − + − , 
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quae ab unit ate subtracta relinquet sinum anguli 70°. 
Ponatur 1

2y z= , ut sit 
 

30 6 9 1z zz z= − + − , 
 
cuius radix minima invenietur per seriem recurrentem, cuius scala relationis est 
 9, − 6, +1; pro radice autem maxima invenienda scala relationis sumi deberet 6, − 9, +1. 
Pro minima ergo formetur haec series 
 

1,  1,  1,  4,  31,  256,  2122,  17593,  145861 etc . 
 
Erit ergo proxime 

17593
145861 0,12061483z = =  

et 
0,06030741y =  

Atque 
 

sin.70 1 0,93969258y° = − = , 
 

quae a veritate ne in ultima quidem figura discrepant. Ex hoc ergo exemplo intelligitur, 
quantam utilitatem idonea transformatio aequationis ope substitutionis ad inventionem 
radicum afferat et quod hoc pacta methodus tradita non solum ad maximas minimasve 
radices adstringatur, sed etiam omnes radices exhibere queat. 
 
341. Cognita ergo iam quacunque aequationis propositae radice proxime ita; ut verbi 
gratia numerus k quam minime a quapiam radice differat, ponatur 

  seu  x k y x y k− = = +  hocque modo prodibit aequatio, cuius radix minima erit x k= − ; 
quae igitur si per series recurrentes indagetur, quod facillime fiet, quia haec radix multo 
minor erit quam ceterae, si ea ad k addatur, habebitur radix vera ipsius x pro aequatione 
proposita. Hoc vero artificium tam late patet, ut, etiamsi aequatio contineat radices 
imaginarias, usum suum retineat. 
 
342. Imprimis autem sine hoc artificio radix cognosci nequit, cui datur alia aequalis, sed 
signo contrario affecta. Scilicet, si aequatio, cuius maxima radix p, eadem radicem habeat 
− p, tum, etiamsi series recurrens in infinitum continuetur, tamen radix haec p nunquam 
obtinebitur. Sit, ut hoc exemplo illustremus, proposita aequatio 
 

3 2 5 5 0x x x− − + = , 
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cuius maxima radix est 5 , praeter quam vero inest quoque 5− . Si igitur modo ante 
praescripto pro radice maxima invenienda utamur atque seriem recurrentem formemus ex 
scala relationis 1, +5, − 5, erit haec 
 

1,  2,  3,  8,  13,  38,  63,  188,  313,  938,  1563 etc. , 
 
ubi ad nullam rationem constantem pervenitur. Termini vero alterni rationem aequabilem 
induunt; quorum si quisque per praecedentem dividatur, reperietur quadratum maximae 
radicis; sic enim est proximo 
 

1563 938 313
313 188 635 = = = . 

 
Quoties ergo termini tantum alterni sese ad rationem constantem componunt, toties 
quadratum radicis quaesitae proxime obtinetur. Ipsa autem radix 5x = invenitur 
ponendo x = y +2, unde fit 
 

31 3 5 – 0y yy y− − = , 
 
cuius radix minima cognoscetur ex serie 
 

1,  1,  1,  9,  33,  145,  609,  2585,  10945 etc. : 
 
erit enim proxime 
 

2585
10945 0,2361;= = ; 

 
at 2,2361 est proxime 5= , quae est radix maxima aequationis. 
 
343. Quanquam numerator fractionis, ex qua series recurrens formatur, a nostro arbitrio 
pendet, tamen idonea eius constitutio plurimum confert, ut valor radicis cito vero proxime 
exhibeatur. Cum enim assumptis ut supra factoribus denominatoris (§ 334) sit terminus 
generalis seriei recurrentis  
 

( )etc.n n n nz p q r= + + +A B C , 

 
isti coefficients , ,A B C  per numeratorem fractionis determinantur, unde fieri potest, ut 
A  sive magnum sive isti coefficients parvum valorem obtineat; priori casu radix maxima 
p cito reperitur, posteriore vero tarde. Quin etiam numerator ita accipi potest, ut A  
prorsus evanescat, quo casu, etiamsi series in infinitum continuetur, tamen nunquam 
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radicem maximam p praebebit. Hoc autem evenit, si numerator ita accipiatur, ut ipse 
eundem habeat factorem 1 pz− ; 
sic enim ex computo penitus tolletur. Sic si proponatur aequatio 
 

