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CHAPTER TWO 

 
CONCERNING THE MOTION OF A POINT  

ON A GIVEN LINE  IN A VACUUM.  
 [p. 69] 

PROPOSITION 18.  
 

Problem.  
 

161.  With a uniform force present acting in the downwards direction, to determine the 
time of the ascent or the descent through any arc of a circle EA (Fig.23), ending at the 
lowest point A.   
  

Solution. [p. 70] 
 

 Let C be the centre of the circle,  CA is the 
radius of the vertical or the line parallel to the 
direction of the force g. Putting AC = a and the  
arc AE equal to the height AG = b, the speed at the 
lowest point A corresponds to the height gb, since 
the body descending from E has such a speed 
when it arrives at A . And the body must have such 
a speed at A, in order that it can rise as far as E. 
Some element Mm of the arc AE is considered and 

calling AP = x ; then )xax(PM 22 −=  and 
)xax(

adxMm
22 −

= .  Now the speed at M 

corresponds to the height gxgbGP.g −=  (93). Therefore the time in which the  element 

Mm is traversed either in the ascent or in the descent is equal to
)xax)(xb(g

adx
22 −−

.  

Which, since it cannot be integrated, we express the integral by a series. Moreover, with 
putting 2a = c :   
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Hence this is multiplied by
g

adx and the integration gives the time, in which the arc AM  is 

completed, to equal :   

 
Now the time in which the whole arc EA is traversed can be produced, if we put x = b 
and the ratio of the periphery to the diameter 1:π= , with which in place there is 
obtained : [p. 71] 
 

 
Where the coefficients etc 1 64

9
4
1 ,,, are the squares of the coefficients ,,, 8

3
2
11 which is 

produced if 2
1

1 −− )z( in resolved into a series. Now the time can therefore be found 
approximately from this series. Q.E.I.  
 

 
Corollary 1.  

162. Therefore where the arc EA is made larger, then the time too is greater, in which it is 
traversed. Indeed on putting cab == 2 , the time is infinite, since the body in descending 
is by no means able to complete the semicircle.  
 

Corollary 2.  
163. Therefore if the body in an oscillatory motion is moving in the arc EAF of the circle, 
then the time of one to or fro motion is twice as great as the time of one ascent or one 
descent, since the time to pass through ANF is equal to the time to pass through AME. 
Whereby the time of one to or fro motion, or the time for half an oscillation, is equal to   

 
Truly the time for one oscillation to be completed is twice as great.   
 

 Scholium 1.  
164. The series expressing this time can at once be found in this way. An element of time 
can be resolved into these factors :   

 
and of these only the latter should be converted into a series, clearly this :  
 

 
with 2a = c. Moreover, because after the integration, on placing x = b, then [p. 72] 
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From which the whole descent time can be gathered together to be equal to :   
 

 
 

Scholium 2. 
165. From which it is apparent that the summation of the series depends on the  
construction of the equation  
 

 
I put 

tt
tt

c
b

+= 1  

and the sum of the series is equal to ∫ t
qdt

e with e denoting the number of which the log is 
equal to1. With these in place, the series is to be summed by my method explained in  
Comment. Acad. Petrop. Tom. VII [1740, p. 123; Opera Omnia series I, vol. 14; E41 is 
translated in this series; however, this appears to be a misquote by Paul Stackel, as this 
paper does not present the method used to sum the present series. One should look 
instead in E025 perhaps], and the following equation is found from the exposition:  

2

2

1 )tt(
tdt

t
dtqdq

+
=+ .  

From which equation, if it can be solved,  q is found in terms of t and hence the sum itself 
is found in terms of t or c

b . Moreover since the construction of the equation does not 

follow from inspection, it is yet apparent that it can be done, since the sum of the series 
for the time can be assigned with the help of quadrature. Indeed the given sum of the 
series is found to follow from the construction of that equation.  

 
Corollary 3.  

166. If the arc AE, in which the descent or the ascent is completed, is put infinitely small,  
yet the time for that motion is not infinitely small. For in the expression for the time, only 

b vanishes, and the time in which a vanishing arc AE is completed is equal to
g
a

2
2π .  

[i. e. the radius of the circle a remains unchanged, while the distance fallen b tends 
towards zero.] 
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Corollary 4. [p. 73] 
167. With the other part AF of the circle joined with AE the oscillations through the arc  
EAF can be made indefinitely small; still with a finite completion time. Clearly the time 

for one 'to' or 'fro' motion, or the time for half an oscillation, is equal to 
g

a2π . 

 
Corollary 5.  

168. Therefore the times of this kind of infinitely small oscillations are in the square root 
ratio directly as the radius and inversely as the force [of gravity] acting.  
  

Corollary 6.  
169. These same formulae prevail, if the force acting should not be uniform. For 
whatever variable force is put in place, yet while the body driven along an infinitely small 
arc, it has the same constant value.  
 

 Corollary 7.  
170. It is to be understood that even if the curve EAF is not a circle, but any curve, then 
also these results reported here pertain to infinitely small oscillations on this curve. Then 
indeed in place of the radius the  radius of osculation of this curve is to be taken at the 
lowest point A.  
 

Corollary 8.  
171. Oscillations upon an infinitely small arc of the curve EAF are effected with the aid 
of a pendulum, the length of which is the radius AC. [p. 74]Therefore the times of 
indefinitely small oscillations of the pendulum vary directly as the square root of the 
length of the pendulum and inversely as the square root of the force acting.  
 

Corollary 9.  
 

172. If the curve ANF is not equal to the curve AME, [i. e. no longer circular arcs, and 
each with its own radius of curvature] it is still sufficient to consider the radius of 
osculation at the point A for infinitely small oscillations. Let this length be equal to α, 

then the ascent time through the indefinitely small arc AF is equal to 
g2

2απ , and since 

the descent time through the vanishing arc EMA is 
g
a

2
2π , then the time for one journey 

or half an oscillation on the composite curve EAF 
g

)a(
2

απ + .  
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Corollary 10.  
173. If the oscillations are not indefinitely small on the circle BAD, the oscillation times 
are greater, as the arcs of the oscillations are greater. And if the oscillations are yet 
definitely small, the time of such an oscillation to the time of an indefinitely small 
oscillation to is as the square of the diameter of the circle increased by the versed sine of 
the arc traversed to the square of the diameter itself.  

 
Corollary 11.  

174. The height, from which a body descends in the same time by the same force g 
acting, as it descends along an indefinitely small arc EMA , is equal to 8

2aπ , or is to the 

eighth part of the radius as the square of the circumference to the square of the diameter ; 
[p. 75] this height is hence approximately equal to a4

5 .  

 
Corollary 12.  

175. Moreover the body descends along the chord of the arc EMA in the same time that it 
descends along the diameter of the circle (102). Whereby the descent time along an 

indefinitely small arc is to the descent time along the corresponding arc is as 
g

a22 to 

g
a

2
2π , i. e. as the diameter  to the fourth part of the circumference. And the descent  time 

from the diameter or from twice the length of the pendulum is to the time of one whole 
indefinitely small oscillation  composed from a to and fro motion is as the diameter to the 
circumference.  

 
Scholium 3.  

176. If two circular arcs AE and FA (Fig. 24), upon 
which connected oscillations are carried out, are not 
equal, these oscillations can be made with the aid of 
a pendulum, if in the centre of K of the arc AF a nail 
is driven in, in order that the thread CA, after it has 
described the arc EA about the centre, is retained at 
K, and describes the arc AF about the centre K.  
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PROPOSITION 19.  
 

Problem.  
 

177.  For a given force acting, to find the length of the pendulum making indefinitely 
small oscillations, which completes a to and fro motion in a time of one second.   
  

Solution. [p. 76] 
 With the length of the pendulum a sought and the force acting g, with the force of 

gravity denoted by one, the time of one indefinitely small oscillation is equal to 
g

a2π . 

Now this has to be expressed in seconds of minutes,  with the length a expressed in 

thousandth parts of Rhenish feet and the formula 
g

a2π is to be divided by 250, as is 

apparent from the first book (221). On account of which the time of one half oscillation is 

obtained
g
a

250
2π seconds. Whereby, since the time has to be one second, that is   

ga 2502 =π  and ga g
4
131250 31662 ==

π
thousandth parts of Rhenish feet.  

Therefore, this is the length of the pendulum completing a semi-oscillation in a time of 
one second. Q.E.I. 
 

Corollary 1.  
178. Hence the lengths of the pendulums executing oscillations in the same time, but with 
different forces acting, are in the ratio of the forces.  
 

