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CHAPTER XIII 
 

TOWARDS AN UNDERSTANDING OF CURVED 
LINES 

 
285. Just as above we have described the nature of the infinite extensions of the branches 
thus, so that we have assigned a right line or a simpler curved line, which will merge with 
that curved line at infinity, thus in this chapter we have established some part of a curve 
present in a finite interval to be subjected to examination and to investigate some right 
line or simpler curve, which perhaps may agree with that part of the curve through the 
smallest interval. And certainly in the first place it is apparent every right line, which 
touches the curve, in that place where it touches, agrees with the line of the curve drawn 
or to have two points in common as a minimum. Then truly also other curved lines can be 
shown, which may agree more accurately with a part of the line and that as if osculating 
at that point. [The Latin translates as ‘kissing’.] Moreover with these known, the state of 
a curved line and its properties at some point are most clearly evident. 
 

286. Therefore let there be some equation 
proposed between the coordinates x and y for a 
certain curve. The value of some abscissa x may 
be granted, (Fig. 55), AP p  and the values of 
the applied line y may be sought corresponding to 
this abscissa, which if there several, for 
argument’s sake one may be taken , and 
M will be a point on the curve, or a point through 
which the curve will pass. Then truly, if in the 

proposed equation between x and y there may be written p in place of x and q in place of 
y, all the terms of the equation mutually cancel each other, so that nothing may be left. 
Now investigating the nature of the part of this curve, which passes through the point M, 
the right line Mq is drawn from the point M parallel to the axis AP, which now may be 
taken for the axis, and here the new abscissa may be called

PM q

Mq t , the applied line 
. Therefore because the point m is placed equally on the curve, if mq may be 

produced as far as to the former axis at p and 
qm u

Ap p t  may be substituted in place of x 
and pm q u  in place of y, an identical equation must be produced equally. 
 
287. But with this substitution made in the equation proposed between x and y, all the 
terms, in which neither t nor u is absent, mutually cancel each other and these terms, 
which contain the new coordinates t and u, will be present only. Hence an equation of this 
kind will be produced  
 

30 eAt Bu Ctt Dtu Euu Ft Fttu Htuu         tc. , 
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where A, B, C, D etc. are constant quantities composed from the constants of the first 
equations and from p and q themselves, which we have now for constants. Therefore the 
nature of the same curve is expressed in this new equation, truly referred to the axis Mq, 
and in which a point of the curve itself M is taken for the start of the abscissas.  
 
288. And indeed in the first place it is apparent, if there may be put , then also 
there is , because the point m falls on M. Then, because we wish to investigate 
only a minimum part of the curve moving around M, we will obtain this, if we assume 
values for t as minimal ; in which case also qm

0Mq t 
0qm u 

u will have a minimum value ; for we 
wish only as if to find the nature of the vanishing arc Mm. Because if truly for t and u 
values may be taken as minimal, the terms tt, tu and uu at this stage will be much smaller 
and the following also will be much smaller than these and so one 
thus; on account of which, since the smallest terms may be able to be omitted besides 
these as if infinitely greater ones, this equation 

3 ,  ,  ,   etc.t ttu tuu u3

 0 At Bu   will remain, which is the 
equation for the right line M passing through the point M and it will show that line, if 
the point m approaches M closely, to agree with the curve. 
 
289. Therefore this right line M  will be the tangent of the curve at the place M, and 
thus hence at some point of the curve M the tangent MT can be drawn. Clearly, since 
from the equation  there shall be   At Bu 0
 

 
u A q

t B Mq


   , 

there will be 
 : :q Mq MP PT A B:    . 

 

Therefore, since there shall be PM q , there becomes 
Bq

PT
A

  ; moreover this part of 

the axis PT is accustomed to be called the subtangent. Therefore from these this is 
deduced :  
 

RULE FOR FINDING THE SUBTANGENT 
 

In the equation for a curve, upon finding x p  of the abscissas to satisfy the applied 
line y q , there may be put    x p t and y  q u   ; but from the boundaries, which arise 
from the substitution, only these may be retained, in which t and u maintain a single 
dimension, with all the rest ignored. And thus the equation 0At Bu   will come to two 

terms only ; from which with A and B known the subtangent will be 
Bq

PT
A

  . 
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EXAMPLE I 
 

The proposed curve shall be a parabola, the nature of which is expressed by this 
equation 2yy a x , with the principal axis being AP and the vertex A. 

 
There may be taken ; and if on calling AP p PM q , the equation becomes 

, or 2qq ap 2q ap . Now there may be put  and  x p t y q u    , and the equation 

becomes 
2 2qq qu uu ap at2    ; 

 
from which, by the rule, only these terms 
2 2qu at  may be retained, which give 

0,  .
u a A

at qu
t q B

      

Therefore the subtangent will be 

2  on account of  2
qq

PT p qq ap
a

   . Hence 

the subtangent PT will be twice the abscissa AP. 
 