3 6 10 3 0x xx x− + − = , 
 
cuius maxima radix est 3= , indeque formetur fractio 
 

2 3
1 3

1 6 10 3
z

z z z
−

− + −
 

 
ut seriei recurrentis sit scala relationis 6, −10, + 3,  
 

1,  3,  8,  21,  55,  144,  377  etc. , 
 
cuius termini prorsus non convergunt ad rationem 1 : 3. Eadem enim series oritur ex 
fractione  

1
1 3z zz− +

 

 
ac propterea maximam radicem aequationis 
 

2 3 1 0x x− + =  
exhibet. 
 
344. Quin etiam numerator ita assumi potest, ut per seriem recurrentem quaevis radix 
aequationis reperiatur, quod fiet, si numerator fuerit productum ex omnibus factoribus 
denominatoris praeter eum, cui respondet radix, quam velimus. Sic si in priori exemplo 
sumatur numerator 1 3z zz− + , fractio 
 

2 3
1 3

1 6 10 3
z zz

z z z
− +

− + −
 

dabit hanc seriem recurrentem 
 

1,  3,  9,  27,  81,  243  etc ., 
 
quae, cum sit geometrica, statim monstrat radicem 3x = . Fractio enim illa aequalis est 
huic simplici 

1
1  3z−

 

 
Hinc apparet, si termini initiales, quos pro lubitu assumere licet, ita accipiantur, ut 
progressionem geometricam constituant, cuius exponens aequetur uni radici aequationis, 
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tum totam seriem recurrentem fore geometricam ideoque eam ipsam radicem esse 
exhibituram, etiamsi neque sit maxima neque minima. 
 
345. Ne igitur, dum quaerimus radicem vel maximam vel minimam, praeter 
expectationem nobis alia radix per seriem recurrentem exhibeatur, eiusmodi numerator 
debet eligi, qui cum denominatore nullum factorem habeat communem, quod fiet, si pro 
numeratore unitas accipiatur, unde terminus primus seriei erit 1= , ex quo solo secundum 
scalam relationis sequentes omnes definiantur. Hocque modo semper certe radix 
aequationis vel maxima vel minima, prout fuerit propositum, eruetur. Sic proposita 
aequatione 
 

3 * 3 1 0y y− + = , 
 

cuius radix maxima desideratur, ex scala relationis 0, +3, −1 incipiendo ab unitate 
sequens oritur series recurrens 
 

1,  0,  3,  1,  9,   6,  28,  27,  90,  109,  297,  417,
                      1000,  1548,  3417,  5644 etc. ,

− + − + − + − + − + −
+ − + −

 

 
quae ad rationem constantem convergit ostenditque radicem maximam esse 
negativam atque proxime 
 

5644
3417 1,651741y −= = − , 

 
quae esse debebat 1,8793852= − . Ratio autem supra [§ 330] est allata, cur tam lente ad 
verum valorem appropinquetur, propterea quod altera radix non multo sit minor maxima 
simulque sit affirmativa. 
 
346. His probe perpensis, quae cum in genere tum ad exempla allata monuimus, summa 
utilitas huius methodi ad investigandas aequationum radices luculenter perspicietur. 
Artificia vero, quibus operatio contrahi eoque promptior reddi queat, satis quoque sunt 
indicata, ita ut nihil insuper addendum esset, nisi casus, quibus aequatio vel radices habet 
aequales vel imaginarias, evolvendi superessent. Ponamus ergo denominatorem fractionis 
 

2 3

2 3 4
etc.