Corollary 2.  
179. If the force acting g is equal to the force of gravity 1, which case agrees with 
oscillations on the surface of the earth, the length of the pendulum which makes a single 
to and fro journey [i. e. half an oscillation in one second] is equal to 3.16625 Rhenish 
feet, or three and one sixth feet.  [p. 77] 
 

Scholium 1.  
180. This length agrees extremely well with that found by Huygens from experiment;  
from which it is apparent that we have assumed correctly the number in the preceding 
book (220) of 15625 scruples of Rhenish feet that a body falls, acted on by the force of 
gravity, for a time of one second from rest; for indeed this number departs from the 
number 250, by which the expressions for the time must be divided, in order that a time 
of one second is presented. [Recall that the number 250 was just a useful number 
introduced by Euler as a memory aid, and so was only approximately correct.] Therefore 
since it may be generally wished to have the sixth part of a foot for the Huygens length of 
the pendulum of 3.166, clearly the length of this must be determined by observations  
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everywhere on the surface of the earth, from which it generally consists of 1055 
thousandth parts of a Rhenish foot.   
 

Scholion 2.  
181. Now from observations the universal foot can be determined in the following 
manner. A pendulum of length f is taken, which is set in motion to make the smallest 
oscillations, and let the number of these counted in a time of one hour be n, thus in order 
that a single semi-oscillation is completed in a time of n

3600 seconds. Now let the length 

of the pendulum completing semi-oscillations in one second be z. Whereby, since the 
times of oscillations of different pendulums acted on by the same force are as the square 
root ratio of the lengths of the pendulums (171), then the ratio is  z:f:n =13600 and 

thus 12960000

2 fnz =  , [p. 78] and consequently the universal foot is equal to 38880000

2 fn . 

 
Corollary 3.  

182. Therefore a pendulum four times longer than 4
13166 scruples of Rhenish feet 

completes semi-oscillations in two seconds, since the times of the oscillations are in the 
square root ratio of the lengths of the pendulums.  
 

Corollary 4.  
183. Since the radius of the earth is 20382230 Rhenish feet., if a pendulum of such a 
length is conceived, a single semi-oscillation of this will last for 2536 sec. Whereby in  
24 hours almost 17 whole oscillations are completed.  
 

Corollary 5.  
185. [There is no section 184.] Since the time of half an oscillation is 

g
a2π , the time of 

whole oscillations is  
g

a22π . But this time is equal to the time of the revolution 

performed on the periphery of a circle of radius a by a body in free motion, which is 
drawn towards the centre by a force equal to g, as from the preceding book is apparent 
(612). On this account the time of a whole oscillation of the pendulum equal to the radius 
of the earth is equal to the time that a body projected on the surface carries out a complete 
revolution. Now Huygens also showed that a body completes almost 17 revolutions in a 
time of 24 hours in performing this motion.[p. 79] 
 
 

 
 
 
 
 



EULER'S MECHANICA VOL. 2.  
Chapter 2b.  

 Translated and annotated by Ian Bruce.                                page 110 
 

Corollary 6.  
186. Since the force of gravity shall be to the force that a body on the surface of the sun is 
urged towards the centre of the sun, as 41 to 1000, the length of the pendulum which on 
the surface of the sun performs a semi-oscillation in a time of one second is equal to 
77.226 Rhenish feet. In a similar manner on account of gravity on the surface of Jupiter 
being equal to 82

167 , for such a pendulum the length is 6.448 feet. And on the surface of 

Saturn on account of gravity equal to 82
105 , the length of such a pendulum is 4.054 feet.  

 
 

PROPOSITION 20.  
 

Problem.  
 

187.  If the curve BAD (Fig. 25), upon which oscillations are made, is a cycloid described 
by the circle with diameter AC on the horizontal base BD, to determine the time of the 
oscillation through each arc EAF, with a uniform force acting downwards.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution. 
 Let the radius of osculation at A, truly AO, = a, which is twice the diameter of the 
generating circle AC; hence aAC 2

1=  and with the abscissa AP = x and with the 

corresponding arc AM = s, from the nature of the cycloid, we have axs 22 = . Now let the  
abscissa for the arc EAF, which is traversed in the oscillatory motion correspond to AG = 
b; the speed at the lowest point A corresponds to the height gb and the speed at M 
corresponds to the height )xb(g − . [In the sense that the ratio of the speeds is as the 

square root of the ratio of the heights.] Whereby, since 
ax

adxds
2

= , [p. 80] the time in 

which the arc  AM is traversed, is equal to :  
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Now, if after integration on putting x = b, then the time in which the whole arc AE is 
travelled through, is produced :  

 
or the circumference of the circle divided by the diameter. Whereby the time of a single 
ascent or descent is equal to

g
a

2
2π and the time of one journey along the arc EAF is equal 

to 
g

a2π . And the time for a complete oscillation is equal to
g

a22π . Q.E.I.  

 
Corollary 1.  

188. Since in this expression of the time the letter b which determines the magnitude of 
the arc EAF is not present, all the times of the oscillations which are performed on the 
same cycloid are equal to each other.  
 

Corollary 2.  
189. Therefore the time of any one oscillation is equal to the time of the oscillation 
through an indefinitely small arc. But the indefinitely small arclet agrees with the arc of 
the circle with radius OA to be described. Whereby the time of any oscillations on the 
cycloid BAD is equal to the time in which a pendulum of length a completes the smallest 
oscillation. It has also been made evident in the previous proposition that the time of one 
of the smallest oscillations of the pendulum a is equal to

g
a22π  (167), in which we have 

found the time of a single whole oscillation by the same formula. [p. 81] 
 

Corollary 3.  
190. Therefore if the pendulum is thus adjusted, in order that the oscillating body is 
moving on the cycloid, all the oscillations of this, whether they are large or small, are 
completed in equal intervals of time. [One may recall that Huygens had to resort to 
reductio ad absurdum arguments to prove this in the Horologium.] Whereby if AO is 

g4
13166 scruples of Rhenish feet, individual semi-oscillations are completed in times of 

one second.  
 

Corollary 4.  
191. Therefore all the descents to the lowest point A on the cycloid are of equal times or  
isochronous, and likewise all the ascents from the lowest point A, until the speed is spent. 
Truly the time of one ascent or descent is 

g
a

2
22π .  
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Scholium 1.  
192. On account of this property the cycloid is usually given the name tautochrone, since 
all the oscillations are completed on these in the same time. Huygens first uncovered this 
extraordinary property of the cycloid and understood at once that the cycloid could be 
substituted in place of the circle, that he effected in clocks. Yet now the clockmakers 
have abandoned this way of making oscillations, as they have learned almost nothing of 
this use.  And surely in a vacuum with any curve, isochronous oscillations are produced, 
since they are always present with the same magnitude. Now in a resisting medium, in 
which the oscillations decrease, the cycloid loses this property and thus there is no 
advantage in the use.  
 

Scholium 2.  
193. Also it is understood, if two dissimilar cycloids AE and AF (Fig. 24) are joined at the 
lower points, the oscillations upon the composite curve EAF are completed in equal 
times. For since both times of ascent or descent are constant quantities, also the sum of 
these, clearly the times of half an oscillation and the whole oscillation are equal to each 
other. Let twice the diameter of the circle generating the cycloid be AF = α, then the time 
of one ascent or descent on 

g
AF

2
2απ= . Whereby the to and fro journey on the 

composite curve EAF is completed in a time equal to  
g

)a(
2

22 απ + , and now with the 

time for the whole oscillation equal to 
g

)a( απ 222 + .  

 
Scholium 3.  

194. Order requires that before we can progress to forces acting in different directions, 
we should explain the effect of forces acting parallel in the same direction, but [in which 
the magnitudes] are variable, and we should investigate the motion of bodies acted on by 
forces of this kind upon given curves. But since the contents worthy of note in the 
examples of motion hitherto set out may lie hidden from us, the principles shall now be 
explained with the help of which the motion on any curve can be understood, while we 
defer these other considerations to a fuller treatment, and here we take curves to be 
investigated, [p. 83] upon which a body is acted on by some kind of force, and advances 
according to a given law.  
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PROPOSITION 21.  
 

Problem.  
 

195.  If a body is always drawn towards a fixed centre C by some force (Fig. 25) and it is 
moving on a given curve AM, to determine the motion of the body on this curve, and the 
force it exerts on individual points of the curve.   
  

Solution. 
Let the initial speed of the body at A 
corresponds to the height b and the distance of 
the point A from the centre C be AC = a. Now 
the speed of the body at any place on the curve  
M must correspond to the height v and the 
force, by which the body at M is attracted 
towards C, is equal to P with the force of 
gravity arising for the motion the body put 
equal to 1. The distance MC is called y and the 
arc AM s; the element Mm = ds and Mn = – dy.  
With centre C the circular arcs MP and mp are 
described ; then .dyMnPp,yaAP −==−=    
Now with the perpendicular CT drawn to that 
tangent MT, we have Mn:MmMT:MC = and 

mn:MmCT:MC = , [see vol. 1, (911) Cor. 3 
for a similar argument] hence this becomes :  

 
From which, if the centripetal force is resolved into the tangential component along MT 
and the normal component along MO, then the tangential force is equal to ds

Pdy− and the 

normal force is equal to ds
)dyds(P 22 −− . Hence from the tangential force there is had :  

.Pdydv −=  [p. 84] Putting the interval AP = x, in which the body approaches closer to 
the centre; then .dydxxya −==−  and  Whereby Pdxdv = , and if P depends on the 

distance MC, then ∫Pdx  can be found. Therefore with the ∫Pdx  thus accepted, in order 

that it vanishes on putting x = 0, then ∫+= Pdxbv . From which the time to traverse the 

arc AM is equal to  
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The total normal force ds
)dyds(P 22 − is taken up in exerting a force on the curve along  

MO. Therefore since this force can be shown more conveniently, and since the 
centrifugal force can likewise be shown, I put the perpendicular CT = p; then the normal 

force is equal to y
Pp . Then the radius of osculation MO is equal to dp

ydy , from which the 

centrifugal force is obtained :  

 
 

and the effect of this is contrary to the effect of the normal force. On account of which 
the curve at M  is pressed towards MO by a force equal to :   
 

 
Q.E.I. 
 

