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CHAPTER XIV 

 
CONCERNING THE CURVATURE OF 

CURVED LINES 
 
304. Just as in the chapter above we have investigated right lines, which will indicate the 
direction of this curved line at some point, thus here we will investigate simpler curved 
lines, which may agree so precisely with a proposed curve, that as if perhaps in the 
smallest space they may be merged together. For thus from the known nature of the 
simpler curve the nature of the proposed curve likewise may be deduced. Clearly here we 
will proceed by a similar method, as we have used above in examining the nature of the 
branches extending to infinity; that is to say at first by investigating the right line, which 
touches the curve, then truly a simpler curved line, which may meet the proposed curve 
much more than and which may not only touch, but will be in a much better contact. 
Moreover the contact of the smallest arcs of curved lines of this kind is accustomed to be 
called osculating. 
 
305. Therefore let some equation be proposed between the orthogonal coordinates x and 

y, and the nature of the minimum part of the curve 
Mm (Fig. 55) is required to be investigated 
situated around the point M, since the abscissa 
AP p and the applied line shall be 
found, and on the axis MR the minimum abscissa 
may be considered 

PM q

Mq t and the applied line 
qm u ; and there becomes 
  and  x p t y q u     ; with which values 

substituted in the equation it may arrive at this equation 
 

30  eAt Bu Ctt Dtu Euu Ft Gttu        tc. , 
 

which expresses the nature of the curve related to the same axis MR. But because we 
have put in place these new coordinates t and u, the following terms will be as if 
infinitely smaller than the preceding ones and thus they can be rejected without error. 
 
306. Therefore unless both the first coefficients A et B may vanish, with all the following 
terms rejected the equation shows the straight line 0 At Bu  M , which touches the 
curve at the point M and has a common direction with the curve at this place. Therefore 
there will be : :Mq q B A   ; from which, on account of the known quantities A and B, 
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with the position of the tangent M becoming known, which since it may touch the 
curve at the point M only, we may see by how much the curve Mm may differ by a small 
interval at least from the right line M . Towards this end we may take the normal MN 
for the axis, on which from m the applied line mr may be drawn to the perpendicular, and 
calling ,Mr r rm s  ; there will be  
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Whereby , since there shall be 
 

3 etc.At Bu Dtu Euu Ft Gttu      , 
 

r will be a quantity infinitely smaller than t and u, and therefore also r will be a quantity 
infinitely less than s; for s is determined by t and u, but r is determined by the squares or 
higher powers of t and u. 
 
[In the supplementary diagram above, we have  
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307. Therefore we will have a much closer understanding of the curve Mm, if we may 
lead the terms Ctt into the computation also and we may neglect the 
following terms only ; and thus we will have the this equation between t and u  

Dtu Euu 

 
Ctt Dtu Euu   , 
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in which, if we may substitute the above values in place of t and u, we will have 
 
 

   

 

2 2
( )  

                                       .
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r AA BB

AA BB AA BB
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  

 
 




 

 
But, because r is infinitely less than s, the terms rr and rs vanish beside the term ss, 
and the equation becomes 
 

  ( )AA BB r AA BB
ss

AAE ABD BBC

 


 
, 

 
which equation expresses the nature of the osculating curve at M. 
 
308. Therefore the minimal arc of the curve Mm will agree with the vertex of the 
parabola described on the axis MN, whose latus rectum or parameter is 
 

  ( )
 ;

AA BB AA BB

AAE ABD BBC

 
 

 

 
from which the curvature of this parabola at the vertex is just as great as the curvature of 
the proposed curve at the point M. But since the curvature of no curve can be known 
more clearly than the curvature of a circle, because its curvature is the same everywhere, 
and for that to be present, as the radius becomes smaller, it will be more convenient to 
define the curvature by the curvature of an equal circle, which is accustomed to be called 
the osculating circle. Hence on this account it will be necessary to define a circle whose 
curvature may agree with the curvature of the proposed parabola at its vertex, so that then 
it may be allowed to be substituted in place of the osculating parabola. 
 
309. Towards effecting this we consider the curvature of the circle as unknown and we 
may express that in the same manner set out through the curvature of the parabola, for 
thus in turn the circle will be able to be substituted for the osculating parabola. Therefore  
with the proposed curve Mm,  a circle with the radius a  shall be described, the nature of 
which is expressed by the equation 2yy ax xx 

2qq ap pp
. Therefore on taking 

 there will be  and AP p PM q    . Now there may be put 
 

 and  x p t y q u    , 
and this equation may arise 
 

2 2 2 2qq qu uu ap at pp pt tt       , 
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which on account of  is reduced to this form 2qq ap pp 
 

0 2 2 2at pt qu tt uu     , 
 
which compared with the above form gives  
 

2 2 , 2 , 1, 0 and A a p B q C D E        1, 
 

from which the equation becomes : 
 

+ 4( 2 ) 4AA BB aa ap pp qq aa     , 
and 
 

  3( )AA BB AA BB a  8 ; 

 
and also 
 

4AAE ABD BBC AA BB aa       . 
 
From which a circle,  the radius of which a , may osculate at whatever point on the 
curve with the vertex of a parabola, the nature of which is expressed by the equation 

; and thus in turn as the vertex of the parabola2ss ar ss br osculates with the curve, 
so the same circle will osculate, the radius of which is 1

2 b . 

 
310. Therefore since above we have found the osculating parabolic curve Mm, of which 
the equation shall be 
 

( B) (AA B AA BB
ss r

AAE ABD BBC

 


 
)

, 

 
it is evident that the curvature of the curve at M  agrees with the curvature of the circle, 
the radius of which shall be  
 

( B) (
.

2( )

AA B AA BB
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 


 
)

 

 
Therefore this expression gives the radius of the osculating circle and this radius is 
accustomed to be called the radius of osculation ; often also it may be called the radius of 
curvature or curvature. Therefore from the equation between t and u, as we have elicited 
from the proposed equation between x and y, at once can define the radius of osculation 
of the curve at the point M or the radius of the osculating circle of the curve at the point 
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M. For in the equation between t and u the terms may be re-entered, in which t and u 
retain more than two dimensions, and from the equation, which will be of this form 

0 At Bu Ctt Dtu Euu     , 
 

the radius of osculation may be found 
 

( B) (
.

2( )

AA B AA BB

AAE ABD BBC

 


 
)

 

 

311. Truly because the sign has involved an ambiguity with the root ( )AA BB , it is 

uncertain, whether that expression shall be positive or negative, evidently whether the 
point N of the curve may be considered concave or convex. Towards removing the doubt 
it must be sought, whether the point m shall be placed within the tangent M towards the 
axis AN or whether indeed it may fall outside the tangent. In the former case the curve 
will be concave towards N and the centre of the osculating falls on a part of the right line  
MN extending towards the axis ; truly in the latter case it falls on a part of the right line 
NM produced beyond M . Therefore all doubt will vanish, if it may be inquired, whether 
qm shall be less or greater than q , for in the former case the curve will be concave 
towards N, in the latter truly convex. 
 

312. Truly there is  and  
At

q
B

   qm u , whereby it is required to be seen, whether 

At

B
  shall be greater or less than u. Therefore because m  is as the smallest line, we 

may put  m w   and there will be 
At

u
B

w   ; from which, with the substitution 

made, the equation becomes   
 

2
0 ;

ADtt AAEtt AEtw
Bw Ctt Dtw Eww

B BB B
         

 
where on account of w being the smallest term besides t , both the terms tw and ww 
vanish. Hence there becomes 
 

3

( )BBC ABD AAE tt
w

B

 
 . 