1  etc.
a bz cz dz
z z z zα β γ δ
+ + + +

− − − − −
 

 
habere factorem 2(1 )pz− reliquis factoribus existentibus 1 , 1qz rz− −   etc. 
Seriei ergo recurrentis hinc natae terminus generalis erit 
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( )( )1  etc. ;n n n nz n p p q= + + + +A B C  

 
quae cuiusmodi valorem sit adeptura, si n fuerit numerus vehementer magnus, duo casus 
sunt distinguendi, alter, quo p est numerus maior reliquis q, r etc., alter, quo p non 
praebet radicem maximum. Casu priori, quo p simul est radix maxima, ob coefficientem 

1n +  reliqui termini ,n np qB C etc. non tam cito prae eo evanescent quam ante; sin autem 

q fuerit > p, tum quoque tarde terminus ( )1 nn p+ A prae nqC  evanescet ideoque 
investigatio radicis maximae admodum evadet molesta. 
 

EXEMPLUM 1 
Sit proposita aequatio 

3 3 4 0x xx− + = , 
 

cuius maxima radix 2 bis occurrit. 
Quaeratur ergo maxima radix haec modo ante exposito per evolutionem 

fractionis quae dabit hanc seriem recurrentem 
 

1,  3,  9,  23,  57,  135,  313,  711,  1593 etc.,  
 

ubi quidem quivis terminus per praecedentem divisus dat quotum binario maiorem. Cuius 
ratio ex termino generali facillime patet. Reiectis enim in eo terminis nqC  etc. erit 

terminus potestati nz respondens  
 

( )1 n nn p p= + +A B , 
Sequens 

( ) 1 12 n nn p p+ += + +A B , 
 
qui per illum divisus dat 
 

( )
( )

2
1

n
n

p p
+ +
+ +

>
A B

A B
, 

 
nisi n iam in infinitum excreverit. 
 
 

EXEMPLUM 2 
Sit iam proposita aequatio 
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3 5 3 0x xx x− − − =  

cuius maxima radix 3= , reliquae duae aequales 1= − . 
Quaeratur maxima radix ope seriei recurrentis, cuius scala relationis est 
1,  5,  3+ + ; unde oritur 
 

1,  1,  6,  14,  47,  135,  412,  1228 etc ., 
 
quae ideo satis cito valorem 3 exhibet, quod potestates minoris radicis −1, 
etiamsi multiplicentur per 1n + , tamen mox prae potestatibus ipsius 3 evanescant. 
 

EXEMPLUM 3 
Sin autem proponeretur aequatio 
 

3 2 8 12 0x x x+ − − = , 
 

cuius radices sunt 3,  2,  2− − , multo tardius maxima sese prodet. 
Orietur enim haec series 
 

1,  1,  9,  5,  65,  3,  457,  347,  3345,  4915 etc− − ., 
 

quae adhuc longissime continuari, deberet, antequam pateret radicem inde 
oriundam esse 3= . 
 
347. Simili modo si tres factores essent aequales, ita ut denominatoris factor unus esset 

( )31 pz− , reliqui 1 , 1qz rz− −  etc., seriei recurrentis terminus generalis erit 
 

( )( ) ( )1 2
1 2 1  etc. .

n nn n n n n nz p n p p q r
+ +

⋅
⎛ ⎞= + + + + + +⎜ ⎟
⎝ ⎠

A B C D E  

 
Si ergo p fuerit maxima radix atque n fuerit numerus tantus, ut potestates 

,  n nq r etc. prae np  evanescant, tum ex serie recurrente orietur radix 
 

( )( ) ( )
( )( ) ( )

1
2
1
2

2 3 2

1 2 1

n n n

n n n
p

+ + + + +

+ + + + +

A B C

A B C
, 

 
quae, nisi sit n numerus maximus et quasi infinitus, verum ipsius p valorem 
indicabit. Erit autem iste radicis valor 
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( )

( )( ) ( )1
2

2
1 2 1

n
n n n

p p+ +

+ + + + +
= +

A B

A B C
 

 
Quodsi autem p non fuerit radix maxima, tum inventio maximae multo magis adhuc 
impedietur; unde sequitur aequationes, quae contineant radices aequales, hac methodo per 
series recurrentes multo difficilius resolvi, quam si omnes radices essent inter se 
inaequales. 
 
348. Videamus nunc, quomodo series recurrens in infinitum continuata debeat esse 
comparata, quando denominator fractionis habet factores imaginarios. 
Sint igitur fractionis 
 

2 3

2 3 4
 etc.