Corollary 1.  
196. Therefore if the force P depends only on the distance y, thus in order that the body is 
acted on equally at equal distances from the centre, then the speed of the body also 
depends only on the distance, and the body moving on the curve AM at equal distances 
from the centre has equal speeds.  

Corollary 2.  
197. And at any point M the speed has such a size, as the same body acquires if it falls 
from A with the same initial speed b through the interval  AP, [p. 85] clearly with CP = 
CM arising.  

Corollary 3.  
198. Therefore even if the curve AM is itself unknown, yet it is possible to assign the 
speed of the motion at each point at a distance C from the centre. Clearly for the distance  
y,  ∫+= Pdxbv  with yax −= arising.  

[The reader will no doubt have long since noted the implicit use of a type of potential 
energy function in Euler's analysis, where unit mass is assumed; this invention thus 
relieving him of the task of finding the speed as a function of the time, while making 
calculations much easier as the speed is a function of a height. At the time there was no 
system of units to which all physical quantities could be referred; hence comparisons of 
the work done under uniform gravity and as in this case under a varying force, is found 
by integration. [Thus, we find that the only units are the second, and the acceleration of 
gravity, taken as 1.] These can then be compared as a ratio if needed, and the square root 
taken to give the speed. Thus, each speed corresponds to the body falling from rest from 
the height evaluated in the comparison. Only occasionally does Euler take the calculation 
to the extent of getting an actual speed in units such as Rhenish feet per second. The 
method has its origin in the work of Galileo rather than Newton, whose calculus involved 
extensive use of time derivatives.] 
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Corollary 4.  
199. If the curve AM is such that the compressive force exerted by the body on the curve 
is zero, then the curve is that described by the body itself beginning to move freely from 
A with speed b . Thus for the free motion, there is the equation :  

,PdxdpbdpPpdy ∫+= 22  or as dydx −= , it is found that .bdpPdydpPpdy 22 =+ ∫  The 

integral of which is 222 bhbpPdyp −=∫ with the perpendicular arising h sent from C to 

the tangent at A. From these equations it is found that 
dyp
dpbhP 3

22= , as we found in the 

preceding book for free motion (587).  
 

Corollary 5.  
200. Therefore in the above motion, the compressive force for any curve AM, which the 
curve sustains at the point M along MO is equal to :   

 
[Note that in this differentiation, dy = – dx.]  
 

Example 1.  
201. Let the curve AM be a circle having centre C, the motion of the body is uniform on 
account of this always having the same distance from the centre of force C[p. 86]. 
Whereby we have 0 and == ∫Pdxbv  and the time to traverse AM 

b
AM

b
s == . Then on 

putting y = a, we have p = a and dp = dy. On account of which the compression, which 
the curve sustains along MO or towards the centre C, produced is equal to a

bP 2− . From 

which it is evident, if 2
Pab = , that the body is free to move in this circle.   

 
Example 2.  

202. Let the centripetal force P be proportional to some power of the distance y or the 
curve AM  a logarithmic spiral around the centre C, thus in order that myp =  

and
)m(

dydsmdydp
21

 and 
−

== . Hence we have :   

 
 
and the time to complete the arc  AM is equal to :   
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Now the compression, that the curve sustains along MO, is equal to :  
  

 
 

Corollary 6. [p. 87] 
203. Therefore the body, when it arrives at the centre C, has a finite speed, if n + 1 is a 
positive number, for the height corresponding to this speed is bn

n

f)n(
a +
+

+

1
1

. But if n + 1 is 

a negative number and also if it is equal to zero, the speed at C becomes infinitely great.  
 

Corollary 7.  
204. Now the body is pressed upon by a force tending away from the centre, or the 
centrifugal force prevails, if n > – 3. But if n < – 3, then the normal force prevails, and 
the curve is pressed upon by an infinite force towards the centre. 
 
 

PROPOSITION 22.  
 

Problem.  
 

205.   If a body is always drawn towards a centre of force by a centripetal force C (Fig. 
27) and let the curve EAF be suited to oscillations, the determine the oscillatory motion 
of the body on this curve.    
  

Solution. 
Let the centripetal force be proportional to some function 
of the distance from the centre C, and the speed of the 
body at equal distances from the centre C such as M and 
N is the same. Now at E and F the speed of the body is 
zero; [p. 88] and indeed it is a maximum at the point on 
the curve A nearest to the centre C; and the line CAO is 
drawn. Hence the body completes oscillations along the 
arc EAF, to which it is sufficient to investigate the 
motion to be defined on each curve AE and AF. Let the 
maximum speed of the body which it has at A, 
correspond to the height b and the speed at some other 
point M correspond to the height v. The distance CM, 
which is equal to CP, is equal to y and the centripetal 
force at M is equal to P.  Let CA = a and AP = x and AG 
= k taking CG = CE; then xay += and 

.kaCECG +== With the arc AM = s , let the tangent MT be equal to ds
ydy as determined 
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by the perpendicular sent from C to that and thus the tangential force is equal to ds
Pdy , 

since with increasing  y is opposite to the motion of the body; hence we have the equation 
:  ∫−=−=−= PdxbvPdxPdydv  and  with the integral ∫Pdx thus taken, so that it 

vanishes at the position x = 0. If therefore on putting v = 0, the value of x is elicited from 
the equation ∫= Pdxb  and the interval AG or k is given. Therefore the time, in which the 

arc AM is traversed, is equal to ∫ ∫− )Pdxb(
ds , from which the time for the whole arc AE  

is produced, if after the integration it is thus put in place, in order that the integral 
vanishes with x = 0, x = k or ∫ = .bPdx  In a similar manner the time to complete the arc  

AF can be found, and therefore from the sum of these times the time of one semi-
oscillation is given. Q.E.I.  
 

Corollary 1.  
 

206. If the curve AF is similar and equal to the curve AE, then the times to pass through 
each are equal, [p. 89] and thus the time of one semi-oscillation is equal to twice the time 
to pass through AE.  
 

Example 1.  
207. If the arc EAF is indefinitely small, the force P acting on account of the invariable 
distance from the centre C is constant and equal to g. Let the radius of osculation of the 
curve at A or AO = h; then the arc of the circle AE is described by this radius. But from 

the nature of the circle it follows that h
yahaCT 2

2 22 −+=  and  

 
But since xay += and x is indefinitely small with respect to a and h then 

h
)ha(ahxMT += 2  and  

 

 
But since gxbv −= and thus b = gk, we have )xk(gv −= and the element of time is 
equal to  

 
But ∫ − )xkx(

dx
2

 on putting x = k is equal to π, for the periphery of the circle arising from 

the diameter 1.  
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Consequently the time to pass along the indefinitely small arc AE is equal to  
 

 
 

Corollary 2.  
 

208. If the centre of force is infinitely distant, in 
order that =∝a , the direction of the force  is 
parallel to a direction and thus the above time, in 

which the arc is completed, is equal to 
g
h

2
2π .  

But if the arc of the circle EA is a straight line 
(Fig. 28) or =∝h , then the time to traverse EA 

is equal to 
g
a

2
2π .  

 
 

 
Corollary 3. [p. 90] 

209. Therefore, if the case is compared likewise with the oscillations of a pendulum acted 
on by some force g , but in a direction parallel to itself, then the length of the isochronous 
pendulum is equal to ha

ah
+ . For the time of one descent or ascent of the pendulum is equal 

to
)ha(g

ah
+2

2π .  (166) 

Example 2.  
210. Now let the centripetal force (Fig. 28) be proportional to some power of the distance 

or n

n

f
yP = and the line EF is straight. Then .ayx)ay(sAM −=−==  and 22  Moreover 

again we have :  

 
and with v = 0 this becomes :   

 
Or with the said CE = c then  

 
Consequently on account of

)ay(
ydyds

22−
=  , the time to traverse AM is equal to  
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Which integration is thus to be taken, in order that it is equal to zero on putting y = a. 
And then, on making y = c the time is had for the line EA. Now a semi-oscillation or the 
motion along EAF is equal to twice this time.  
  