 
But if therefore w were a positive quantity, which comes about, if  
 

3
 or  

BBC ABD AAE AAE ABD BBC

B B

   
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were a positive quantity, then the curve will be concave towards N ; but if it were a 
negative quantity, the convexity of the curve with regard to the point N. 
 
313. So that these may be rendered clearer, the different 
cases which are able to occur (Fig. 57) are required to be 
set out separately. Therefore initially there shall be 0B  , 
in which case the applied line itself PM will be the tangent 

to the curve Mm and the radius of osculation will be 
2

A

E
 . 

But whether the curve shall be concave towards R, as the 
figure shows, or convex, is understood from the equation 
0 At Ctt Dtu Euu   

 and 
. For since there shall be 

Mq t qm u  , on account of t being infinitely less than u the terms  tt and tu vanish 
before uu and there will be ; from which equation it is understood, if the 

coefficients A and E may have opposite signs or if 

0At Euu 
E

A
 were a negative quantity, then the 

curve becomes concave towards R. But if the coefficients A and E may have equal signs 

and 
E

A
 were a positive quantity, then the will be placed on the other side of the tangent ; 

for the abscissa Mq must be put in place negative, so that it may correspond to a real 
applied line qm.  
[Recall the general equation , which now 
becomes ] 

3 etc.At Bu Ctt Dtu Euu Ft Gttu       
.At Euu 

 
314. Now the tangent M  shall be inclined to the axis AP or parallel to that, thus so that 

the angle RM  shall be acute and the normal MN 
may cut the axis at N beyond P (Fig. 55), in which 
case the positive applied lines u will correspond to 
the abscissas t ; so that the coefficients A and B 

have different signs and the fraction 
A

B
 will be 

negative. Now in this case as we have seen before 
the curve becomes concave towards N, if  

 
AAE ABD BBC

B

 
 

were a positive quantity or, since 
B

A
 shall be a negative quantity, if  

AAE ABD BBC

A

 
 

were a negative quantity. For if  
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AAE ABD BBC

B

 
 

 
were a negative quantity, or  

AAE ABD BBC

A

 
 

 
were positive, then the curve may direct the convexity towards N. Truly in each case the 
radius of osculation will be  

( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
. 

 
 
315. Now let , in which case (Fig. 58) MR will be the tangent to the curve likewise 
parallel to the axis and u infinitely less than t, from which there will be 0 .

 A  0
Bu Ctt   

Whereby, if B and C may have equal signs or if  BC were a positive quantity, then u must 
have a negative value ; and thu  will be concave towards the point P, on which 
N falls, as the above rule with  made 0A

s the curve
  has shown; truly the radius of osculation will 

be  
2

B

C
  . But this same rule, which has been give above, prevails if (Fig. 59) the tangen

MT may cross the axis beyond P; for then equally

t 

 the curve will be either concave or 
onvex towards N, according as this expression  

 
c

AAE ABD BBC

B

 
 

 
were either positive or negative, and the radius of osculation as before will be  
 

( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
 . 
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ed, or rather the quadrant (Fig. 60) DMC, the centre of is  
e semia

 
316. An ellipse shall be propos
A, the one transvers xis AD a , the other 
conjugate semiaxis AC b . Therefore with the abscissa
x taken on the axis AD from

  
 the centre A, this equation 

ill be had for the ellipse  
 

. 

me absc

w

aayy bbxx aabb 
 

Now with so issa taken AP p and on putting the 
pplied line es 

 
 PM q  the equation becoma

aaqq bbpp aabb  . 

ow there may be put 
 

 and x p t y q u   N , the equation becom
 

or 
0

es 

2 + 2aaqq aaqu aauu bbpp bbpt bbtt aabb      
 

2 2bbpt aaqu btt aauub    . 

nts of t and u, the normal 
N will concur with the axes nearer than P, and there will be 

 

 
Therefore in the first place, on account of the positive coefficie
M

 : : :  and 
bbp

PM PN B A aaq bbp PN
aa

    

 
d 2B aaq . Thon account of  erefore truly on account of 

e 
 

2  anA bbp 
  and  E aa , there will b,  0bb D C

4 44 ( ) 4
= 

2 2

AAE ABD BBC aabb aaqq bbpp a b

B aaq aaq

  
  

 
and thus a positive quantity, from which it is shown that the curve is concave towards N. 

17. Towards finding now the radius of osculation, there is  
 

4 ; 
 

rom which the radius of osculation will be 

 
3

4 4 44( )  and   4AA BB a qq b pp AAE ABD BBC a b     

3
24 4

4 4

(a qq b pp

a b

 )
.  But there is f
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4

4
= ( )

b pp
MN qq

a
  

 
from which 

4 4( )=a qq b pp aa MN   

 
 and thus the radius of osculation 

3

4
=

aa MN

b


 

 
 If from the erpendicular AO may be drawn to the normal MN prcentre A the p oduced, on 

account of 
bbp

AN p
aa

   and the similar triangles MNP and ANO, it will be 

 
4

4

aabbpp b pp
NO

a MN





 

and  
 

 
,

aaqq bbpp bb
MO NO MN

aa MN MN


   


 

 

from which 
bb

MN
MO

 , and hence the radius of osculation 
3

aabb

MO
 , which expression is 

pplied equally to each axis AD and AC. 

cle, of 

 

 
pressed 

ore accurately, as the points will be closer together than the first considered. 

ature of the 
minima y be expressed by

a
 
318. Moreover for any curve with the radius of osculation found for any place on the 
curve, the nature of the curve is seen clearly enough. For if a part of the curve may be 
divided into many minimal parts, each small part can be regarded as the arc of a cir
which the radius will be the radius of oscillation at that place. Hence also truly the 
description of the curve will be resolved more accurately by may points. For after many
points were observed, through which the curve may pass, if for these individual points 
first the tangents and hence again the normals and then the radii of osculation are sought, 
the minute parts of the curve situated between the points will be able to be described with
the aid of compasses. And in this manner truly the figure of the curve will be ex
m
 
319. Therefore because the small part of the curve (Fig. 55) at M agrees with the small 
arc of the circle described by the radius of osculation, not only the element Mm, but also 
the preceding element Mn will be granted the same curvature.  For since the n

l part of the curve Mm ma  an equation of this kind 
ss r between the coordinates  and Mr r rm s  , any of the minimal abscissas  
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Mr r  will correspond to a twofold equation for the applied line s, the one positive and 
the other negative ; and thus the curve will be continued to ards n and equally toward
m. Therefore wherever the radius of osculation, which is 

w s  
1

2
 , has a finite magnitude, 

there at any rate the curvature will be uniform on both sides through the minimal inter
Therefore in these cases neither will the curve from M change suddenly, with a cusp 
formed, nor is it reflected nor will the part Mn be able to change the curvature to become 
convex directed towards N, as long as the other part Mm is concave towards N ; a chang
of curvature of this kind is accustomed to be called an inflection or an opposite turning 
point : whereby, where the radius of o

val. 

e 

sculation is finite, there neither cusps nor contrary 
points need to be considered. 

erefore since from the equation between t and u, 

tc. , 
 

s of osculation may be found 

turning 

20. Th
 

e radiu
 

 
3

30 eAt Bu Ctt Dtu Euu Ft Gttu Htuu        

th

( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
, 

is 

t in these cases the nature of the curve may be 
ined more carefully, the substitution 

 
 it is evident, if 0AAE ABD BBC   , then the radius of osculation becomes infinitely 
great and therefore the circle of osculation changes into a right line. Therefore where th
comes about, there the curved line has no curvature and two elements of the curve are 
placed as if in a direction. Therefore so tha
exam
 

 
  and  

( )

Ar Bs As Br
t u

AA BB AA BB

   
 

 
 

 
is required to e also, in the terms 3 3Ft Gttu Htuu Iu   . But since beside

the first term 

be put in plac s 

( )r AA BB  , all the following terms which contain r may vanish, wit

these terms removed and with the substitu

h 

tion made through the whole equation, an 
 of this kind will be obtained  equation

 

  3 4 5 etcr AA BB ss s s s         . 

hus, only the first power of r is retained in this situation.] 
 