1  etc.
a bz cz dz

z z z zα β γ δ
+ + + +

− − − − −
 

 
factores denominatoris reales 
 

1 ,  1   etc.qz rz− −  
insuperque factor trinomialis 
 

1 2 cos.pz ppzzϕ− +  
 
continens duos factores simplices imaginarios. Quodsi ergo series recurrens ex illa 
fractione orta fuerit 
 

2 3 1 etc.n nA Bz Cz Dz Pz Qz ++ + + + ⋅⋅⋅+ + + , 
 

erit per ea, quae supra exposuimus, coefficiens P 
 

( )sin. 1 sin.
sin.  etc.

n n n n np q r
ϕ ϕ
ϕ

+ +
= + + +
A B

C D  

 
Si igitur numerus p minor fuerit quam unus ceterorum q, r etc., ita ut maxima radix 
aequationis 
 

1 2 3 etc. 0m m m mx x x xα β γ− − −− − − − =  
 
sit realis, tum ea per series recurrentes aeque reperietur, ac si nullae radices 
inessent imaginariae. 
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349. Inventio ergo maximae radicis realis per radices imaginarias non perturbabitur, si 
hae ita fuerint comparatae, ut binarum, quae factorem realem componunt, productum non 
sit maius quadrato radicis maximae. Sin autem binae eiusmodi insint radices imaginariae, 
ut earum productum adaequet vel adeo superet quadratum maximae radicis realis, tum 
investigatio ante exposita nihil declarabit, propterea quod potestas np  prae simili 
potestate radicis maximae nunquam evanescit, etiamsi series in infinitum continuetur. 
Cuius exempla illustrationis causa hic adiicere visum est. 
 

EXEMPLUM 1 
Sit proposita aequatio 
 

3 2 4 0x x− − = , 
 
cuius radicem maximam investigari oporteat. 

Resolvitur haec aequatio in duos factores 
 

( 2)( 2 2) ;x xx x− + +  
 
unde unam habet radicem realem 2 et duas reliquas imaginarias, quarum productum est 2, 
minus quam quadratum radicis realis. Quamobrem ea per modum hactenus traditum 
cognosci poterit. Formetur ergo series recurrens ex scala relationis 0,  2,  4+ + , quae erit 
 

1,  0,  2,  4,  4,  16,  24,  48,  112,  192,  416,  832 etc., 
 
unde satis luculenter radix realis 2 cognosci potest. 
 

EXEMPLUM 2 
Proposita sit aequatio 
 

3 4 8 8 0x xx x− + − = , 
 

cuius radix una realis est 2, binarum imaginariarum productum vera 4=  ideoque aequale 
quadrato radicis realis 2. 

Quaeramus ergo radicem per seriem recurrentem; quod quo facilius fieri queat, 
ponamus 2x y= , ut habeatur 

 
3 2 2 1 0y yy y− + − = , 

 
unde formetur series recurrens 
 

1,  2,  2,  1,  0,  0,  1,  2,  2,  1,  0,  0,  1,  2,  2,  1  etc. ;  
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in qua cum iidem termini perpetuo revertantur, nihil inde aliud colligi potest, nisi radicem 
maximam vel non esse realem vel dari imaginarias, quarum productum aequale sit aut 
superet quadratum radicis realis. 
 

EXEMPLUM 3 
Sit iam proposita aequatio 

3 3 4 2 0x xx x− + − = , 
 

cuius radix realis est 1, imaginariarum vero productum 2= . 
Formetur ergo ex scala relationis 3,  4,  2− +  series 
 

1,  3,  5,  5,  1,   7, 15,  15,  1,  33,  65,  65, 1 etc.;− − − +  
 

in qua cum termini modo fiant affirmativi modo negativi, radix realis 1 inde nullo modo 
cognosci poterit. Huiusmodi vero revolutiones semper ostendunt radicem, quam series 
praebere debebat, esse imaginariam; hic enim radices imaginariae potestate sunt maiores 
quam realis 1. 
 