Corollary 4. [p. 91] 
211. The centripetal force is put in proportion to the distance or n = 1 ;the time to pass 
along AM is equal to :   

 
or on putting AE = i as 222222  and sayiac +=+= , then the time to traverse AM is 
equal to  
 

 
hence the time to traverse AE is given by 2

2 fπ . Therefore all the oscillations on this 
line are completed in the same time; clearly made in half the time of the oscillation  

f2π .  
 

Corollary 5.  
212. If the oscillation is indefinitely small, the time of one semi-oscillation on the line is 
also f2π ; but since the centripetal force while it can be considered to be constant, let 

this be equal to g; then gf
a = and thus the time of one semi-oscillation is equal to 

g
a2π  

as above (208).  
 

Corollary 6.  
213. Since the directions of gravity actually converge towards the centre of the earth, a 
body on the surface of the earth on a perfectly horizontal line is able to perform 
oscillations, unless resistance and friction act as impediments. Moreover the time of one 
such semi-oscillation shall be (on account of a = radius of the earth and g = 1) 2536 
seconds (183).  
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PROPOSITION 23. [p. 92] 
 

Problem.  
 

214.  If a body is acted on by any two forces, of which the direction of one is along the 
vertical  MQ (Fig. 29), and the other MP is horizontal ,to define the motion of the body 
from these forces acting on a given curve AMB.  
 

Solution. 
Let the speed at B be zero, and at M it 
corresponds to the height v. The force acting 
along MQ is equal to P and that along MP is 
equal to Q. Put BR = t, RM = z, the arc BM = w, 
which letters we use for the descent of the body 
from rest at B. But for the ascent from A with 
any initial speed, which motion is referring to 
oscillations, let AP = x = QM, PM = AQ =y and 
the arc AM = s; now the speed of the body at A 
corresponds to the height b; hence t + x = const., 
likewise  z + y = const. and w + s = const., thus  
dt + dx = 0 [, dz + dy = 0] and dw + ds = 0.  
With the forces P and Q resolved into normal 
and tangential components, the tangential force that arises from P is equal to dw

Pdt  and the 

normal force that arises from P is equal to dw
Pdz pulling along MN. Then the tangential 

force arising from Q is equal to dw
Qdz and the normal force from Q is equal to dw

Pdt , which is 

contrary to that normal force. And beyond that the tangential force along BM accelerates 
the motion and thus   

∫∫ +=+= QdzPdtvQdzPdtdv  and  

[p. 93], with these integrations thus made, in order that they vanish with t and z = 0. And 
for the ascent from A there is :  

∫∫ −−= QdyPdxbv , with these integrations thus made, in order that they vanish with  x 

and y put equal to 0. Therefore with t = BD and z = AD put in this equation : 

∫∫ += QdzPdtv , we find that v = b. Whereby the time to traverse BM is equal to :   

 
and the time for AM is equal to :  
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With the element dt or dx taken as constant, the radius of osculation at M = dtddz

dw3
and thus 

the centrifugal force, the direction of which is along MN , is equal to :   
 

 
Hence the total force, by which the curve is pressed upon at M along MN, is equal to :  

 
Q.E.I.  
 

Corollary 1.  
215. But if P is some function of x or t and Q some function of y or z, so that Pdx as well 
as Qdy can be integrate; and thus the speed v can be exhibited and with the help of the 
equation for the curve the time too.   
 

Corollary 2.  
216. Because whatever and however many forces are acting, but if the directions of these 
are in that plane as the curve AMB, these forces can be resolved into two forces of this 
kind, and this proposition extends widely and embraces all the cases in which the 
directions of the forces and the curve are in the same plane.  
  

Scholium. [p. 94] 
217. Also it is apparent that this proposition is of wider applicability if a few cases are 
added on and examined, in which not all the directions of the forces are in the plane of 
the curve. For then these forces are to be resolved into two components, of which the one  
are in the plane of the curve itself, and the other normal to this plane. Therefore these 
situated in the plane of the curve, so that in the proposition we have used, the analysis 
gives the acceleration of the body and the compression force along MN ; the other forces, 
because they are normal to the curve, are only devoted to pressing on the curve.  
Whereby hence a twofold compression arises, which the curve sustains, the one directed 
along MN , and the other normal to the plane of the curve. Therefore of these two 
compressions, if the direction of the mean is taken, there is produced, and there is 
produced the direction of the equivalent force by which the curve is pressed.  On this 
account there is no need for us to explain cases of  this kind,  but we will mention briefly 
a few in which the motion of bodies are on a curve which is not itself placed in the plane 
in which the forces act, which we take as constant and in the downwards direction.  
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PROPOSITION 24.  
 

Problem.  
 

218.  With a uniform force acting in a downwards direction, to determine the motion of a 
body on some curve AM (Fig. 30)not set up in the same plane.  
 

Solution. [p. 95] 
 

Let the projection of the curve AM  be the curve AQ 
in the horizontal plane, and with the perpendiculars 
MQ and mq sent from some nearby points M and m to 
this plane, and there are drawn to the axis AP taken as 
you please, the normals QP and qp and put AP = x, 
PQ = y and QM = z.  Let the speed of the body at A 
correspond to the height b, and the speed at M 
correspond to the height v. Now the force is equal to  
g, by which the body at M is acted on along MQ. 
With the tangent MT drawn, and in that from Q to the 
perpendicular QT the force g in is resolved into 
tangential and normal [components]. Since  

 
the tangential force is equal to :  

 
And since 

 
the normal force is equal to :  

 
Moreover since the tangential force slows the motion, then we have 

gzbvgdzdv −=−=  and  , hence the time in which the arc AM is completed, is made 
equal to :   

 
Now the normal force brings about a compression of the curve by the body at M with so 
much force along a direction normal to Mm and situated in the plane QMmq. Now the 
curve is acted on in addition by the centrifugal force along the opposite direction of the 

position of the radius of osculation  by a force equal to r
)gzb( −2  , with r designating the 

radius of osculation at M. Moreover we found above (71) the position of the radius of  
osculation, from which the direction of the centrifugal force can hence become known. 
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Now the magnitude of the centrifugal force is given from the radius of osculation, which 
has been found (72) ; clearly it is given by :   

 
Q.E.I.  

Corollary 1. [p. 96] 
219. Therefore the speed of the body in this case also depends only on the height.  And 
the speed at M is of such as magnitude as the body has ascending through  QM , when it 
has a speed corresponding to the height b at Q.  
 

Corollary 2.  
220. Hence the body is unable to ascend to a greater height than to g

b . For if we set  

0=− gzb , the body has lost all its speed at that height and begins to descend again.  
  

Corollary 3.  
221. Also it is understood, if the force cannot be taken as constant, but is the variable P, 
then the speed at M can be found corresponding to the height ∫− .Pdzb  

Scholium 1.  
222. If the curve AM is considered to be in the vertical plane (Fig. 31) and with the curve 

related to the horizontal axis AQ, and AQ is equal to the 
curve AQ in the previous figure, and QM = QM in the 
preced. fig., then the curve AM is also equal to the 
preceding curve AM. If now the body on the curve AM 
ascends with an initial speed at A corresponding to the 
height b and acted on by the same force g, then it also 
has the speed at M corresponding to the height gzb − . 
And thus the time of ascent along AM also agrees with 

the times of ascent along AM in the preced. fig.  Therefore by this reason the motion of 
the body not in the same plane can be reduced to motion on a curve placed in the same 
plane. [p. 97] For it is not possible to distinguish between the motions ; but the forces 
acting on these two curves are different. On account of which this compression can be 
varies as it pleases, with the motion on the curve remaining the same.  

 
Scholium 2.  

223. Up to the present we have put the curve in place upon which the body is moving, 
and the force acting in one given direction, and from these we have deduced the motion 
of the body and the compression of the curve. Therefore now, since these should suffice, 
we progress to other questions, in which other quantities are taken as given, and the 
remaining quantities are to be found. First indeed the compression is given at individual 
points on the curve and the force acting; from which the curve itself and the motion on 
the curve must be found. Then from other combinations made from these things, which 
are come upon in the computation, we will form other questions.  
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CAPUT SECUNDUM  

 
DE MOTU PUNCTI SUPER DATA LINEA IN VACUO.  

[p. 69] 
PROPOSITIO 18.  

 
Problema.  

 
161.  Existente potentia sollicitante uniformi et deorsum directa determinare tempus 
ascensus seu descensus per quemvis circuli arcum EA (Fig.23)in puncto circulo infimo A 
terminatum.   
  

Solutio. [p. 70] 
 

 Sit C circuli centrum, erit CA radius verticalis 
seu parallelus directioni potentiae g. Ponatur AC = 
a et arcus AE altitudo AG = b, erit celeritas in 
infimo puncto A debita altitudini gb, quia corpus 
ex E descendens tantam habebit celeritatem, cum 
in A pervenerit. Atque tantam celeritatem corpus 
in A habere debet, ut ad E usque ascendere possit. 
Consideretur quodvis arcus AE elementum Mm et 

dicatur AP = x ; erit )xax(PM 22 −=  et 

)xax(
adxMm

22 −
= .  Celeritas vero in M erit debita altitudini gxgbGP.g −=  (93). 