[T
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321. From this equation it may be deduced at once, as above, that the radius of osculation 
will be  
 

 
;

2

AA BB




 

 
but if there shall be 0  , in which case the radius of oscillation becomes infinite, 
towards knowing the nature of the curve more 
precisely,  the following 3s  term must be taken, thus 
so that 
 

3( )r AA BB s  ; 

 
unless indeed there shall be  0  , all the following 

terms 4 ,  s s5   etc. vanish before this term. Therefore 
in this case the curve at M  (Fig. 61) will osculate with another curve expressed by this 
equation 
 

3( )r AA BB s  ,  

 
from which likewise the figure of the curve will become known about the point M. 
Therefore since the negative value of the applied line s may correspond to the abscissa r 
taken negatively, the curve about M will have the snake-like figure mM and thus at M 
there will be a point of opposite curvature. 
 
322. But if besides  , there becomes also 0  , then (Fig. 62) the nature of the curve 
around M will be expressed by this equation 
 

4( )r AA BB s  , 

 
from which since to whatever single abscissa r a 
two-fold applied line s may correspond, the one 
positive and the other negative, the abscissa r may 
not be taken on both sides,  each part of the curve 
Mm and  M  will be positive on the same side of 
the tangent. But if, on account of ,  and     
vanishing, the nature of the curve about M may be expressed by the equation 
 

5( )r AA BB s  , 

 
then the curve at M again will have a point of opposite curvature, as in figure 61. 
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But if there were also 0  , so that the equation becomes  
 

6( )r AA BB s   , 

 
then the curve again will have a point of free from curvature as in figure 62. And 
generally, if the exponent of s were an odd number, the curve at M will have a point of 
opposite curvature, but if the exponent of s were an even number, the curve will be free 
from a point of opposite curvature, as in figure 62. 
 
323. These therefore are the phenomena of curves, if the point M were simple or if in the 
equation  

30 eAt Bu Ctt Dtu Euu Ft       tc



. 
 

and each coefficient A and B does not vanish at the same time. But if there were both 
, and the curve may have two or more branches (Fig. 56) themselves 

intersecting at the point M, the curvature and nature of one or other of the branches will 
be investigated at M separately as before. For the equation for the tangent of any branch 
shall be and the equation may be sought for this branch between the 
coordinates r and s, of which that one r (Fig. 55) may be taken on the normal MN, so that   
r shall be infinitely less than s. Therefore it will be necessary to put  

0 and 0A B

mt nu 0

 

 and  ;
( ) ( )

mr ns ms nr
t u

mm nn mm nn

   
 

 
 

 
with which done and with the terms vanishing before the rest on account of being 
infinitely small, the equation will produce, if M were a double point, an equation of this 
kind 
 

3 4 5 6 etc.rs s s s s        , 
 
but if M were a triple point, from such :  
 

4 5 6 etc.rss s s s       
 
and thus again ; which equations are all reduced to this form :  
 

3 4 5 etc.r ss s s s         
 
324. From this equation of the branch of this same curve, which we have considered, at 
M the radius of osculation 1

2
 , which if  0,  becomes    . Therefore in this case the 

nature of the curve will be expressed either from this equation 
3 4 , , or  r s r s r s5      etc.; from which as before, the branch of the curve at M is 
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tc

gathered to have either a point of contrary turning, or to be free from such. Evidently the 
former arises, if the exponent of s itself were an odd number, and the latter if it were an 
even number. Therefore it will be required to judge separately in this manner concerning 
whichever branch will be passing through M, since if the tangent of this were found,  and 
its tangent may disagree with the tangents of the rest of the curves themselves, at the 
same point of intersection M . 
 
325. Moreover another indication will need to be advanced, if the tangents of two or 
more branches should meet at the point  M (Fig. 55). Indeed with A and B vanishing in 
the equation  

30  eCtt Dtu Euu Ft Gttu      . 
 

the first members Ctt  shall both be simple equal factors or both branches 
crossing may themselves have a common tangent at the point M. Therefore there shall be 

Dtu Euu 

 
2( )Ctt Dtu Euu mt nu    , 

 
and the equation for the coordinates  and  Mr r rm s  transferred on putting  
 

  and  
( ) ( )

mr ns ms nr
t u

mm nn mm nn

   
 

 
 

  
will produce an equation of this kind :  
 

3 3 4 4 5 + etc.rr rss s rs s rs s           ; 
 

for the terms, in which r has two or more dimensions, vanish before the first term rr. 
 
326. Here the first to be looked at is the term 3s , which if it shall be present, all the rest 
will vanish before that,  as r is infinitely less than s. Therefore unless there were 0  , 
the nature of the curve around M will be expressed by 
this equation 3rr s ; from which, since there shall be 

r s s ss
s

  , it is understood that the radius of 

osculation at M to be 1

2

s


  or, on account of s 

vanishing at M, the radius of osculation also becomes 
. Therefore the radius of osculation at M will be 

infinitely great or an element of the curve at M will be an infinitely small part. Because 
again the applied line s maintains the same value, whether the abscissa r may take a 
positive or negative value, it is apparent that the curve at M (Fig. 63) has a cusp and to be 

0
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stretched apart into two branches Mm, M  mutually touching each other at M and 
turning the convexity towards the Mt.  
 
327. Let 0  , but the term 4s shall be present, before which 

3rs  vanishes ; and the nature of the curve about M is expressed 

by the equation 4s rr rss  ,which, if   were less than 
 4  on account of the imaginary factors indicate the point p to 

be a conjugate at M  ; but if   were greater than 4  then it is 
separated into two equations of this kind  and rr fss gss  . 

Whereby at M the two branches of the 
curve mutually touch each other, of which 
one at  M has the radius of osculation 

1

2f
 ,  the other 

1

g2
 . Therefore if these two branches (Fig. 64) 

turn the concavity in the same direction, the figure will be of two 
circular arcs touching within themselves, but if  (Fig. 65) the 
concavities may be directed in opposite directions, the figure will 
be of two circular arcs touching each other outside. 

 
328. But if  also should vanish, then the equation will be resolvable into two equations 
or otherwise, in the first case two branches themselves arise at the tangent point M, the 
nature of each of which may be expressed by an equation of this kind  mr s ; therefore 
just as many different figures will be produced, as the number of combinations of the two 
branches are given, which establish a simple point at M, which we will call branches of 
the first order, which all are retained in the equation  mr s

,  s rr  
3s

. But in the second case, in 
which the equation cannot be seen to resolve itself two different forms, the nature of the 
curve will be expressed either by the equation  which 

branches with that, which we have found above 

5 7 9,  tc. ;rr s rr

 rr

,  es
  , we will call branches of the 

second order, because they will hold in turn the place of two branches of the first order of 
the tangents at M . But these branches of the second order (Fig. 63) all will have a cusp at 
M, as the equation 3 rr s  provided ; yet with this distinction that, since the radius of 
osculation shall be infinitely small at M for the equation 3s rr  , the same may be 
produced with an infinite size for the remaining equations. Since indeed from the 

equation 5 srr  there shall be r ss s , the radius of osculation at 
1

2
M

s
 , 

which is infinite on account of 0s  . 
 