EXAMPLE II 
 

The curve shall be an ellipse described with centre A, the equation of which is 
 

   or .
bb

 yy aa xx aayy bbxx aabb
aa

     

 
Therefore with and on putting AP p PM q  there will be aaqq bbpp aabb  . 

Now there may be put  and  x p t y q u    ; and, because these terms only must be 
retained, in which t and u have a single dimension, the rest can be ignored at once and the 
equation becomes  

2 2aaqu bbpt 0   
from which  

.
u bbp A

t aaq B
     

Therefore the subtangent will be 
 

;
B aaqq aa pp

PT q
A bbp p

 
      
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which expression, since it shall be negative, indicates the point T falls on the opposite 
side of the ellipse. Moreover this expression agrees uncommonly well with the tangent of 
the ellipse treated above. 
 

EXAMPLE III 
 

Let the proposed line be of the seventh kind of the third order 
 

yyx axx bx c   . 
 

Therefore on taking  and puttingAP p PM q  there will be pqq app bp c   . 
Now there may be put  and  x p t y q u     and the equation becomes 
 

( )( 2 ) ( 2 ) ( )p t qq qu uu a pp pt tt b p t c         . 
 
With all the superfluous terms rejected the equation becomes 2 2pqu qqt apt bt   , 
from which there becomes 
 

2
= 

2

u ap b qq A

t pq B

 
   

and thus the subtangent 
 

32 2 2 2 2 2
 = = 

2 2

2B pqq app bp c ap bpp cp
PT

A ap b qq ap b qq app c

   
  

    
, 

 
or  

2 ppqq
PT

app c



 

 
 290. Therefore with the tangent to the curve known, likewise the direction is understood, 
which the curve follows at the point M. Indeed a curved line can be considered most 
appropriately as the way, which a point continually moving forwards with a continuous 
variation in the direction of the motion. And thus the point, which the curve M will 
describe in its motion at M, will be moving forwards along the direction of the tangent 
M ; which direction if it were conserved, will describe the right line M , but it 
changes the direction of the motion from the vestigial direction, if indeed it will describe 
a curved line ; from which for knowing the course of the curved line it is necessary to 
define the position of the tangent, that which happens easily by the method treated here ; 
for nor indeed is any difficulty encountered, as long as the equation for the proposed 
curve should be rational and free from fractions. Moreover all equations are able always 
to be reduced to such a form. But if the equation were either irrational or involved 
fractions nor will it be free to be reduced to a rational and whole form, then indeed the 
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same method will be able to be used but with a certain moderation, which moderation 
itself leads on to the differential calculus ; on account of which we will reserve the 
method for finding tangents, if the equation for the proposed curve were neither rational 
nor whole, to the differential calculus. 
 
291. Hence therefore with the inclination of the tangent M to the axis AP or of its 
parallel Mq known. For since there shall be :q Mq :A B   , if the coordinates were 

orthogonal and thus the angle Mq  right, 
A

B
  will be the tangent of the angle qM ; 

but if the coordinates were oblique, then the angle qM may be found by trigonometry 
from the given angle Mq , and in the ratio of the sides ,  Mq q . Moreover it is apparent, 
if in the resultant equation0A  0At Bu  , then the angle qM  vanishes and thus the 
tangent M  becomes parallel to the axis AP . But if 0B  , then the tangent M  of the 
applied line PM will be parallel to the applied line PM itself, touching the curve at the 
point M . 
 
292. With the tangent MT found, if to that at the point of contact M the normal MN may 
be drawn, this will be likewise the normal to the curve itself ; therefore its position will 
be found easily in any case. It may be expressed most conveniently, if the coordinates AP 
and PM were orthogonal; for then there will be the similar triangles Mq and MPN and 
thus 

: :  or : :Mq q MP PN B A q PN    , 
 
from which there becomes 

Aq
PN

B
  . 

 
Moreover this part of the axis PN, between the applied line and the normal MN is 
accustomed to be called the subnormal. Therefore this subnormal, if the coordinates were 
orthogonal, is defined most easily from the subtangent PT, for there will be 
 

2

: :  or  =
PM

PT PM PM PN PN
PT

 . 

 
Truly in addition, if the angle APM were right, the tangent itself will be 
 

2 2( )MT PT PM   

and the normal itself 
2 2( )MN PM PN   

 
or, since there shall be : :PT TM PM MN , it will be given by : 
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2 2:

( )
PM TM PM

MN PT PM
PT PT

   . 