Tempus igitur, quo elementum Mm sive ascensu sive descensu percurritur, erit = 

)xax)(xb(g
adx

22 −−
.  

Quod quia integrari non potest, per series eius integrale exprimemus. Est autem posito  
2a = c  

 
 

Hoc ergo per 
g

adx multiplicatum et integratum dat tempus, quo arcus AM  absolvitur, =  
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Totum vero tempus per arcum EA prodibit, si fiat x = b et ratio peripheriae ad diametrum 

1:π= , quo posito habebitur [p. 71] 
 

 
Ubi coefficientes etc 1 64

9
4
1 ,,, sunt quadrata coefficientium ,,, 8

3
2
11 qui prodeunt, si 

2
1

1 −− )z( in seriem resolvitur. Ex hac igitur serie tempus vero proxime potest inveniri. 
Q.E.I.  
 

 
Corollarium 1.  

162. Quo maior igitur arcus EA est, eo maius quoque erit tempus, quo is percurritur. Fit 
enim posito cab == 2 tempus infinitum, quia corpus descensu semicirculum nequaquam 
describere potest.  
 

Corollarium 2.  
163. Si igitur corpus oscillatorio motu movetur in arcu circuli EAF, erit tempus unius itus 
vel reditus duplo maius quam tempus unius ascensus vel descensus, quia tempus per ANF 
aequale est tempori per AME. Quare unius itus reditusve tempus seu tempus dimidiae 
oscillationis erit =  

 
Integra vero oscillatio tempore duplo maiore absolvetur.  
 

 Scholion 1.  
164. Series haec tempus exprimens statim hoc modo potest invenire. Temporis 
elementum in hos factores resolvatur  

 
horumque posterior tantum in seriem commutetur, scilicet hanc  
 

 
posito 2a = c. Quia autem post integrationem fit x = b, erit [p. 72] 
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Ex quibus totum descensus tempus ut ante colligitur =  
 

 
 

Scholion 2. 
165. Quo appareat, a cuiusnam aequationis constructione summatio seriei  
 

 
pendeat, pono  

tt
tt

c
b

+= 1  

et summam seriei ∫= t
qdt

e denotante e numerum, cuius log. est = 1. His positis ex mea 
series summandi methodo in Comment. Acad. Petrop. Tom. VII [1740, p. 123; Opera 
Omnia series I, vol. 14; E41] exposita invenitur sequens aequatio  

2

2

1 )tt(
tdt

t
dtqdq

+
=+ .  

Ex qua aequatione, si construi posset, inveniretur q in t indeque ipsa summa per t seu per 

c
b . Quia autem aequatio constructionem non admittit, in se spectata, apparet eam tamen 

constui posse, quia summa seriei per tempora in circulo ope quadraturarum assignari 
potest. Data enim summa seriei ex ea constructio aequationis inventae sequitur.  

 
Corollarium 3.  

166. Si arcus AE, in quo descensus vel ascensus absolvitur, ponitur infinite parvus, 
tempus per eum tamen non fit infinite parvum. Evanescit enim in expressione temporis 

tantum b eritque tempus descensus vel ascensus per arcum AE evanescentem 
g
a

2
2π= .  

Corollarium 4. [p. 73] 
167. Iuncta altera circuli parte AF cum AE oscillationes per arcum EAF evanescentem 
fient infinite parvae; tempore tamen absolventur finito. Scilicet tempus unius itus vel 

reditus seu tempus unius dimidiae oscillationis erit  
g

a2π= . 
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Corollarium 5.  
168. Tempora igitur huiusmodi oscillationum infinite parvarum sunt in ratione 
subduplicata composita ex directa radiorum et reciproca potentiarum sollicitantium. 
  

Corollarium 6.  
169. Haec eadem valent, si potentia sollicitans non fuerit uniformis. Nam utcunque 
variabilis ponatur, tamen, dum in corpus super arcu infinite parvo motum agit, 
constantem habebit valorem.  

 Corollarium 7.  
170. Intelligitur, etiamsi curva EAF non fuerit circulus, sed curva quaecunque, tum etiam, 
quae hic allata sunt, ad oscillationes infinite parvas super hac curva pertinere. Tum vero 
loco radii a radius osculi huius curvae in puncto infimo A est accipiendus.  

Corollarium 8.  
171. Huiusmodi oscillationes super arcu infinite parvo EAF efficiuntur ope penduli, cuius 
longitudo est radius AC. [p. 74]Tempora igitur oscillationum infinite parvarum 
pendulorum sunt directe ut radix quadrata ex longitudine penduli et reciproce ut radix 
quadrata ex potentia sollicitante.  
 

Corollarium 9.  
172. Si curva ANF non fuerit aequalis curvae AME, pro oscillationibus infinite parvis 
radium osculi in A tantum considerare sufficit. Sit is = α, erit tempus ascensus per arcum 

AF infinite parvum 
g2

2απ= , atque cum tempus descensus per arcum EMA 

evanescentem sit 
g
a

2
2π , erit tempus unius itus seu dimidiae oscillationis super curva 

composita EAF 
g

)a(
2

απ += .  

Corollarium 10.  
173. Si oscillationes non fuerint infinite parvae super circulo BAD, tempora oscillationum 
maiora erunt, quo maiores sint oscillationum arcus. Atque si oscillationes tamen sint 
valde parvae, erit tempus talis oscillationis ad tempus oscillationis infinite parvae ut 
quadruplum diametri circuli sinu verso arcus percursi auctum ad quadruplum diametri 
ipsum.  

Corollarium 11.  
174. Altitudo, ex qua corpus eodem tempore ab eadem potentia g sollicitatem descendit, 
quo fit descensus per arcum EMA infinite parvum, est 8

2aπ= , seu est ad octavam radii 

partem ut quadratum peripheriae circuli ad quadratum diametri; [p. 75] quam proxime 
ergo haec altitudo erit a4

5= .  
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Corollarium 12.  

175. Super chorda autem arcus EMA corpus descendit tempora eodem, quo per 
diametrum circuli (102). Quare tempus descensus super chorda infinite parva est ad 

tempus descensus super arcu respondente ut 
g

a22 ad 
g
a

2
2π , i. e. ut diameter  ad quartam 

peripheriae partem. Atque tempus descensus ex diametro seu dupla penduli longitudine 
est ad tempus unius integrae oscillationis infinite parvae ex itu et reditu compositae ut 
diameter ad peripheriam.  

 
Scholion 3.  

176. Si duo arcus circulares AE et FA (Fig. 24), 
super quibus coniunctis oscillationes peraguntur, 
non sunt aequales, ope pendul hae oscillationes 
confici possunt, si in centro K arcus AF clavus 
infigatur, ut filum CA, postquam arcum EA circa 
centrum descripsit, in K retineatur et circa centrum 
K arcum AF describat.  
 
 

 
 

 
 

PROPOSITIO 19.  
 

Problema.  
 

177.  Data potentia sollicitante invenire longitudinem penduli infinite parvas 
oscillationes conficiens, quod singulos itus reditusve uno minuto secundo absolvat.   
  

Solutio. [p. 76] 
 Existente a longitudine penduli quaesita et g potentia sollicitante, unitate vim gravitas 

denotante, est tempus unius dimidiae oscillationis infinite parvae 
g

a2π . Haec vero 

expressio ut in minutis secundis habeatur, longitudo a in partibus millesimis pedis 

Rhenani est exprimenda et formula 
g

a2π per 250 dividenda, ut ex primo libro (221) 

apparet. Quamobrem habebitur tempus unius dimidiae oscillationis 
g
a

250
2π min. sec. 

Quare, cum hoc tempus unum minutum secundum esse debeat, erit ga 2502 =π  

atque ga g
4
131250 31662 ==

π
part. mill. pedis Rhen.  

Haec ergo est longitudo penduli semioscillationes uno minuto secundo absolventis. Q.E.I. 
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Corollarium 1.  
178. Longitudines ergo pendulorum eodem tempore oscillationes peragentium, sed a 
diversis potentiis sollicitatorum, sunt in ipsarum potentiarum ratione.  
 

Corollarium 2.  
179. Si potentia sollicitans g aequalis est vi gravitatis 1, qui casus in oscillationes in 
superficie terrae factas competit, erit penduli longitudo, quod itus reditusque singulos uno 
minuto secundo absolvit, = 3,16625 pedum Rhen. seu trium pedum cum sexta pedis 
parte. [p. 77] 

Scholion 1.  
180. Apprime convenit haec longitudo cum ea, quam Hugenius per experimenta invenit; 
ex quo apparet nos in praecedente libro (220) numerum 15625 scrup. pedis Rhenani recte 
pro altitudine, ex qua corpus vi gravitatis sollicitatum tempore unius minuti secundi 
delabitur, assumsisse; ex hoc enim numero fluit numerus 250, per quem temporum 
expressiones dividi debent, ut minuta secunda praebeant. Cum igitur Hugenius 
longitudinis 3,166 ped. tertiam partem pro pede universali haberi velit, quippe cuius 
longitudo ubique terrarum per observationes potest determinari, continebit hic pes 
universalis 1055 partes millesimas pedis Rhenani.  