 
 
329. If three tangents of branches crossing themselves at M may be incident on each other 
in turn, then either three branches of the first order touch each other at the same point M, 
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etc.

or at M there will be the contact of one branch of the second order with a single branch of 
the first order, or a single branch of the third order will pass through M. But the nature of 
branches of the third order is expressed by equations of this kind :  

, or by these generally :3 4 3 5 3 7 3 8, ,  ,   r s r s r s r s       3 mr s , for some 
whole number n present greater than three nor divisible by three. Moreover the figure 
thus will be prepared of these branches, so that at M there shall be a point of opposite 
flexion, if n shall be an odd number ; truly a non-opposite or continuous point shall be 
present (as in figure 62), if n were an even number. Furthermore the radius of osculation 
at M will be infinitely small in these curves, if n were less than 6, but infinitely great, if n 
were greater than 6. 
 
330. In a similar manner if four tangents of branches crossing each other at M may agree, 
then either four branches of the first order, or two of the first with one of the second, or 
two branches of the second order, or one of the first and one of the third meet each other 
at the same point M , or finally one branch of the fourth order will pass through M. But 
the nature of the branches of fourth order will be contained in this general equation of  

4 mr s , with the whole number n odd and greater than 4. Moreover all these equations 
bear a cusp as branches of the second order (Fig. 63). But at M the radius of osculation 
will be infinitely small, if n were less than 8, and infinitely great, if n were greater than 8. 
 
331. In the same way the nature of the branches of the fifth or superior order may be 
established ; but in the account of the figure of the branches of the fifth, seventh, ninth 
and of all the odd orders agreeing with the branches of the first order, the figure of which 
is two − fold either with or without an opposite point of flexion [i.e. an inflection point]. 
But the branches of the sixth, eighth and of all the even orders agree with the account of 
the figure with branches of the second and fourth orders, clearly all will have a cusp at M, 
as figure 63 shows. But  according to the radius of osculation the curve may retain, 
because the nature of these arcs is expressed by this equation  mr ns , with the number 
n present greater than m, it is clear, if n were less than 2m, the radius of osculation 
becomes infinitely small ; truly on the other hand, if n were greater than 2m, infinitely 
great. 
 
332. Therefore the phenomena, which in all curves offer themselves to be viewed, can be 
reduced to three kinds. Clearly in the first place the curve is progressing with continued 
curvature nor at any point does it have an inflection point, or a cusp or point of reflection. 
This first case comes about, if the radius of osculation everywhere were of finite 
magnitude, then truly also cases are given, in which the magnitude of the continued trace 
of the radius of osculation undisturbed becomes either infinitely great or infinitely small, 
which arises in use, if the nature of the curve around the point M is expressed by the 
equation  with the odd number m present but with the even number n greater 
than m. The second phenomenon is the point of opposite flexion, which cannot be 
considered, unless the radius of osculation were either infinitely great or infinitely small ; 
moreover this is indicated by the equation 

mr s  n

nmr s  , if  each exponent m and n were an 
odd number, with n being always greater than m. Indeed the radius of osculation will be 
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n

infinitely great, if n were greater than 2m, but infinitely small, if n were less than 2m. The 
third phenomenon is the point of reflection or cusp, where as if two branches turn towards 
each other to be convex coming together at a point, touching each other and terminated 
there ; the equation shows such a point, if m were an even number and n odd. 
Therefore at a cusp the radius of osculation always is either infinitely small or infinitely 
great.  

mr s 

 
333. Therefore because all the varieties may be contained in 
these three kinds of curves, on account of the continued trace : 
it may be understood that the first branch of the continued curve 
thus at no point may give a point of inflection, such as the finite 
angle ACB may establish at C (Fig. 66). Then, since at a point 
of reflection both branches turn themselves convexly,  the point 
of reflection ACB at C does not give a point of reflection of this 
kind (Fig. 67), where the branches AC and BC may have a 
certain common tangent at C, but the one may be seen here to 
be concave and the other convex towards the other ; and as 
many times as a reflection of this kind may be seen to be 
present, so it shows how often the curve is not complete ; and, 
if the curve may be completed according to the norm of the equation and all the following 
parts may be expressed, a figure will arise, such as is shown in 64. Indeed the ways of 
describing the curves are given, in which cusps of the kind ACB arise, which therefore 
are called by L’Hôspital cusps of the second kind. Truly it is required to be noted that a 
mechanical description does not always produce the whole curve, which may be 
contained in a certain equation, but on many occasions only shows a certain part ; by 
which remark alone the dispute ends, which has arisen about cusps of the second kind.  
 
[Labey points out in his French translation that there are enumerable algebraic curves that 
present cusps of this kind, without having to consider cusps of the second kind. He 
considers for example the equation 

4 3 0x x x  4 342 2 4 ,  giving y y x yx y x x x x x       ; here the first term 
must be positive, otherwise the second term becomes imaginary if the first term is made 
negative.] 
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334. If two branches (Fig. 64), which have a common tangent at 
M and thus surely are represented by the four arcs Mm, ,M  
Mn, Mv departing from M  may be expressed by different 
equations, there is no doubt, which of these arcs shall be 
continued ; clearly these, which are contained in the same 
equation; and the arc Mm by continuation will become the arc 
Mn, and M from the arc vM continued. But truly if both these 
two branches may be expressed by the same equation, then on 
account of the first reason ceasing, the arc Mm equally is able to 
had for continuing the arcs vM and nM. But since each arc Mn 
and Mv shall be equally able to be had for the continuation of the arc Mm, the other also 
can be had for the other’s continuation. Hence the arcs mM and M are assessed to 
constitute the continued curve, and equally for any two arcs whatever, and thus in this 
case two cusps of the second kind mM  and nNv may themselves be considered at M.   
 
335. Nor truly does it prevail only with two branches, which without inflection and 
without a cusp are mutual tangents at M, and which are expressed by the same equation, 
but also the same account will be continued, of whatever kind both these branches should 
be mutually tangent at M , as long as they may be expressed by a common equation. This 
arises, as many times as an equation of this kind is arising between r and s for then each 
branch will be expressed by the same equation 2 22 0m m n nr r s s   

m nr s

 ; for then 

each branch is expressed by the same equation  . Therefore in this case any two 
of the four arcs leaving the point M can be regarded as a single line, and hence 
innumerable cusps of the second kind will arise. But this account of the continuation is 
the reason why certain descriptions and mechanical constructions sometimes produce 
cusps of the second kind ; yet this cannot happen, except when the description does not 
contain the whole curve, but shows only one or some number of branches of this curve. 
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CAPUT XIV 

 
DE CURVATURA LINEARUM CURVARUM 
 
304. Quemadmodum in superiori capite lineas rectas indagavimus, quae in quovis puncto 
lineae curvae ipsius directionem indicabant, ita hic lineas curvas simpliciores 
investigabimus, quae in quovis loco cum curva proposita tam exacte congruant, ut saltem 
per minimum spatium quasi confundantur. Sic enim cognita indole curvae simplicioris 
simul curvae propositae natura inde colligetur. Simili methodo scilicet hic utemur, qua 
supra ad naturam ramorum in infinitum extensorum scrutandam sumus usi; primo 
videlicet investigando lineam rectam, quae curvam tangat, deinde vero lineam curvam 
simpliciorem, quae cum curva proposita multo magis conveniat eamque non solum 
tangat, sed quasi osculetur. Vocari autem eiusmodi linearum curvarum arctissimus 
contactus solet osculatio. 
 