 
293. Because we have seen, if in equation 0At Bu   either 0 or 0A B  , then the 
tangent becomes parallel either to the axis or to the applied line, the case remains 
requiring to be considered, in which each coefficient A and B shall both become . 
Therefore since this comes about, the following [i.e. higher order] terms found in the 
above equation (in §286), in which t and u have two dimensions, are no longer able to be 
ignored with respect to these 

0

At Bu  (which themselves vanish). Hence on this account 
it is required to consider this equation  0 EuuCtt Dtu   , with the higher order terms 
ignored, certainly which vanish before these, if t and u may be placed infinitely small. 
From this equation therefore, as from the general, it is evident, if there may be put 0t  , 
to be also and thus M is a point on the curve, which indeed is in agreement with the 
hypothesis. 

0u 

 
294. Therefore since this equation  0 Ctt Dtu Euu  

shall be 0u

 may show the point M to be 
situated properly on the curve, it is evident, if DD were less than 4CE, then the equation 
becomes imaginary, unless t and  . Therefore in this case the point M 
certainly will relate to the curve, truly it will be separated from the rest of the curve and 
thus it will be a conjoined oval in a vanishing point, a case of the kind we have observed 
in the preceding chapter. Therefore here indeed the idea of a tangent cannot be 
considered, because, if the tangent is a right line having two nearby points in common 
with the curve, a point from a right line cannot touch [the curve] in this way. And thus 
with this understood a point of conjunction, if which may be given on a certain curve, 
may be recognised and distinguished from the remaining points of the curve. 
 
295. But if moreover DD were greater than 4CE, the 
equation  will be resolvable into two 
equations of this form 

 0 Ctt Dtu Euu  
t u 0    (Fig. 56), each of which 

meets the nature of the curve equally [i.e. adjusts itself 
equally to the nature of the curve at the point]. Therefore 
since the position of the tangent or the direction of the 
curve may be shown at the point M , it is necessary, that the 
two branches of the curve may cross each other at the point 
M and may put in place there a double point. Clearly on 
taking Mq t  and q qv,   shall be both values of u, which that equation may provide, 
and the right lines M  and Mv both will be tangents to the curve at the point M. 
Therefore the intersection of two branches of the curve will be at M, of which one is 
directed along M  and the other along Mv. Therefore since equally a point of 
conjugation shall be required to be had for a double point, this equation 

 will always indicate a double point, just as the equation 
, as often as it may be considered, declares only a simple point of the curve.  

 0
At

Ctt 
 Bu

Dtu Euu
0
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296. But if there were , then both these tangents 4DD CE M  and Mv coincide and 
the angle Mv vanishes ; from which it is understood that the two branches of the curve 
not only meet at M, but also have the same direction and thus are tangents to each other 
in turn ; in which case the point M nevertheless will be double, because a right line drawn 
through the point must be considered to cut the curve in two points. Therefore when in 
the equation, as we have obtained in §286, both the first coefficients A and B vanish, then 
it is required to be concluded that the curve has a double point at M, of which there are 
three different kind given ; either an oval vanishing in a point (or a conjugal point), or the 
two branches of the curve mutually intersecting each other (or a node), or the touching of 
two branches of the curve; which different kinds of double points the three-fold 
constitution of the equation defines.  0 Ctt Dtu Euu  
 
297. If these three coefficients C, D and E also may vanish besides the coefficients A and 
B, then the following terms will have to be taken, in which t and u maintain three 
dimensions, and there will be 3 0Ft Gttu Htuu Iu3    . Which equation, if it may have 
a single real factor, here may show a single branch of the curve passing through the point 
M and likewise the direction or tangent ; truly the two remaining imaginary factors will 
prove to be an oval vanishing in the point M itself. But if all the roots of this equation 
were real, hence the three branches cross over each other at the same point M or touch, 
just as these roots were unequal or equal. Whichever of these will eventuate, the curve 
always will have a triple point at M, and likewise it is to be considered to be cut in three 
points M always. 
 
298. But if in addition all these preceding four coefficients F, G, H and I may vanish, 
then it will be necessary to consider the following terms of the equation to understand the 
nature of the point M of the curve, in which t and u may have four dimensions; from 
which the point M will be declared a four-fold point. For at that point either two 
conjugate ovals coalesce, which arises, if all the roots of the equation of the fourth order 
were imaginary. Or at M there will be the intersection or contact of two branches of the 
curve with a conjugate point, which eventuates, if two roots were real, and the remaining 
two were imaginary. Or finally at M there will be the intersection of four branches of the 
curve, if all the roots were real; moreover the intersection either of two, three, or of all 
four will become a point of contact, if two, three, or all four become equal. But in a 
similar manner, with all these terms vanishing also, where t and u maintain four 
dimensions, there will be a progression in the reasoning to five terms or of a higher 
dimension. 
 