 
Scholion 2.  

181. Observationibus vero hic pes universalis sequenti modo commodissime 
determinatur. Sumatur pendulum longitudinis f, quod ad minimas oscillationes faciendas 
impellatur, numerenturque eius dimidiae oscillationes tempore unius horae earumque 
numerus sit n, ita ut una semioscillatio absolvatur tempore n

3600 min. sec. Sit iam 

longitudo penduli semioscillationes minutis secundis absolventis z. Quare, cum tempora 
oscillationum diversorum pendulorum ab eadem potentia sollicitatorum sint in 

subduplicata ratione pendulorum (171), erit z:f:n =13600 ideoque 12960000

2 fnz =  [p. 

78] et consequenter pes universalis 38880000

2 fn= . 

 
Corollarium 3.  

182. Pendulum igitur quadruplo longius quam 4
13166 scrup. pedis Rhenani 

semioscillationes duobus minutis secundis absolvet, quia tempora oscillationum sunt in 
subduplicata ratione longitudinum pendulorum.  
 

Corollarium 4.  
183. Cum semidiameter telluris sit 20382230 ped. Rhen., si tantae longitudinis pendulum 
concipiatur, durabit eius una semioscillatio 2536 min.sec. Quare in horis 24 prope 17 
oscillationes integras absolvet.  
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Corollarium 5.  

185. Quia tempus dimidiae oscillationis est 
g

a2π , erit tempus integrae oscillationis 

g
a22π . At huic tempori aequale est tempus revolutionis in peripheria circuli radii a a 

corpore motu libero peractae, quod ad centrum circuli urgetur vi = g, ut ex praecedente 
libro (612) apparet. Hanc ob rem tempus unius oscillationis integrae pendui semidiametro 
terrae aequalis aequatur tempori, quo corpus proiectum in superficie unam revolutionem 
perageret. Ostendit vero quoque Hugenius corpus hoc modo motum tempore 24 horarum 
fere 17 revolutiones esse absoluturum. [p. 79] 
 

Corollarium 6.  
186. Cum vis gravitatis sit ad vim, qua corpus in superficie solis ad centrum solis urgetur, 
ut 41 ad 1000, erit longitudo penduli, quod in superficie solis semioscillationes minuto 
secundo absolvit, = 77.226 ped. Rhenan. Simili modo ob gravitatem in superficie Iovis 

82
167= tale pendulum longum erit 6.448 ped. Atque in superficie Saturni ob gravitatem 

82
105= talis pendul longitudo erit 4.054 ped.  

 
PROPOSITIO 20.  

 
Problema.  

 
187.  Si fuerit curva BAD (Fig. 25), super qua fiunt oscillationes, cyclois circulo diametri 
AC super basi horizontali BD descripta, determinare tempus oscillationis per quemque 
arcum EAF existente potentia sollicitante uniformi et deorsum tendente.    
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Solutio. 

 Sit radius osculi in A, nempe AO, = a, qui est duplum diametri circuli generatoris AC; 
erit ergo aAC 2

1=  et posita abscissa AP = x et arcu respondente AM = s erit ex natura 

cycloidis axs 22 = . Sit iam abscissa arcui EAF, qui motu oscillatorio percurritur, 
respondens AG = b; erit celeritas in puncto infimo A debita altitudini gb et celeritas in M 
debita altitudini )xb(g − . Quare, cum sit 

ax
adxds
2

= , [p. 80] erit tempus, quo arcus AM 

percurritur, = 

 
Est vero, si post integrationem ponatur x = b, quo tempus per totum arcum AE prodeat,  

 
seu peripheria circuli per diametrum divisa. Quare tempus unius ascensus vel descensus 

est = 
g
a

2
2π et tempus unius itus vel reditus per arcum EAF erit =

g
a2π .  Atque tempus 

unius integrae oscillationis erit = 
g

a22π Q.E.I.  

 
Corollarium 1.  

188. Quia in hanc temporis expressionem littera b, quae quantitatem arcus EAF 
determinat, non ingreditur, omnium  oscillationum tempora, quae super eadem cycloide 
perficiuntur, sunt inter se aequalia.  
 

Corollarium 2.  
189. Tempus ergo uniuscuiusque oscillationis erit aequale tempori oscillationis per 
arculum infinite parvum. At arculus infinite parvus congruit cum arculo circulo radio OA 
descripti. Quare tempus cuiusque oscillationis super cycloide BAD aequale erit tempori, 
quo pendulum longitudinis a oscillationem minimam absolvit. Id quod etiam ex 
praecedente propositione elucet; tempus enim minimae oscillationis penduli a est = 

g
a22π  (167), qua eadem formula tempus unius oscillationis integrae super cycloide 

expressum invenimus. [p. 81] 
 

Corollarium 3.  
190. Si igitur pendulum ita adaptetur, ut corpus oscillans in cycloide moveatur, omnes 
eius oscillationes, sive fuerint magnae sive parvae, aequalibus absolvuntur temporibus. 
Quare si AO fuerit g4

13166 scrup. pedis Rhenani, singulari semioscillationes minuto 
secundo absolventur.  
 

Corollarium 4.  
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191. Omnes igitur descensus super cycloide ad punctum infimum A sunt aequitemporanei 
seu isochroni, item omnes ascensus ex puncto infimo A, donec celeritas fuerit absumta. 

Tempus vero unius ascensus vel descensus est 
g

a
2

22π .  

 
Scholion 1.  

192. Propter hanc proprietatem cyclois tautochronae nomine appelari solet, quia omnes 
oscillationes superea eodem tempore absolventur. Hugenius primus hanc eximiam 
cycloidis proprietatem detexit statimque cogativit de cycloide in locum circuli 
substituenda in oscillationibus, id quod in horologiis effecit. Nunc tamen horologiorum 
artifices hunc oscillandi modum rursus deseruerunt, quod eius usum nimis exiguum 
compererint. Atque certe in vacuo quaelibet curva oscillationes isochronas producit, quia 
perpetuo eiusdem magnitudinis existunt. In medio resistente vero, quo oscillationes 
decrescunt, [p. 82] cylcois hanc proprietatem amittit ideoque nullius est utilitatis. 
 

Scholion 2.  
193. Intellegitur etiam, si duae cycloides AE et AF (Fig. 24) dissimiles in punctis infimis 
iungantur, oscillationes super curva composita EAF aequalibus temporibus absolvi. Nam 
cum super utraque tempora ascensus vel descensus sint constantis quantitatis, etiam 
summae eorum, nempe tempora semioscillationum et integratum oscillationum, inter se 
erunt aequalia. Sit duplum diametri circuli generantis cycloidem AF = α, erit tempus 

unius ascensus vel descensus super 
g

AF
2

2απ= . Quare itus reditusve super curva 

composita EAF absolvetur tempore 
g

)a(
2

22 απ += , integra vero oscillatio 

tempore
g

)a( απ 222 += .  

 
Scholion 3.  

194. Ordo requiret, ut, antequam ad alias potentiae sollicitantis directiones progrediamur, 
effectus potentiae, cuius directiones sint adhuc parallelae, sed variabiles, evolveremus 
motumque corporis a huiusmodi potentia sollicitati super data curva investigaremus. Sed 
cum exempla motum notatu dignum continentia nobis adhuc lateant atque principia, 
quarum ope motus super quaque curva cognoscitur, iam sint exposita, pleniorem 
tractationem eo differemus, ubi curvas sumus investigaturi, [p. 83] super quibus corpus a 
huiusmodi potentiis sollicitatum data lege incedat.  
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PROPOSITIO 21.  
 

Problema.  
 

195.  Si corpus perpetuo vi quacunque ad centrum fixum C (Fig. 25) trahatur atque super 
data curva AM moveatur, determinare motum corporis super hac linea et pressionem 
quam in singulis punctis sustinet.  
  