305. Sit igitur proposita aequatio quaecunque inter coordinatas orthogonales x et y, atque 
ad naturam minimae curvae portionis Mm (Fig. 55) circa punctum M versantis 
indagandam, cum inventa sit abscissa AP p et applicata PM q , ponatur in axe MR 
abscissa minima Mq t et applicata qm u ; eritque  et x p t y q u     ; quibus  
valoribus in aequatione substitutis perveniatur ad hanc aequationem 
 

30  eAt Bu Ctt Dtu Euu Ft Gttu        tc. , 
 

quae exprimet naturam curvae eiusdem ad axem MR relatae. Quoniam autem has novas 
coordinatas t et u minimas statuimus, sequentes termini quasi infinities erunt minores 
quam antecedentes ideoque prae his sine errore reiici poterunt. 
 
306. Nisi ergo ambo coefficientes primi A et B evanescant, reiectis sequentibus 
terminis omnibus aequatio 0 At Bu  ostendet lineam rectam M , quae curvam in 
puncto M tanget hocque loco cum curva communem habet directionem. Erit ergo 

: :Mq q B A   ; unde, ob cognitas quantitates A et B, positio tangentis M  innotescit, 
quae cum curvam in puncto tantum M contingat, videamus, quantum curva Mm porro a 
recta M  saltem per minimum spatium aberret. In hunc finem assumamus normalem MN 
pro axe, in quem ex m applicata orthogonalis mr ducatur, ac vocetur ,Mr r r m s ; erit 
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  et  
( ) ( )

 et  .
( ) ( )

Ar Bs As Br
t u

AA BB AA BB

At Bu Bt Au
r s

AA BB AA BB

   
 

 

  
 

 

 

 
Quare, cum sit 
 

3 etc.At Bu Ctt Dtu Euu Ft Gttu        , 
 

erit r quantitas infinities minor quam t et u, ac propterea erit quoque r quantitas 
infinities minor quam s; nam s per t et u, at r per ipsarum t et u quadrata vel potestates 
superiores determinatur. 
 
307. Naturam ergo curvae Mm multo propius cognoscemus, si terminos 
quoque Ctt in computum ducamus atque sequentes tantum Dtu Euu 
negligamus; sicque habebimus inter t et u hanc aequationem 
 

At Bu Ctt Dtu Euu     , 
 
in qua si loco t et u valores superiores substituamus, habebimus 
 
 

   

 

2 2
( )  

                                       .

AAC ABD BBE rr AAD BBD ABC ABE rs
r AA BB

AA BB AA BB
AAE ABD BBC ss

AA BB

    
  

 
 




 

 
At, quia r infinities minor est quam s, termini rr et rs prae termino ss evanescent, 
fietque 
 

  ( )AA BB r AA BB
ss

AAE ABD BBC

 


 
, 

 
quae aequatio exprimit naturam curvae curvam propositam in M osculantis. 
 
308. Curvae ergo arcus minimus Mm congruet cum vertice parabolae super axe MN 
descriptae, cuius latus rectum seu parameter est 
 

  ( )
 ;

AA BB AA BB

AAE ABD BBC

 
 
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unde qualis est curvatura huius parabolae in vertice, talis erit curvae propositae 
curvatura in puncto M. Cum autem nullius curvae curvatura distinctius cognoscatur quam 
circuli, quoniam ipsius curvatura ubique est eadem eoque maior existit, quo minor fuerit 
radius, commodius erit curvaturam curvarum definire per circulum aequalis curvaturae, 
qui circulus osculator vocari solet. Hanc ob rem oportebit circulum definire, cuius 
curvatura conveniat cum curvatura propositae parabolae in ipsius vertice, quo tum 
circulum istum in locum parabolae osculantis substituere liceat. 
 
309. Ad hoc efficiendum contemplemur curvaturam circuli tanquam incognitam 
eamque modo exposito per curvaturam parabolae exprimamus, sic enim vicissim pro 
parabola osculante circulus osculator substitui poterit. Sit igitur curva Mm proposita 
circulus radio  descriptus, cuius natura exprimetur aequatione a 2yy ax xx  . Sumta 
ergo  erit . Iam ponatur  et PMAP p q  2qq ap pp 
 

et x p t y q u    , 
atque orietur haec aequatio 
 

2 2 2 2qq qu uu ap at pp pt tt       , 
 
quae ob  reducitur ad hanc formam 2qq ap pp 
 

0 2 2 2at pt qu tt uu     , 
 
quae cum superiori forma comparata dat 
 

2 2 , 2 , 1, 0 et 1A a p B q C D E         , 
unde fit 
 

+ 4( 2 ) 4AA BB aa ap pp qq aa      
et 
 

  3( )AA BB AA BB a  8  

 
atque 
 

4AAE ABD BBC AA BB aa       . 
 
Unde circulum, cuius radius , in quovis puncto osculatur parabolae vertex, cuius 
natura exprimitur aequatione 

a
ss 2ar ; ideoque vicissim quam curvam osculatur vertex 

parabolae , eandem osculabitur circulus, cuius radius est ss br 1
2 b . 
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310. Cum igitur supra invenerimus curvam Mm osculari parabolam, cuius aequatio sit 
 

( B) (AA B AA BB
ss r

AAE ABD BBC

 


 
)

, 

 
manifestum est eiusdem curvae curvaturam in M convenire cum curvatura circuli, cuius 
radius sit 
 

( B) (
.

2( )

AA B AA BB

AAE ABD BBC

 


 
)

 

 
Haec ergo expressio dat radium circuli osculatoris atque iste radius quoque vocari solet 
radius osculi; saepe etiam radius curvedinis seu curvaturae appellatur. Ex aequatione 
ergo inter t et u, quam ex aequatione inter x et y proposita elicuimus, statim definiri potest 
radius osculi curvae in puncto M seu radius circuli osculantis curvae in M. In aequatione 
enim inter t et u reiiciantur termini, in quibus t et u plures duabus dimensiones obtinent, 
atque ex aequatione, quae erit huius formae 
 

0 At Bu Ctt Dtu Euu     , 
invenietur radius osculi 
 

( B) (
.

2( )

AA B AA BB

AAE ABD BBC

 


 
)

 

 

311. Quoniam vero signum radicale ( )AA BB  ambiguitatem signi involvit, incertum 

est, utrum ista expressio sit affirmativa an negativa, scilicet utrum concavitas curvae 
punctum N respiciat an convexitas. Ad hoc dubium tollendum quaeri debet, utrum curvae 
punctum m intra tangentem M versus axem AN sit positum an vero extra tangentem 
cadat. Priori casu curva versus N erit concava atque centrum circuli osculantis in rectae 
MN portionem versus axem protensam incidet; posteriori casu vero in portionem rectae 
NM ultra M productam. Omnis ergo dubitatio evanescet, si inquiratur, utrum qm sit minor 
quam q  an maior, priori enim casu curva versus N erit concava, posteriori vero 
convexa. 
 

312. Est vero  et  
At

q q
B

   m u , quare videndum est, utrum sit 
At

B
  maior minorve 

quam u. Quia igitur m  est lineola quam minima, ponatur m w   eritque 
At

u w
B

   ; 

unde, facta substitutione, fit  
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2
0 ;

ADtt AAEtt AEtw
Bw Ctt Dtw Eww

B BB B
         

 
ubi ob w prae t minimum termini tw et ww evanescunt. Hinc fit 
 

3

( )BBC ABD AAE tt
w

B

 
 . 

Quodsi ergo w fuerit quantitas affirmativa, quod evenit, si 
 

3
 seu  

BBC ABD AAE AAE ABD BBC

B B

   
 

 
fuerit quantitas affirmativa, tum curva erit concava versus N, sin autem fuerit quantitas 
negativa, curvae convexitas punctum N respiciet. 
 