299. From these careful assessments the general equation will be found easily for all 
curves, which not only may pass through the point M, but also in M the curves may have 
either a simple, double, triple, or any multiple point wished. For on putting 

,  AP p PM q  and with P, Q, R, S etc. denoting some functions of the coordinates x 
and y, it is evident this equation 
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    0P x p Q y q     

 
expresses the curve passing through the point M; for if there may be put x AP p  , it 
becomes , as long as neither P were divisible byy PM q  y q nor Q by  x p , or 
provided these factors  and  x p y

  0Q y q 

q

0

, on which the passage of the curve through the 
point M depends, may not be eliminated from the equation by division. Moreover it is 
evident all the curves, which indeed may pass through the point M, are contained in that 
equation ; truly M will be a simple point, if this equation were 

not of this form, such as we shall show soon for multiple points. 

 P x p 

 
300. If M has to be a double point, the equation for the curve will be contained in this 
general form 

     2 2
( )P x p Q x p y q R y q       , 

 
provided this form may not be ruined by division. Hence it is seen that a double point 
cannot fall on lines of the second order ; for since that equation shall be of the second 
order only, it is necessary, that P, Q and R shall be constant quantities ; but then the 
equation will not be for a curved line, but indeed two right lines. But if P, Q, R were 
functions of the first order such as x y    , then lines of the third order may be had 
having a double point at M. But truly a line of the third order, unless it may depend on 
three right lines, cannot have more than one double point. For we may consider two 
double points to be given and through these a right line may be drawn ; this right line 
may cut the curve in four points, which is contrary to the nature of lines of the third order. 
A line of the fourth order will have two double points only ; a line of the fifth order 
cannot have more than three, and thus so on.  

[The maximum number of double points 
( 1)( 2)

2

n n 
, for an irreducible curve of order 

n, established by Maclaurin in geometria organica 1720, page 137. Noted by A.S. in the 
O.O. edition.] 
 
301. Let M be a triple point of the curve and the nature of the curve may be expressed by 
this equation 
 

 3 2 2( ) ( )  ( )( ) ( )P x p Q x p y q R x p y q S y q         3 0 . 

 
Therefore this equation, if it may define a curved line, will exceed the third order, for if 
P, Q, R and S shall be constants, so that the nature of lines of the third order is removed, 
then the equation may have three factors of the form   ( )x p y  q    and thus 

becomes that for three right lines. Therefore a triple point cannot be present in a simpler 
curve than the fourth order ; nor can lines of the fifth order have more than one triple 



EULER'S  
  INTRODUCTIO IN ANALYSIN INFINITORUM VOL. 2

Chapter 13.  
 Translated and annotated by Ian Bruce.                             page 323 

4 0

point, for otherwise a right line may be given cutting the line of the fifth order in six 
points. But nothing prevents a line of the sixth order from having two triple points. 
 
302. If the equation may be contained in this form : 
 

 4 3 2 2 3( ) ( )  ( ) ( ) ( )( ) ( )P x p Q x p y q R x p y q S x p y q T y q             , 

 
then the curve will have a quadruple point at M. Therefore the simplest curved line, 
which a point of the fourth order may enjoy, will depend on the fifth order of lines. Truly 
two fourfold points cannot arise unless on lines of the eighth or of a higher order. In a 
similar manner the general equations can be shown for lines, which may have a fifth 
order point at M , or for some multiple it pleases. 
 
303. But if moreover M were either a double or triple point , or some multiple whatever, 
then either just as many branches of the curve mutually cut each other or are tangents at 
M, or if the number of branches intersecting each other shall be less, then one or more 
conjugal points will gather together at the same point M, which state of the curve may be 
known from these, which have been treated before. Clearly, in the functions P, Q, R, S 
etc. and everywhere p and q must be written in place of x and y, and also t and u in place 
of the factors  and x p y q ; then indeed equations of the same kind will be produced, 
from which the nature of the curve, and the intersecting tangents of their branches, can be 
defined at M. 
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CAPUT XIII 

 

DE AFFECTIONIBUS LINEARUM CURVARUM 
 
 
285. Quemadmodum supra ramorum in infinitum extensorum indolem ita descripsimus, 
ut lineam rectam vel curvam simpliciorem assignaverimus, quae cum illa curva in infinito 
confunderetur, ita in hoc capite constituimus quamvis curvae portionem in spatio finito 
existentem examini subiicere atque rectam vel curvam simpliciorem investigare, quae 
cum illa curvae portione saltem per minimum spatium congruat. Ac primo quidem patet 
omnem lineam rectam, quae curvam tangit, in eo loco, ubi tangit, cum tractu lineae 
curvae congruere seu cum linea curva duo ad minimum puncta communia habere. Tum 
vero etiam aliae lineae curvae exhiberi possunt, quae cum data curvae portione accuratius 
congruant eamque quasi osculentur. His autem cognitis status lineae curvae in quovis 
loco eiusque affectiones clarissime erunt perspectae. 
 