Solutio. 
Sit corporis celeritas initialis in A debita 

altitudini b et puncti A a centro C distantia AC 
= a. Celeritas vero corporis in quocunque 

curvae loco M debita sit altitudini v et vis, qua 
corpus in M versus C sollicitatur, sit = P 

existente vi gravitate corporis moti = 1. Dicatur 
distantia MC y et arcus AM s; erit elementum 

Mm = ds et Mn = – dy.  Centro C describantur 
arcus circulares MP, mp ; erit 

.dyMnPp,yaAP −==−=   Iam ducta tangente 
MT in eamque perpendiculo CT erit 

Mn:MmMT:MC = et mn:MmCT:MC = , 
unde erit 

 
Ex quibus, si vis centripeta in tangentialem 
secundum MT et normalem secundum MT et normalem secundum MO resolvatur, erit vis 

tangentialis ds
Pdy−= et normalis ds

)dyds(P 22−−= . Ex vi tangentali ergo habebitur 

.Pdydv −=  [p. 84] Ponatur intervallum AP = x, quo corpus propius ad centrum accessit; 
erit .dydxxya −==− et   Quare erit Pdxdv = , et si P a distantia MC pendeat, poterit 

∫Pdx  exhiberi. Ita igitur integrali ∫Pdx  accepto, ut evanescat posito x = 0, erit 

∫+= Pdxbv . Ex quo tempus per arcum AM erit =  

 

Vis normalis ds
)dyds(P 22 − tota in pressione curvae secundum MO insumitur. Quo igitur 

haec commodius exponatur et cum vi centrifuga simul exhibeatur, pono perpendiculum 

CT = p; erit vis normalis y
Pp= . Deinde radius osculi MO erit = dp

ydy , ex quo habetur vis 

centrifuga =  
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cuius effectus effectui vis normalis est contrarius. Quamobrem curva in M versus MO 
premetur vi =  

 
Q.E.I. 
 

Corollarium 1.  
196. Si igitur vis P a distantia y tantum pendeat, ita ut corpus in aequalibus a centro 
distantiis aequaliter urgeatur, celeritas corporis a distantia quoque tantum pendebit atque 
corpus super curva AM motum in aequalibus a centro distantiis aequales habebit 
celeritates.  

Corollarium 2.  
197. Atque in quovis puncto M celeritas tanta erit, quantam idem corpus acquireret, si 
eadem celeritate initiali b ex A per intervallum AP descenderet, [p. 85] existente 
nimirum CP = CM.  

Corollarium 3.  
198. Etiamsi igitur ipsa curva AM sit incognita, tamen corporis super ea moti in quaque a 
centro C distantia celeritas potest assignari. Est nempe pro distantia y,  ∫+= Pdxbv  

existente .yax −=  
 

Corollarium 4.  
199. Si curva AM fuerit talis, ut pressio, quam corpus in eam exercet, sit nulla, erit curva 
ea ipsa, quam corpus motum in A celeritate b inchoans libere describeret. Erit itaque pro 
motu libero ,PdxdpbdpPpdy ∫+= 22  seu ob dydx −= habebitur 

.bdpPdydpPpdy 22 =+ ∫  Cuius integralis est 222 bhbpPdyp −=∫ existente h 

perpendiculo ex C in tangentem in A demisso. Ex his aequationibus invenitur 

dyp
dpbhP 3

22= , uti praecendente libro (587) pro motu libero invenimus.  

 
Corollarium 5.  

200. In motu igitur super quacunque curva AM pressio, quam curva in M secundum MO 
sustinet, est =  
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Exemplum 1.  
201. Sit curva AM circulus centrum in C habens, erit motus corporis uniformis propter [p. 
86]  eandem eius perpetuo a centro virium C distantiam. Quare erit 0et  == ∫Pdxbv  

atque tempus per AM 
b

AM
b
s == . Deinde cum sit y = a, erit et p = a et dp = dy. 

Quamobrem pressio, quam curva secundum MO seu versus centrum C sustinet, prodibit 

a
bP 2−= . Ex quo perspicitur, si fuerit 2

Pab = , corpus libere per hunc circulum motum 

iri.  
 

Exemplum 2.  
202. Sit vis centripeta P potestati cuicunque distantiarum y proportionalis seu curva AM 

spiralis logarithmica circa centrum C, ita ut sit myp =  et 
)m(

dydsmdydp
21

 atque 
−

== . 

Erit ergo  

 
atque tempus per arcum AM =  

 
Pressio vero, quam curva secundum MO sustinet, erit =  

 
 

Corollarium 6. [p. 87] 
203. Corpus igitur, cum in centrum C pervenerit, celeritatem habebit finitam, si n + 1 est 
numerus affirmativus; altitudo enim esti celeritati debita est bn

n

f)n(
a +
+

+

1
1

. At si n + 1 est 

numero negativus vel etiam = 0, celeritas corporis in C erit infinite magna.  
 

Corollarium 7.  
204. In ipso vero centro corpus vi infinita premetur directione a centro tendente, seu vis 
centrifuga praevalebit, si fuerit n > – 3. At si n < – 3, tunc vis normalis praevalebit atque 
curva vi infinita versus centrum premetur. 
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PROPOSITIO 22.  
 

Problema.  
 

205.  Si corpus perpetuo vi centripeta ad centrum virium C (Fig. 27) trahatur dataque sit 
curva EAF ad oscillandum idonea, determinare motum oscillatorium corporis super hac 
curva.   
  

Solutio. 
Sit vis centripeta functioni cuicunque 
distantiarum a centro C proportionalis, erit 
celeritas corporis in aequalibus a centro C 
distantiis, ut M et N, eadem. In E vero et F 
celeritas corporis sit nulla; [p. 88] maxima vero 
erit in puncto curvae A centro C proximo; 
ducaturque  recta CAO. Corporis ergo per 
arcum EAF oscillationes absolvet, ad quas 
definiendas motum corporis super utraque 
curva AE et AF investigare sufficit. Sit celeritas 
corporis maxima, quam habet in A, debita 
altitudini b et celeritas in quocunque puncto M 
debita altitudini v. Ponatur distantia CM, cui 
aequalis sit CP, = y et vis centripeta in M = P.  
Sit CA = a et AP = x atque AG = k sumta CG 
= CE; erit xay += et .kaCECG +== Posito 
arcu AM = s erit tangens MT, quam 
perpendiculum ex C in eam demissum 

determinat, ds
ydy= ideoque vis 

tangentialis ds
Pdy= , quae motui corporis crescente y est contraria; unde habebitur 

∫−=−=−= PdxbvPdxPdydv et   integrali ∫Pdx ita accepto, ut evanescat posito x = 0. 

Si igitur ponatur v = 0, dabit ex aequatione  

∫= Pdxb  valor ipsius x erutus intervallum AG seu k. Tempus ergo, quo arcus AM 

percurritur, est = ∫ ∫− )Pdxb(
ds , ex quo tempus per totum arcum AE prodibit, si post 

integrationem ita institutam, ut integrale evanescat posito [x = 0, ponatur] x = k seu 

∫ = .bPdx  Simili modo tempus per arcum AF invenietur, quo igitur invento summa 

horum temporum dabit tempus unius semioscillationis. Q.E.I.  
 

 



EULER'S MECHANICA VOL. 2.  
Chapter 2b.  

 Translated and annotated by Ian Bruce.                                page 137 
 

Corollarium 1.  
206. Si curva AF similis et aequalis fuerit curvae AE, tempora per utramque erunt  
aequalia, [p. 89] atque ideo tempus unius semioscillationis aequabitur duplo tempori per 
AE.  
 

Exemplum 1.  
207. Si arcus EAF fuerit infinite parvus, potentia sollicitans P ob distantiam a centro C 
invariabilem erit constant = g. Sit radius osculi curvae in A seu AO = h; erit AE arcus 

circuli hoc radio descriptus. At ex natura circuli erit h
yahaCT 2

2 22 −+=  et  

 
Sed ob xay += et x respectu a et h infinite parvum erit h

)ha(ahxMT += 2  et  

 

 
At cum sit gxbv −= ideoque b = gk, habebimus )xk(gv −= atque elementum temporis 
=  

 
At ∫ − )xkx(

dx
2

 posito x = k fit = π, peripheriae circuli existente diametro 1. Consequenter 

tempus per arcum AE infinite parvum est =  

 
 

Corollarium 2.  
208. Si centrum virium infinite distet, ut esset 
=∝a , erit potentiae directio sibi parallela 

ideoque ut supra erit tempus, quo arcus AE 

absolvitur = 
g
h

2
2π .  

At si arcus circuli EA fit linea recta (Fig. 28) seu 

=∝h , erit tempus per EA =
g
a

2
2π .  
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Corollarium 3. [p. 90] 

209. Si ergo casus comparetur cum oscillationibus penduli a potentia g quoque, sed 
directiones sibi parallelas habente, sollicitati, erit penduli isochroni longitudo ha

ah
+= . 

Tempus enim unius descensus seu ascensus huius penduli est (166) 
)ha(g

ah
+

=
2

2π .  

Exemplum 2.  
210. Sit iam (Fig. 28) vis centripeta potestati cuicunque distantiarum proportionalis seu 

n

n

f
yP = et linea EF recta. Erit .ayx)ay(sAM −=−== et  22  Erit autem porro  

 
positoque v = 0 fiet  

 
Vel dicta CE = c erit  

 
Consequenter ob 

)ay(
ydyds

22−
= habebitur tempus per AM =  

 
Quod integrale ita est accipiendum, ut fiat = 0 positi y = a. Tumque facto y = c habebitur 
tempus per lineam EA. Semioscillatio vero seu motus per EAF aequabitur duplo huius 
temporis.  