313. Quo haec clariora reddantur, diversi casus (Fig. 57), qui occurrere 
possunt, seorsim sunt evolvendi. Sit igitur primum 0B  , 
quo casu ipsa applicata PM erit tangens curvae Mm et 

radius osculi erit  
2

A

E
 . Utrum autem curva sit concava 

versus R, uti figura praesentat, an convexa, ex aequatione 
0 At Ctt Dtu Euu     intelligitur. Cum enim sit 

 et Mq t qm u  , ob t infinities minus quam u termini tt et 
tu prae uu evanescent eritque 0At Euu  ; ex qua 
aequatione intelligitur, si coefficientes A et E habeant 

contraria signa seu si 
E

A
 fuerit quantitas negativa, tum 

curvam fore concavam versus R. At si coefficientes A et E habeant paria signa et 
E

A
 

fuerit quantitas affirmativa, tum curva ad alteram tangentis partem erit sita; abscissa 
enim Mq statui debet negativa, quo applicata qm respondeat realis. 
 
314. Sit nunc tangens M  inclinata ad axem AP seu ipsi parallelam, ita ut angulus 
RM sit acutus et normalis MN axem in N ultra P (Fig. 55) secet, quo casu abscissis t 
respondebunt applicatae u affirmativae; unde coefficientes A et B signa habebunt disparia 

et fractio 
A

B
 erit negativa. De hoc casu iam ante vidimus curvam fore concavam versus 

N, si fuerit 
AAE ABD BBC

B

 
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quantitas affirmativa vel, cum 
B

A
 sit quantitas negativa, si fuerit 

 
AAE ABD BBC

A

 
 

 
quantitas negativa. Sin autem fuerit 

AAE ABD BBC

B

 
 

 
quantitas negativa seu 
 

AAE ABD BBC

A

 
 

 
quantitas affirmativa, tum curva versus N convexitatem obvertet. Utroque vero casu 
radius osculi erit 

( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
. 

 
 
315. Sit nunc , quo casu (Fig. 58) recta MR axi parallela simul erit curvae tangens   A  0

.

et u infinities minor 
quam t, unde erit 
0 Bu Ctt   Quare, si 
B et C habeant aequalia 
signa seu si BC fuerit 
quantitas affirmativa, 
tum u habere debet 
valorem negativum; 
ideoque curva erit 
concava versus 
punctum P, in quod N incidit, quod ipsum regula superior facto 0A  ostendit; radius 

osculi vero erit  
2

B

C
  Haec autem eadem regula, quae supra est data, valet, si (Fig. 59) 

tangens MT ultra P cum axe concurrat; tum enim pariter curva versus N erit vel concava 
vel convexa, prout haec expressio 
 

AAE ABD BBC

B

 
 

 
fuerit vel affirmativa vel negativa, eritque radius osculi ut ante 
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( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
 . 

 
316. Sit proposita ellipsis, seu saltem eius quadrans (Fig. 
60) DMC, cuius centrum A, alter semiaxis transversus 
AD a , alter semiaxis coniugatus AC b . Sumtis ergo 
abscissis x in axe AD a centro A, habebitur haec aequatio 
pro ellipsi 

aayy bbxx aabb  . 
 

Sumta iam quapiam abscissa AP p et posita applicata 
 erit PM q

aaqq bbpp aabb  . 
Ponatur iam  et x p t y q u    , erit 
 

2 + 2aaqq aaqu aauu bbpp bbpt bbtt aabb      
 
 seu 

2 2bbpt aaqu bbtt aauu 0    . 
 

Primum ergo, ob coefficientes ipsarum t et u, normalis MN citra P cum axe concurrit, 
eritque 
 

 : : :  et 
bbp

PM PN B A aaq bbp PN
aa

    

 
ob . Praeterea vero ob 2  et 2A bbp B aaq  ,  0 et C bb D E aa   , erit 
 

4 44 ( ) 4
= 

2 2

AAE ABD BBC aabb aaqq bbpp a b

B aaq aaq

  
  

 
ideoque quantitas affirmativa, qua indicatur curvam versus N esse concavam. 
 
317. Ad ipsum iam radium osculi inveniendum, est 
 

4 4 44( )  et   4AA BB a qq b pp AAE ABD BBC a b      4 ; 
 

unde radius osculi erit 
3
24 4

4 4

( )a qq b pp

a b


.  At est 
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4

4
= ( )

b pp
MN qq

a
  

 
unde 

4 4( )=a qq b pp aa MN   

 
 ideoque radius osculi 

3

4
=

aa MN

b


 

 
 Si in normalem MN productam ex centro A ducatur perpendiculum AO, erit ob 

bbp
AN p

aa
   et triangula MNP et ANO similla, 

 
4

4

aabbpp b pp
NO

a MN





 

et  
 

 
,

aaqq bbpp bb
MO NO MN

aa MN MN


   


 

 

und 
bb

MN
MO

 , hincque radius osculi 
3

aabb

MO
 , quae expressio ad utrumque axem AD et 

AC aeque est accommodata. 
 
318. Invento autem pro quovis curvae loco radio osculi natura curvae satis clare 
perspicitur. Si enim portio curvae in partes plurimas quam minimas dividatur, 
unaquaeque particula haberi potest pro arculo circuli, cuius radius erit ipse radius osculi 
in eo loco. Hinc vero etiam descriptio curvae per plurima puncta multo accuratius 
absolvetur. Postquam enim plura notata fuerint puncta, per quae curva transeat, si pro his 
singulis punctis primo quaerantur tangentes hincque porro normales atque tum radii 
osculi, portiunculae curvae intra puncta inventa sitae ope circini poterunt describi. 
Hocque modo eo accuratius vera curvae figura exprimetur, quo propiora fuerint puncta 
primum notata. 
 
319. Quoniam igitur (Fig. 55) portiuncula curvae ad M cum arculo circuli radio osculi 
descripti congruit, non solum elementum Mm, sed etiam praecedens Mn eadem curvatura 
erit praeditum. Cum enim natura minimae curvae portionis Mm exprimatur huiusmodi 
aequatione ss r inter coordinatas  et Mr r rm s  , unicuique abscissae minimae 
Mr r ex aequatione duplex respondebit applicata s, altera affirmativa, altera negativa; 
ideoque curva versus n aeque ac versus m continuabitur. Ubicunque ergo radius osculi, 
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qui est 1

2
 , finitam habet magnitudinem, ibi curvatura utrinque saltem per minimum 

spatiolum erit uniformis. Neque ergo his casibus curva ex M subito, formata cuspide, 
reflectetur neque mutata curvatura portio Mn convexitatem versus N obvertere poterit, 
dum altera Mm est concava versus N; cuiusmodi curvaturae immutatio vocari solet 
inflexio vel punctum flexus contrarii, quare, ubi radius osculi est finitus, ibi neque cuspis 
neque punctum flexus contrarii locum habere potest. 
 
320. Cum igitur ex aequatione inter t et u 
 

30 eAt Bu Ctt Dtu Euu Ft Gttu Htuu         tc.  
 

inventus sit radius osculi 

( ) ( )

2( )

AA BB AA BB

AAE ABD BBC

 


 
, 

 
 manifestum est, si fuerit , tum radium osculi fieri infinite 
magnum ideoque circulum osculantem in lineani rectam abire. Ubi ergo hoc evenit, ibi 
linea curva curvatura destituitur atque duo curvae elementa quasi in directum erunt sita. 
Quo igitur his casibus natura curvae penitius perspiciatur, substitutio 

0AAE ABD BBC  

 

 
  et  

( )

Ar Bs As Br
t u

AA BB AA BB

   
 

 
 

 
etiam in terminis est instituenda. Cum autem prae termino primo 3Ft Gttu Htuu Iu   3

( )r AA BB  omnes termini sequentes, qui r continent, evanescant, his terminis reiectis 

atque substitutione per totam aequationem facta obtinebitur eiusmodi aequatio  
 

  3 4 5 etcr AA BB ss s s s         . 