286. Sit igitur proposita aequatio quaecunque 
inter coordinatas x et y pro curva quapiam. 
Tribuatur (Fig. 55) abscissae x ,valor quispiam 
AP p  et quaerantur valores applicatae y huic 
abscissae respondentes, qui si plures fuerint, 
sumatur pro lubitu unus PM q , eritque M 
punctum in curva seu punctum, per quod curva 
transibit. Tum vero, si in aequatione inter x et y 
proposita loco x scribatur p et q loco y, omnes 

aequationis termini se mutuo tollent, ita ut nihil remaneat. Iam ad naturam illius curvae 
portionis, quae per punctum M transit, indagandam ex M ducatur recta Mq axi AP 
parallela, quae nunc pro axe accipiatur, et vocetur hic nova abscissa Mq 

q u

t , applicata 
. Quia igitur punctum m pariter in curva est positum, si mq usque ad priorem 

axem in p producatur atque in locum ipsius x et 
qm u

Ap p t  pm   in locum ipsius y 
substituatur, aequatio pariter identica prodire debet. 
 
287. Facta autem hac substitutione in aequatione inter x et y proposita, omnes termini, in 
quibus neque t nec u inest, se mutuo sponte destruent illique termini, qui novas 
coordinatas t et u continent, soli supererunt. Hinc ergo eiusmodi prodibit aequatio  
 

30   At Bu Ctt Dtu Euu Ft Fttu Htuu         etc. , 
 
ubi A, B, C, D etc. sunt quantitates constantes ex constantibus primae aequationis 
et ipsis p et q, quas nunc pro constantibus habemus, compositae. Ista igitur nova 
aequatione natura eiusdem curvae, exprimitur, verum ad axem Mq refertur, et in quo 
ipsum curvae punctum M pro initio abscissarum assumitur.  
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288. Ac primo quidem patet, si ponatur 0Mq t  , tum quoque fore , quia 
punctum min M incidit. Deinde, quia tantum minimam curvae portionem circa M 
versantem indagare volumus, hoc impetrabimus, si pro t valores quam minimos 
assumamus; quo casu quoque 

0qm u 

qm u valorem habebit minimum; naturam enim arcus 
Mm quasi evanescentis tantum desideramus. Quodsi vero prot et u sumantur valores 
quam minimi, termini tt, tu et uu multo adhuc erunt minores atque sequentes 

multo quoque erunt minores quam illi et ita porro; quam ob causam, 
cum termini minimi prae allis quasi infinite maioribus omitti queant, remanebit 

3 ,  ,  ,   etc.t ttu tuu u3

ista aequatio  0 At Bu  , quae est aequatio pro linea recta M per punctum 
M transeunte atque indicat hanc rectam, si punctum m ad M proxime accedat, cum curva 
congruere. 
 
289. Erit ergo haec recta M  tangens curvae in loco M, ideoque hinc ad quodvis 
punctum curvae M tangens MT duci potest. Scilicet, cum ex aequatione   0At Bu 
sit 

 
u A q

t B Mq


   , 

erit 
 : :q Mq MP PT A B:    . 

 

Ergo, cum sit , fiet PM q
Bq

PT
A

  ; vocari autem haec axis portio PT solet 

subtangens. Ex his ergo haec deducitur 
 

REGULA PRO INVENIENDA SUBTANGENTE 
 

In aequatione pro curva, postquam abscissae x p inventa fuerit satisfacere 
applicata y q , ponatur    x p t et y q u     ; ex terminis autem, qui per 
substitutionem oriuntur, ii tantum retineantur, in quibus t et u unicam dimensionem 
tenent, reliquis omnibus neglectis. Sicque ad duos tantum terminos  

pervenietur; unde cognitis A et B erit subtangens

0At Bu 
Bq

PT
A

  . 

 
EXEMPLUM I 

 
Sit proposita curva parabola, cuius natura hac exprimitur aequatione 2yy a x , 

existente AP axe principali et A vertice. 
 

Sumatur ; et, si vocetur AP p PM q , erit 2qq ap , seu 2q a p . Iam ponatur 

 et x p t u  y q  , eritque 
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22 2qq qu uu ap at    ; 
unde, per regulam, hi tantum termini 2 2qu at  retineantur, qui dant 

0,  .
u a A

at qu
t q B

      

Erit ergo subtangens 2  ob 2
qq

PT p qq ap
a

   . Hinc subtangens PT erit dupla 

abscissae AP. 
 

EXEMPLUM II 
 

Sit curva ellipsis centro A descripta, cuius aequatio est 
 

   seu .
bb

yy aa xx aayy bbxx aabb
aa

      

 
Sumta ergo AP p et posita PM q  erit aaqq bbpp aabb  . 
Iam ponatur  et x p t y q u    ; et, quoniam ii tantum termini retineri debent, in quibus 
t et u unicam habent dimensionem, reliqui statim omitti possunt fietque 
 

2 2aaqu bbpt 0   
unde  

  .
u bbp A

t aaq B
     

Erit ergo subtangens 
 

;
B aaqq aa pp

PT q
A bbp p

 
      

 
quae expressio, cum sit negativa, indicat punctum T in partem contrariam cadere. 
Ceterum haec expressio egregie convenit cum determinatione tangentium ellipsis supra 
tradita. 
 