Corollarium 4. [p. 91] 
211. Ponatur vis centripeta distantiis proportionalis seu n = 1 ;erit tempus per AM =  

 
seu posito AE = i ob 222222 et  sayiac +=+= erit tempus per AM =  
 

 
unde tempus per AE erit 2

2 fπ . Omnes igitur oscillationes super hac recta absolvuntur 

eodem tempore; dimidia nimirum oscillatio tempore f2π conficietur.  
 

Corollarium 5.  
212. Si oscillatio est infinite parva, tempus unius semioscillationis super recta erit quoque 

f2π ; at cum vis centripeta tum ut constans considerari possit, sit ea = g; erit 

gf
a = ideoque tempus unius semioscillationis 

g
a2π=  ut supra (208) 
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Corollarium 6.  

213. Quia directiones gravitatis revera convergunt ad centrum terrae, corpus in superficie 
telluris super recta perfecte horizontali oscillationes peragere posset, nisi resistantia et 
frictiones impedirent. Tempus autem unius semioscillationis talis foret (ob a = 
semidiametro terrae et g = 1) 2536 minut. secund. (183).  
 

PROPOSITIO 23. [p. 92] 
 

Problema.  
 

214.  Si corpus sollicitetur a duabus quibuscunque potentiis, quarum alterius directio sit 
verticalis MQ (Fig. 29), alterius horizontalis MP, definire motum corporis ab istis viribus 
sollicitati super data curva AMB.  
 

Solutio. 
Sit celeritas in B nulla, in M debita altitudini v. 
Vis sollicitans secundum MQ sit = P et ea 
secundum MP = Q. Ponatur BR = t, RM = z, 
arcus BM = w, quas litteras ad descensum 
corporis ex quiete ex B adhibebimus. At pro 
ascensu ex A quacunque cum celetate initiali, 
qui motus ad oscillationes referetur, sit AP = x 
= QM, PM = AQ =y et arcus AM = s; celerita 
vero corporis in A debita sit altitudini b; erit 
ergo t + x = const., item z + y = const. et w + s 
= const., unde dt + dx = 0 [, dz + dy = 0] et dw 
+ ds = 0.  Resolutis potentiis P et Q in normales 
et tangentiales erit vis tangentialis ex P orta = 

dw
Pdt  et vis normalis ex P orta = dw

Pdz trahens secundum MN. Deinde erit vis tangentialis 

ex Q orta = dw
Qdz et normalis ex Q = dw

Pdt , quae villi normali est contraria. Ultraque vis 

tangentialis motum per BM accelerat ideoque erit  

∫∫ +=+= QdzPdtvQdzPdtdv et   

[p. 93] his integralibus ita acceptis, ut evanescant factist et z = 0. Atque pro ascensu ex A 
erit  

∫∫ −−= QdyPdxbv his integralibus ita sumtis, ut evanescant positis x et y = 0. Positis 

igitur in illa aequatione ∫∫ += QdzPdtv , t = BD et z = AD fiet v = b. Quare tempus per 

BM erit =  

 
et tempus per AM =  
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Sumto elemento dt vel dx constante erit radius osculi curvae in M = dtddz

dw3
atque vis 

centrifuga, cuius directio secundum MN est, =  
 

 
Totalis ergo vis, qua curva in M secundum MN premitur, est =  

 
Q.E.I.  
 

Corollarium 1.  
215. Si P est functio ipsius x vel t quaecunque et Q functio ipsius y vel z quaecunque, tam 
Pdx quam Qdy integrari poterunt; atque ideo celeritas v poterit exhiberi et ope aequationis 
pro curva tempus quoque.  
 

Corollarium 2.  
216. Quia quaecunque et quotcunque potentiae sollicitantes, si modo earum directiones 
sint in eo plano, in quo est curva AMB, in huiusmodi duas potentias possunt resolvi, haec 
propositio latissime patet et omnes casus complectitur, quibus potentiarum directiones et 
curva sunt in eodem plano.  

Scholion. [p. 94] 
217. Patet etiam haec propositio latius,si pauca adiiciantur, et comprehendit casus, quibus 
non omnes potentiarum directiones sunt in plano curvae. Tum enim hae potentiae in binas 
sunt resolvendae, quarum alterae sint in ipso curvae plano, alterae ad hoc planum 
normales. Illae igitur in plano curvae sitae eodem modo, quo in propositione usi sumus, 
tractatae dabunt accelerationem corporis et pressionem secundum MN; alterae potentiae, 
quia normales sunt in curvam, in curva premenda tantum insumentur. Quare hinc duplex 
nascetur pressio, quam curva sustinet, altera secundum MN directa, altera ad planum 
curvae normalis. Harum igitur duarum pressionum si media sumatur directio, prodibit 
directio potentiae aequivalentis, in qua curva premitur. Quamobrem non est opus, ut 
huiusmodi casus evolvamus, sed paucis attingemus motum corporum super curva, quae 
ipsa non est in plano sita, ubi potentiam sollicitantem constantem et deorsum tendentem 
ponemus.  
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PROPOSITIO 24.  
 

Problema.  
 

218.  Existente potentia sollicitante uniformi eiusque directione recta deorsum tendente 
determinare motum corporis super curva quacunque AM (Fig. 30)non in eodem plano 
constituta.  
 

Solutio. [p. 95] 
Sit curva AQ proiectio curvae AM in plano 
horizontali demissisque ex punctis quibusque 
proximis M et m in hoc planum perpendiculis 
MQ et mq ducantur ad axem pro lubitu 
assumtum AP normales QP et qp ponaturque 
AP = x, PQ = y et QM = z. Sit corporis  
celeritas in A debita altitudini b, celeritas in M 
altitudini v. Potentia vero sit = g, qua corpus in 
M secundum MQ sollicitatur. Ducta tangente 
MT et in eam ex Q perpendiculari QT 
resolvatur potentia g in tangentialem et 
normalem. Erit ob  

 
vis tangentialis =  

 
Atque ob  

 
vis normalis =  

 
Quia autem vis tangentialis motum retardat, erit gzbvgdzdv −=−= et   , unde tempus, 
quo arcus AM absolvetur, prodit =  

 
Vis normalis vero efficiet, ut curva in M a corpore tanta vi prematur iuxta directionem ad 
Mm normalem et in plano QMmq sitam. Premitur vero curva praeterea a vi centrifuga 

secundum directionem positioni radii osculi oppositam vi = r
)gzb( −2  designante r 

radiuim osculi in M. Invenimus autem supra (71) positionem radii osculi, ex qua proinde 
directio vis centrifugae innotescit. Quantitas vero vis centrifugae dabitur ex radio osculi, 
qui (72) est inventus; est nempe  
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Q.E.I.  
 

Corollarium 1. [p. 96] 
219. Celeritas igitur corporis hoc quoque casu ab altitudine tantum pendet. Atque 
celeritas in M tanta est, quantam corpus per QM ascendens cum celeritate in Q altitudini b 
debita in M haberet.  
 

Corollarium 2.  
220. Non poterit ergo corpus ad maiorem altitudinem ascendere quam ad g

b . Nam si est 

0=− gzb , corpus in ea altitudine omnem celeritatem amisit iterumque descendet.  
 

Corollarium 3.  
221. Intelligitur etiam, si potentia non constans fuisset accepta, sed variabilis P, tum 
inventam fuisse celeritatem in M debitam altitudini ∫− .Pdzb  

Scholion 1.  
222. Si in plano verticali concipiatur curva AM (Fig. 31) ad axem horizontalem AQ relata 
fueritque AQ = curvae AQ praeced. fig. et QM = QM praeced. fig., erit quoque curva AM 

aequalis curvae AM praeced. fig. Si iam corpus super 
curva AM ascendat celeritate initiali in A debita 
altitudini b et ab eadem potentia g sollicitatum, habebit 
in M quoque celeritatem altitudini gzb − debitam. 
Atque ideo tempus quoque ascensus per AM congruet 
cum tempores ascensus per AM in praeced. fig. Hac 
igitur ratione motus corporis super curva non in eodem 

plano sita reduci potest ad motum super curva in eodem plano posita. [p. 97] Inter motus 
enim ipsos nullum erit discrimen ; at pressiones, quas hae duae curvae sufferunt, erunt 
diversae. Quamobrem hoc modo pressio, ut libet, poterit variari manente motu corporis 
super curva eodem.  
 

Scholion 2.  
223. Posuimus hactenus curvam, super qua corpus movetur, et potentiam sollicitantem 
una cum directione datas ex iisque motum corporis et pressionem curvae deduximus. 
Nunc igitur, cum haec sufficere possint, ad alias quaestiones progrediemur, in quibus alia 
pro datis accipiuntur reliquaque sunt invenienda. Et primo quidem data sit pressio in 
singulis curvae punctis et potentia sollicitans; ex quibus ipsa curva et motus super ea 
debeat inveniri. Deinde aliis factis combinationibus inter eas res, quae in computum 
veniunt, alias quaestiones formabimus. 
 
 
 