 
321. Ex hac aequatione iam statim colligitur, ut supra, radius osculi 
 

 
;

2

AA BB




 

 
sin autem sit 0  , quo casu radius osculi fit infinitus, 
ad curvae naturam exactius cognoscendam sumi debet 
terminus sequens 3s , ita ut sit 
 

3( )r AA BB s  ; 
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0nisi enim sit    , termini sequentes 4 ,  s s5   etc. omnes prae hoc evanescunt. Curvam 
ergo hoc casu (Fig. 61) in M osculabitur curva hac aequatione 
 

3( )r AA BB s   

 
expressa, ex qua simul figura curvae circa punctum M cognoscetur. Cum igitur abscissae 
r negative sumtae negativus valor applicatae s respondeat, curva circa M figuram habebit 
anguineam mM  ideoque in M habebit punctum flexus contrarii. 
 
322. Quodsi praeter  etiam fiat 0  , tum (Fig. 62) natura curvae circa M exprimetur 
hac aequatione 
 

4( )r AA BB s  , 

ex qua cum unicuique abscissae r duplex applicata 
s respondeat, altera affirmativa, altera negativa, 
neque abscissa r utrinque sumi queat, utraque 
curvae portio Mm et  M , ad eandem tangentis 
partem erit posita. At si, ob ,  et     
evanescentes, natura curvae circa M exprimatur 
aequatione 

5( )r AA BB s  , 

tum curva ad M iterum habebit punctum flexus contrarii, uti in figura 61. 
Sin autem fuerit etiam 0  , ut fiat 
 

6( )r AA BB s   , 

 
tum curva iterum puncto flexus contrarii destituetur uti figura 62. Atque generaliter, si 
exponens ipsius s fuerit numerus impar, curva in M habebit punctum flexus contrarii, sin 
autem exponens ipsius s fuerit numerus par, curva carebit puncto flexus contrarii, uti in 
figura 62. 
 
323. Haec igitur sunt curvarum phaenomena, si punctum M fuerit simplex 
seu si in aequatione 
 

30 eAt Bu Ctt Dtu Euu Ft       tc . 
 

non uterque coefficiens A et B simul evanescat. Quodsi autem fuerit et , 
curvaque habuerit (Fig. 56) duos pluresve ramos se in puncto M intersecantes, 
uniuscuiusque rami curvatura et indoles in M investigabitur seorsim ut ante. Sit enim pro 
tangente cuiusvis rami mt et quaeratur aequatio pro hoc ramo inter coordinatas r 
et s, quarum illa r (Fig. 55) in normali MN capiatur, ut sit r infinities minor quam s. Poni 
ergo debebit 

0 et 0A B 

0nu 
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 et  ;
( ) ( )

mr ns ms nr
t u

mm nn mm nn

   
 

 
 

 
quo facto et neglectis terminis ob infinitam parvitatem prae reliquis evanescentibus 
prodibit, si M fuerit punctum duplex, huiusmodi aequatio 
 

3 4 5 6 etc.rs s s s s        , 
 
sin autem M fuerit punctum triplex, talis 
 

4 5 6 etc.rss s s s       
 
et ita porro; quae aequationes omnes reducuntur ad hanc formam 
 

3 4 5 etc.r ss s s s         
 
324. Ex hac aequatione intelligitur istius curvae rami, quem consideramus, in M esse 
radium osculi 1

2
 , qui, si  0,  fiet   

3 4  vel r s r


5

. Hoc ergo casu natura curvae exprimetur vel 

hac aequatione   vel r s s   

tc

  etc.; ex quibus, ut ante, colligetur curvae 
ramum in M vel punctum flexus contrarii habere vel tali carere. Prius scilicet evenit, si 
exponens ipsius s fuerit numerus impar, posterius, si sit numerus par. Hoc ergo modo 
iudicandum erit de quovis ramo per punctum M transeunte seorsim, cum reperta fuerit 
eius tangens, eiusque tangens discrepet a tangentibus reliquorum ramorum sese in 
eodem puncto M intersecantium. 
 
325. Aliud autem indicium erit ferendum, si duorum pluriumve ramorum tangentes (Fig. 
55) in puncto M coincidant. Sint enim evanescentibus A et B in aequatione 
 

30  eCtt Dtu Euu Ft Gttu      . 
 

primi membri Ctt  ambo factores simplices aequales seu ambo rami se in 
puncto M decussantes communem habeant tangentem. Sit ergo 

Dtu Euu 

 
2( )Ctt Dtu Euu mt nu    , 

 
atque aequatione ad coordinatas  et Mr r rm s  translata ponendo 
 

  et  
( ) ( )

mr ns ms nr
t u

mm nn mm nn

   
 

 
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huiusmodi prodibit aequatio 
 

3 3 4 4 5 + etc.rr rss s rs s rs s           ; 
 

termini enim, in quibus r habet duas pluresve dimensiones, prae primo rr evanescunt. 
 
326. Hic primum spectandus est terminus 3s , qui si adfuerit, prae eo reliqui omnes 
evanescunt, propterea quod r infinities minus est quam s. Nisi ergo fuerit 0  , natura 

curvae circa M exprimetur hac aequatione 3srr  ; ex qua, cum sit r s s ss
s

  , 

intelligitur radium osculi in M esse 1

2

s


  seu, ob s 

evanescens in M, radium osculi quoque fieri 0 . Erit 
ergo curvatura in M infinite magna seu elementum 
curvae in M erit portio circuli infinite parvi. Quoniam 
porro applicata s eundem obtinet valorem, sive 
abscissa r sumatur affirmativa sive negativa, 
patet (Fig. 63) curvam in M habere cuspidem 
atque in duos ramos Mm, M divaricari se 
mutuo in M contingentes atque tangenti Mt 
convexitatem obvertentes.  
 
327. Sit 0  , adsit autem terminus 4s , prae quo 3rs  
evanescit; atque natura curvae circa M exprimetur aequatione 

4rss s rr   , quae, si fuerit  minor quam 4  ob factores 
imaginarios punctum coniugatum p in M indicat; sin autem   

maior quam 4  dum in duas 
aequationes huiusmodi 

dispescitur. Quare in M 
duo curvae rami se mutuo contingent, 
quorum alterius in M radius osculi est 

 et ssr f r sgs

1

2f
 ,  alterius 

1

2g
 . Si ergo  (Fig. 64) hi 

duo rami concavitatem in eandem 
plagam vertant, figura erit duorum arcuum circularium se intus 

tangentium, sin autem (Fig. 65) concavitates in plagas oppositas dirigantur, figura erit 
duorum arcuum circularium se extus 
tangentium. 
 
328. Sin etiam   evanescat, tum aequatio vel in duas aequationes erit resolubilis vel 
secus, priori casu duo oriuntur rami se in puncto M tangentes, quorum utriusque natura 
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exprimetur huiusmodi aequatione  mr s ; prodibunt ergo tot diversae figurae, quot 
dantur combinationes binorum ramorum, qui in M punctum simplex constituunt, quos 
vocemus ramos primi ordinis, qui omnes in aequatione  mr s  continentur. Posteriori 
autem casu, quo aequatio in duas alias se resolvi non patitur, natura curvae exprimetur 
aequatione vel  quos ramos cum eo, quem supra 

invenimus 

5 7  vel s rr 9 vel  etc. ;rr s rr s    
3s rr 

 

 , ramos secundi ordinis appellabimus, quia vicem tenent duorum 
ramorum primi ordinis se in M tangentium. Hi autem (Fig. 63) rami secundi ordinis 
omnes in M habebunt cuspidem, uti praebuit aequatio 3rr s  ; hoc tamen discrimine, 
quod, cum radius osculi in M pro aequatione 3 rr s  esset infinite parvus, idem pro 
reliquis aequationibus prodeat infinite magnus. Cum enim ex aequatione 5 rr s sit 

r ss s , erit radius osculi in 
1

2 s
M


 , hoc est ob 0s   infinitus. 