EXEMPLUM III 
 

Sit proposita linea tertii ordinis speciei septimae 
 

yyx axx bx c   . 
 

Sumto ergo  et posita AP p PM q  erit pqq app bp c   . 
Iam statuatur  et x p t y q u     eritque 
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( )( 2 ) ( 2 ) ( )p t qq qu uu a pp pt tt b p t c         . 
 
Reiectis omnibus terminis superfluis erit 2 2pqu qqt apt bt   , unde fit 
 

2
= 

2

u ap b qq A

t pq B

 
   

ideoque subtangens 
 

32 2 2 2 2 2
 = = 

2 2

2B pqq app bp c ap bpp cp
PT

A ap b qq ap b qq app c

   
  

    
, 

 
vel  

2 ppqq
PT

app c



 

 
290. Cognita ergo hoc modo tangente curvae, simul cognoscitur directio, quam curva 
sequitur in puncto M. Linea enim curva aptissime considerari potest tanquam via, quam 
describit punctum continuo promotum cum variata continuo motus directione. Ideoque 
punctum, quod curvam M motu suo describit in M, promovebitur secundum 
directionem tangentis M ; quam directionem si conservaret, describeret rectam M , at 
e vestigio directionem motus inflectit, siquidem lineam curvam describit; unde ad tractum 
lineae curvae cognoscendum in singulis punctis positionem tangentis definire oportet, 
id quod facile fit methodo hic tradita; neque enim ulla offenditur difficultas, dummodo 
aequatio pro curva proposita fuerit rationalis atque a fractionibus libera. Ad talem autem 
formam aequationes omnes semper reduci possunt. Sin autem aequatio fuerit vel 
irrationalis vel fractionibus implicata neque eam ad formam rationalem et integram 
reducere vacaverit, tum eadem quidem methodus, at cum moderatione quadam, adhiberi 
potest, quae ipsa moderatio calculum differentialem produxit; quamobrem methodum 
inveniendi tangentes, si aequatio pro curva proposita non fuerit rationalis et integra, in 
calculum differentialem reservabimus. 
 
291. Hinc ergo innotescit inclinatio tangentis M  ad axem AP seu eius parallelam Mq. 
Cum enim sit :q Mq A B:   , si coordinatae fuerint orthogonales ideoque angulus 

Mq  rectus, erit 
A

B
  tangens anguli qM ; sin autem coordinatae fuerint 

obliquangulae, tum ex angulo Mq  dato et ratione laterum ,  Mq q  per trigonometriam 
reperietur angulus qM . Patet autem, si in aequatione resultante 0BuAt   fuerit 

, tum angulum 0A  qM  evanescere ideoque tangentem M  fore axi AP parallelam. 
Sin autem fuerit , tum tangens 0B  M  applicatis PM erit parallela seu ipsa applicata 
PM curvam in puncto M tanget. 
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292. Inventa tangente MT, si ad eam in puncto contactus M ducatur normalis MN, erit 
haec ad ipsam curvam simul normalis; cuius propterea positio quovis casu facile 
reperitur. Commodissime autem exprimitur, si coordinatae AP et PM fuerint 
orthogonales; tum enim erunt triangula Mq  et MPN similia ideoque 
 

: :  seu  :  :Mq q MP PN B A q PN    , 
 
unde fit 

Aq
PN

B
  . 

 
Vocari autem haec axis portio PN, inter applicatam et normalem MN intercepta, 
solet subnormalis. Haec igitur subnormalis, si coordinatae fuerint orthogonales, ex 
inventa subtangente PT facillime definitur, erit enim 
 

2

: :  seu =
PM

PT PM PM PN PN
PT

 . 

Praeterea vero, si angulus AP M fuerit rectus, erit ipsa tangens 
 

2 2( )MT PT PM   

et ipsa normalis 
2 2( )MN PM PN   

 
seu, cum sit , erit : :PT TM PM MN
 

2 2:
( )

PM TM PM
MN PT PM

PT PT
   . 