350. Sit igitur in fractione generali productum binarum radicum imaginariarum pp maius 
quam ullius radicis realis quadratum, ita ut prae np  reliquae potestates ,  n nq r  etc. 
evanescant, si n sit numerus infinitus. Hoc ergo casu fiet 
 

( )sin. 1 sin.
sin.

n n nP p
ϕ ϕ
ϕ

+ +
=
A B

 

 
et 

( ) ( )sin. 2 sin. 1 1
sin.

n n nQ p
ϕ ϕ

ϕ
+ + + +=

A B
 

ideoque 
 

( ) ( )
( )

sin. 2 sin. 1
sin. 1 sin.

.
n nQ

P n n
p

ϕ ϕ
ϕ ϕ

+ + +
+ +

=
A B

A B
 

 
Quae expressio nunquam valorem constantem induet, etiamsi n sit numerus infinitus. 
Sinus enim angulorum perpetuo maxime manent mutabiles, ita ut mox sint affirmativi 
mox negativi. 
 
351. Interim tamen si fractiones sequentes ,  SR

Q R  simili modo sumantur indeque litterae 

 et A B  eliminentur, simul numerus n ex calculo egredietur ; reperietur enim  
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2 cos.Ppp R Qp ϕ+ = , 

unde fit 

2cos. ;Ppp R
Qpϕ +=  

similiter vero erit 
 

2cos. Qpp S
Rpϕ +=  

 
ex quorum duorum valorum comparatione fit 
 

RR QS
QQ PRp −

−
=  

atque 
 

2 22 ( )( )
cos. QR PS

Q PR R QS
ϕ −

− −
= . 

 
Quamobrem si series recurrens iam eousque fuerit continuata, ut prae np  reliquarum 
radicum potestates evanescant, tum hoc modo factor trinomialis 
1 2 cos.pz ppzzϕ− +  poterit inveniri. 
 
352. Quoniam iste calculus non satis exercitatis molestiam creare posset, 

eum totum hic apponam. Ex valore ipsius Q
P  invento oritur 

 
( ) ( )sin. 2 sin. 1 sin.( 1) sin. ,Pp n Pp n Q n Q nϕ ϕ ϕ ϕ+ + + = + +A B A B  

unde fit 
 

( )
( )

sin. sin. 1
sin. 2 sin.( 1)

.
Q n Pp n

Pp n Q n
ϕ ϕ

ϕ ϕ
− +

+ − +
=A

B
 

Pari ratione erit 
( ) ( )
( )

sin. 1 sin. 2
sin. 3 sin.( 2)

.
R n Qp n
Qp n R n

ϕ ϕ
ϕ ϕ

+ − +
+ − +

=A
B

 

 
Aequatis his duobus valoribus fiet 
 

0 sin. sin.( 3) sin. sin.( 2)
sin.( 1) sin.( 3) sin.( 1) sin.( 2)

 sin.( 1) sin.( 1) sin.( 2) sin.( 2) .

QQp n n QR n n
PQpp n n QQp n n
QR n n PQpp n n

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + − +
− + + − + +
+ + + + + +
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Cum autem sit 
 

1 1
2 2

sin. sin. cos.( ) cos.( )a b a b a b= − − + , 

fiet 
 

1 1 1
2 2 2

0 (cos.3 cos. ) (1 cos.2 ) (1 cos.2 )QQp QR PQppϕ ϕ ϕ ϕ= − + − + − , 

 

quae per 1
2

Q  divisa dat 

 
( )(l cos.2 ) (cos. cos.3 )Ppp R Qpϕ ϕ ϕ+ − = − . 