 
329. Si tres tangentes ramorum se in M decussantium in se invicem incidant, tum vel tres 
rami primi ordinis se in eodem puncto M contingent vel in M erit contactus unius rami 
secundi ordinis cum uno ramo primi ordinis vel unicus per M transibit ramus tertii 
ordinis. Ramorum autem tertii ordinis natura exprimetur huiusmodi aequationibus 

, seu hac generali3 4 3 5 3 7 8, ,r s r s r s      3 mr s3 ,   r s etc.   , existente n 
numero quocunque integro ternario maiore neque per ternarium divisibili. Horum 
ramorum autem figura ita erit comparata, ut in M sit punctum flexus contrarii, si n 
fuerit numerus impar; flexus vero non contrarius seu continuus (ut in figura 62) 
adsit, si n fuerit numerus par. Ceterum in his curvis radius osculi in M erit infinite parvus, 
si n minor quam 6, at infinite magnus, si n maior quam 6. 
 
330. Simili modo si quatuor tangentes ramorum se in M decussantium congruant, tum vel 
quatuor rami primi ordinis vel duo primi et unus secundi vel duo rami secundi ordinis vel 
unus primi et unus tertii ordinis se in eodem puncto M contingent vel denique unicus 
ramus quarti ordinis per M transibit. Ramorum autem quarti ordinis natura continetur hac 
aequatione generali 4 mr s , existente n numero integro impari maiore quam 4. Hae 
autem aequationes omnes praebent cuspidem uti rami (Fig. 63) secundi ordinis. 
At in M erit radius osculi infinite parvus, si n minor quam 8, infinite magnus 
autem, si n maior quam 8. 
 
331. Eodem modo ramorum quinti superiorumve ordinum natura evolvetur; ratione 
figurae autem rami quinti, septimi, noni omniumque imparium ordinum conveniunt cum 
ramis primi ordinis, quorum duplex est figura vel cum puncto flexus contrarii vel sine eo. 
Rami autem sexti, octavi et omnium parium ordinum conveniunt ratione figurae cum 
ramis secundi et quarti ordinis, omnes scilicet habebunt cuspidem in M, uti figura 63 
exhibet. Quod autem ad radium osculi attinet, quoniam horum arcuum natura exprimitur 
hac aequatione  mr ns  existente n numero maiore quam m, perspicuum est, si fuerit n 
minor quam 2m, radium osculi fore infinite parvum; contra vero, si n maior quam 2m, 
infinite magnum. 
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n

 
332. Phaenomena ergo, quae in omni curva conspectui se offerunt, ad tria genera 
reducuntur. Primo scilicet curva continua curvatura progreditur neque usquam punctum 
flexus contrarii habet neque cuspidem seu punctum reflexionis. Evenit hoc primum, si 
radius osculi ubique fuerit finitae magnitudinis, tum vero etiam dantur casus, quibus radii 
osculi magnitudo sive infinite magna sive infinite parva continuum tractum non perturbat, 
quod usu venit, si natura curvae circa punctum M exprimitur aequatione  m nr s 
existente m numero impari at n numero pari maiori quam m. Secundum phaenomenon est 
punctum flexus contrarii, quod locum habere nequit, nisi radius osculi fuerit vel infinite 
magnus vel infinite parvus; indicatur autem aequatione mr s  , si uterque exponens m 
et n fuerit numerus impar, existente semper n maiore quam m. Erit enim radius osculi 
infinite magnus, si n maior quam 2m, at infinite parvus, si n minor quam 2m. Tertium 
phaenomenon est punctum reflexionis seu cuspis, ubi duo quasi rami versus se invicem 
convexi in puncto coeuntes se tangunt atque terminantur; tale punctum monstrat aequatio 

, si m fuerit numerus par et n impar. In cuspide ergo radius osculi semper est vel 
infinite parvus vel infinite magnus.  

mr s  n

 
333. Quoniam igitur in his tribus generibus omnes curvarum, ratione tractus continui, 
varietates continentur, primum intelligitur curvae continuae ramum nunquam ita inflexum 
dari, ut (Fig. 66) in C angulum finitum A 0 B constituat. Deinde, 
cum in puncto reflexionis ambo rami sibi convexitatem 
obvertant, eiusmodi (Fig. 67) punctum reflexionis ACB in C 
non datur, ubi rami AC et BC in C quidem communem 
tangentem habeant, at alterius concavitas alterius convexitatem 
respiciat ; et quoties huiusmodi reflexio adesse videatur, toties 
curva non est completa; et, si curva ad normam aequationis 
compleatur ac secundum omnes partes exprimatur, orietur 
figura, qualis in figura 64 exhibetur. Dantur quidem curvarum 
describendarum modi, quibus eiusmodi cuspis ACB oritur, quae 
propterea ab Hospitalio cuspis secundae speciei vocatur. Verum 
notandum est descriptiones mechanicas non semper totam 
curvam, quae quidem aequatione contineatur, producere, sed 
saepenumero certam tantum partem exhibere, qua sola 
notatione lis, quae circa hanc cuspidem secundae speciei est mota, dirimitur.  
 
334. Si (Fig. 64) duo rami, qui in M communem habent tangentem ideoque quatuor arcus 
ex M exeuntes repraesentant nempe Mm, ,M  Mn, Mv, diversis aequationibus 
exprimantur, dubium est nullum, quinam horum arcuum sint continui; ii scilicet, qui sub 
eadem aequatione continentur; eritque arcus Mm continuatio arcus Mn et ,M , 
continuatio arcus vM. Quodsi vero ambo rami illi eadem aequatione exprimantur, tum ob 
cessantem rationem priorem arcus Mm aeque haberi potest pro continuatione arcus vM 
atque arcus nM. Cum autem uterque arcus Mn et Mv aeque haberi possit pro 
continuatione arcus Mm, etiam alter pro alterius continuatione haberi poterit. Hinc arcus 
mM et ,M  curvam continuam constituere censendi sunt, aeque ac bini arcus 
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quicunque alii, sicque hoc casu in M se respicient duae cuspides secundae speciei mM  
et nNv. 
 
335. Neque vero solum valet de duobus ramis, qui sine flexu contrario ac sine cuspide se 
mutuo in M tangunt atque eadem aequatione exprimuntur, sed etiam eadem erit 
continuitatis ratio, cuiuscunque generis fuerint ambo illi rami se mutuo in M tangentes, 
dummodo communi aequatione exprimantur. Evenit hoc, quoties inter r et s ad huiusmodi 
pervenitur aequationem tum enim uterque ramus eadem aequatione 

 tum enim uterque ramus eadem aequatione 2 2m m n nr r s s    2 0 ; m nr s   
exprimetur. Hoc igitur casu quatuor arcuum ex puncto M exeuntium duo quicunque pro 
una linea continua haberi possunt, hincque nascentur innumerabiles cuspides secundae 
speciei. Haec autem ipsa continuitatis ratio in causa est, quod quaedam descriptiones ac 
constructiones mechanicae nonnumquam cuspides secundae speciei producant; hoc 
tamen evenire non potest, nisi quando descriptio non totam curvam in aequatione 
contentam, sed eius tantum ramum unum vel aliquot exhibet. 
 