 
293. Quoniam vidimus, si in aequatione 0At Bu  fuerit vel 0 vel 0A B  , tum 
tangentem fore vel axi vel applicatis parallelam, superest casus, quo uterque coefficiens A 
et B simul fit , considerandus. Hoc ergo cum evenit, in aequatione supra (paragrapho 
286) inventa sequentes termini, in quibus t et u duas obtinent dimensiones, non amplius 
prae his 

0

At  Bu
 0

 (qui ipsi evanescunt) negligi poterunt. Hanc ob rem consideranda veniet 
haec aequatio , neglectis sequentibus terminis, quippe qui prae his, si 
t et u statuantur infinite parva, evanescunt. Ex hac igitur aequatione, uti ex generali, 
manifestum est, si ponatur , fore et 

Ctt Dtu Euu  

0t  0u  ideoque M esse punctum in curva, quod 
quidem hypothesi est consentaneum. 
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294. Cum igitur haec aequatio  0 Ctt Dtu Euu  

0

 statum curvae prope punctum M 
declaret, manifestum est, si fuerit DD minor quam 4CE, tum aequationem fore 
imaginariam, nisi sint t et u . Hoc igitur casu punctum M quidem ad curvam 
pertinebit, verum erit seiunctum a reliqua curva eritque ideo ovalis coniugata in punctum 
evanescens, cuiusmodi casum in capite praecedente notavimus. Hic igitur ne idea quidem 
tangentis locum habet, quia, si tangens est recta duo puncta proxima cum curva habens 
communia, punctum a recta tangi hoc modo non potest. Hoc itaque pacto punctum 
coniugatum, si quod datur in curva quapiam, agnoscetur atque a reliquis 



curvae punctis discernetur. 
 
295. Quodsi autem fuerit DD maior quam 4CE, aequatio 

 resolubilis erit in duas aequationes 
huius formae 
 0 Ctt Dtu Euu  

t u 0   (Fig. 56), quarum utraque in 
curvae naturam aeque competit. Cum igitur utraque 
positionem tangentis seu directionem curvae in puncto M 
exhibeat, necesse est, ut duo curvae rami se in puncto M 
decussent ibique punctum duplex constituant. Sumta 
scilicet Mq t , sint  etq  qv ambo valores ipsius u, quos 
illa aequatio praebet, atque rectae M  et Mv erunt ambae  
tangentes curvae in puncto M. In M ergo erit intersectio duorum curvae ramorum, 
quorum alter secundum M  et alter secundum M v dirigitur. Cum igitur punctum 
coniugatum pariter pro puncto duplici sit habendum, haec aequatio  0 Ctt Dtu Euu  

0At Bu
 

semper punctum duplex indicabit, quemadmodum aequatio   , quoties 
locum habet, punctum curvae tantum simplex declarat.  
 
296. Sin autem fuerit , tum ambae istae tangentes 4DD CE M  et Mv coincident et 
angulus Mv evanescet; ex quo intelligitur duos curvae ramos in M non solum 
concurrere, sed etiam eandem directionem habere ideoque se invicem tangere; quo casu 
punctum M nihilominus erit duplex, quia recta per hoc punctum ducta curvam hoc loco in 
duobus punctis secare est censenda. Quando ergo in aequatione, quam paragrapho 286 
obtinuimus, ambo coefficientes primi A et B evanescunt, tum concludenda est curva in M 
punctum duplex habere, cuius tres dantur species diversae; vel ovalis in punctum 
evanescens seu punctum coniugatum vel duorum curvae ramorum intersectio mutua 
seu nodus vel duorum curvae ramorum contactus, quas diversas puncti duplicis 
species triplex aequationis  constitutio definit.  0 Ctt Dtu Euu  
 
297. Si praeter coefficientes A et B etiam hi tres C, D et E omnes evanescant, tum 
sequentes sumi debebunt termini, in quibus t et u tres obtinent dimensiones, eritque 

. Quae aequatio si unicum habeat factorem simplicem realem, 
hic ostendet unum curvae ramum per punctum M transeuntem eiusque simul directionem 
seu tangentem; bini vero reliqui factores imaginarii in ipso puncto M ovalem 
evanescentem arguent. Sin autem omnes radices illius aequationis fuerint reales, hinc 
cognoscetur tres curvae ramos se in eodem puncto M vel decussare vel tangere, 

3 0Ft Gttu Htuu Iu   3
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prout illae radices fuerint vel inaequales vel aequales. Quicquid horum evenerit, curva in 
M semper habebit punctum triplex atque recta per M ducta curvam simul in tribus punctis 
secare putanda est. 
298. Quodsi praeter omnes coefficientes praecedentes etiam hi quatuor F, G, H et I 
evanescant, tum ad naturam puncti curvae M cognoscendam contemplari oportebit 
terminos aequationis sequentes, in quibus t et u quatuor habeant dimensiones; unde 
punctum M quadruplex erit iudicandum. In eo enim vel duae ovales coniugatae 
coalescunt, quod evenit, si aequationis quarti gradus omnes radices fuerint imaginariae. 
Vel in M erit intersectio seu contactus duorum curvae ramorum cum puncto coniugato, 
quod evenit, si duae radices fuerint reales, duae reliquae vero imaginariae. At in M 
denique erit intersectio quatuor curvae ramorum, si omnes radices aequationis fuerint 
reales; intersectio autem vel duorum vel trium vel omnium quatuor abibit in contactum, si 
duae, tres vel omnes quatuor radices fiant aequales. Simili autem modo in iudicio erit 
progrediendum, si etiam his terminis, ubi t et u quatuor obtinent dimensiones, 
evanescentibus procedendum erit ad terminos quinque ulteriorumve dimensionum. 
 