At est 
cos. cos.2 cos. sin.2 sin.ϕ ϕ ϕ ϕ ϕ= +  

et 
 

cos.3 cos.2 cos. sin.2 sin.ϕ ϕ ϕ ϕ ϕ= − , 
unde 
 

2cos. cos.3 2 sin.2 sin. 4 sin. cos.ϕ ϕ ϕ ϕ ϕ ϕ− = = , 
et 
 

21 cos.2 2 sin.ϕ ϕ− = , 
ex quo erit 
 

2 cos.Ppp R Qp ϕ+ =  
et 

2cos.  Ppp R
Qpϕ +=  

atque 

2cos.  Qpp S
Rpϕ +=  

 
unde superiores valores prodeunt, scilicet 
 

RR QS
QQ PRp −

−=  

et 
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22 ( )( )
cos. .QR PS

Q PR RR QS
ϕ −

− −
=  

 
 
353. Si denominator fractionis, ex qua series recurrens formatur, plures habeat factores 
trinomiales inter se aequales, tum spectata forma termini generalis supra data patebit 
inventionem radicum multo magis fieri incertam. Interim tamen si una quaecunque radix 
realis iam proxime fuerit detecta, tum aequationis transformations semper valor eiusdem 
radicis multo propior eruetur. Ponatur enim x aequalis valori illi iam detecto + y 
atque novae aequationis quaeratur minima radix pro y, quae addita ad illum valorem 
praebebit verum ipsius x valorem. 

 
EXEMPLUM 

Sit proposita ista aequatio 
3 3 5 4 0 ;x xx x− + − =  

 
cuius unam radicem fere esse 1=  inde constat, quod posita 1x = prodit 
 

3 3 5 4 1.x xx x− + − = −  
Ponatur ergo 1x y= + fietque 
 

31 2 0y y− − = , 
 
unde pro radice minima invenienda formetur series recurrens, cuius scala 
relationis 2, 0, +1, quae erit 
 

1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296  etc. , 
 
unde radix minima ipsius y erit proxime 
 

1041
2296 0,453397= , 

ita ut sit 
 

1, 453397x = , 
 

qui valor tam prope vix alia methodo aeque facile obtineri poterit. 
 
354. Quodsi autem series quaecunque recurrens tandem tam prope ad progressionem 
geometricam convergat, tum ex ipsa lege progressionis statim facile cognosci poterit, 
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cuiusnam aequationis radix sit futura quotus, qui ex divisione unius termini per 
praecedentem oritur. Sint 

,  ,  ,  , etcP Q R S T . 
termini seriei recurrentis a principio iam longissime remoti, ita ut cum progressione 
geometrica confundantur, sitque 
 

T S R Q Pα β γ δ= + + +  
 

seu scala relationis , , ,a β γ δ+ + + . Ponatur valor fractionis Q
P x=  ;  erit 

3 4,   et  ,SR T
P P Pxx x x= = =  

 
qui in superiori aequatione substituti dabunt  
 

4 3 2x x x xα β γ δ= + + + , 
 

unde patet quotum Q
P  tandem praebere radicem unam aequationis inventae. Hoc vero et 

praecedens methodus indicat, praeterea vero docet fractionem Q
P  dare maximam 

aequationis radicem. 
 
355. Potest quoque haec methodus investigandarum radicum saepenumero utiliter 
adhiberi, si aequatio sit infinita. Ad quod ostendendum proposita sit aequatio 
 

3 5 71
6 120 50402

etc.,z z zz= − + − +  

 
cuius radix minutia z exhibet arcum 30° seu semiperipheriae circuli sextantem. 
Perducatur ergo aequatio ad hanc formam 
 

3 5 7

3 60 25201 2 etc. 0.z z zz− + − + − =  

 
Hinc ergo formetur series recurrens, cuius scala relationis est infinita, scilicet 
 

1 1 1
3 60 25202,  0,  ,  0,  ,  0,  ,  0  etc.,− + −  

 
eritque series recurrens 
 

23 1681 240844
3 3 60 451,  2,  4,  , , ,  etc. : 
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erit ergo proxime 

1681 45 1681 3 5043
2408 60 2408 4 9632 0,52356.z ⋅ ⋅

⋅ ⋅
= = = =  

 
At ex proportione peripheriae ad diametrum cognita debebat esse  0,523598z = , 

ita ut radix inventa tantum parte 3
100 000  a vero discrepet. Hoc autem in hac aequatione 

commode usu venit, quod eius omnes radices sint reales atque a minima reliquae satis 
notabiliter discrepent. Quae conditio cum rarissime in aequationibus infinitis locum 
habeat, huic methodo ad eas resolvendas parum usus relinquitur. 
 
 