299. His perpensis facile erit aequationem generalem pro omnibus curvis invenire, quae 
non solum per punctum M transeant, sed etiam in M habeant punctum vel simplex vel 
duplex vel triplex vel totuplex, prout quis voluerit. Positis enim ,  AP p PM q  ac 
denotantibus P, Q, R, S etc. functiones quascunque coordinatarum x et y, manifestum est 
hanc aequationem 
 

    0P x p Q y q     

 
exprimere curvam per punctum M transeuntem; si enim ponatur x AP p  , fiet 

, dummodo neque P per y PM q  y q nec Q per x p  fuerit divisibile, vel 
dummodo hi factores  et x p y q  , a quibus transitus curvae per punctum M pendet, ex 
aequatione per divisionem non eliminentur. Perspicuum autem est omnes curvas, quae 
quidem per punctum M transeant, in ista aequatione     0Q y qP x p     contineri; 

erit vero M punctum simplex, si haec aequatio non fuerit eius formae, qualem pro punctis 
multiplicibus mox exhibebimus. 
 
300. Si M debeat esse punctum duplex, aequatio pro curva in hac forma generali 
continebitur 
 

     2 2
( )P x p Q x p y q R y q       0 , 

 
dummodo haec forma per divisionem non pereat. Perspicitur hinc in lineas secundi 
ordinis punctum duplex cadere non posse; quo enim illa aequatio secundi tantum sit, 
necesse est, ut P, Q et R sint quantitates constantes; tum autem aequatio non erit pro linea 
curva, sed pro duabus rectis. Sin autem P, Q, R sint functiones primi ordinis ut 

x y   , tum lineae habebuntur tertii ordinis in M punctum duplex habentes. At vero 
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linea tertii ordinis, nisi ex tribus rectis constet, plus uno puncto duplici habere nequit. 
Ponamus enim dari duo puncta duplicia atque per ea lineam rectam duci; haec linea 
recta curvam in quatuor punctis secaret, quod naturae linearum tertii ordinis adversatur. 
Linea quarti ordinis duo tantum habebit puncta duplicia; linea quinti ordinis plura tribus 
habere non poterit et ita porro.  
 
301. Sit M punctum curvae triplex atque natura linea curvae hac exprimetur 
aequatione 
 

 3 2 2( ) ( )  ( )( ) ( )P x p Q x p y q R x p y q S y q         3 0

)

. 

 
Haec aequatio igitur, si lineam curvam definiat, tertium ordinem superabit, namque si P, 
Q, R et S essent constantes, quod linearum tertii ordinis natura exigit, tum aequatio tres 
haberet factores formae   (x p y    q

4 0

 ideoque foret pro tribus rectis. In curvas 

ergo quarto ordine simpliciores punctum triplex non cadit; neque lineae quinti ordinis 
plus uno puncto triplici habere possunt, alioquin enim daretur recta lineam quinti ordinis 
in sex punctis secans. Nihil autem impedit, quominus linea sexti ordinis duo habeat 
puncta triplicia. 
 
302. Si aequatio in hac forma contineatur: 
 

 4 3 2 2 3( ) ( )  ( ) ( ) ( )( ) ( )P x p Q x p y q R x p y q S x p y q T y q             , 

 
tum curva in M habebit punctum quadruplex. Linea ergo curva simplicissima, quae 
puncto quadruplici gaudeat, ad linearum ordinem quintum pertinebit. Duo vero puncta 
quadruplicia non cadunt nisi in lineas aut octavi aut altioris gradus. Simili modo 
aequationes generales exhiberi possunt pro lineis, quae in M habeant punctum quintuplex 
vel pro lubitu multiplex. 
 
303. Quodsi autem M fuerit vel punctum duplex vel triplex vel utcunque multiplex, tum 
vel totidem curvae rami se mutuo in puncto M secabunt sive tangent, vel, si numerus 
ramorum se intersecantium sit minor, tum unum plurave puncta coniugata in eodem 
puncto M concrescent, qui curvae status cognoscetur ex iis, quae ante sunt tradita. 
Scilicet, in functionibus P, Q, R, S etc. ubique loco x et y scribi debent p et q, et t et u loco 
factorum  et x p y q  ; tum enim prodibunt eiusmodi aequationes, ex quibus constitutio 
curvae et ramorum se in M intersecantium tangentes definiri poterunt. 
 
 


