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CHAPTER TWO 

 
CONCERNING THE MOTION OF A POINT  

ON A GIVEN LINE  IN A VACUUM.  
  [p. 211] 

PROPOSITION 49.  
 

Problem.  
 

430.  If a body is acted on by any forces, to find the curve AM (Fig. 53), upon which all 
the descents are made in equal times as far as to the point A.  
 

Solution.  
 

Whatever the forces should be acting, all these can be reduced to two forces, of which 
the first now always pulls the body downwards along MQ, and the other pulls the body 

horizontally along MP. Let the force which pulls along 
MQ be equal to P,  and the force which pulls along  MP 
be equal to Q; call AP = x, PM = y, AM = s ; let the 
speed at the point A correspond to the height b, and the 
speed at M correspond to the height v. With these in 
place, the equation arises ∫∫ −−= .QdyPdxbv  

Whereby if we put h = b and  zQdyPdx =+ ∫∫ , then v 

is a function of one dimension of h and z, and therefore 
m = 1 (408). On this account, this equation is obtained 

for the curve sought :  

∫∫ +== )(22 QdyPdxazas  

or 

∫+∫

+=
)QdyPdx(a

aQdyaPdxds . 

But since we have )dydx(ds 22 += , then  
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Therefore at the starting point  A , where 0=+ ∫∫ QdyPdx , then 0=+QdyPdx or 

.Q:Pdx:dy −=  And it is understood from the preceding proposition, that the time of 
this descent is equal to the time, [p. 212] according to the hypothesis of gravity equal to 
1, in which a pendulum of length 2a completes the descent. Q.E.I.  

 
Scholium.  

431. If a curve is obtained, upon which all the descents are made in the same time, it is 
easy to give the curves, upon which all the oscillations are performed in the same time. 
For since in a vacuum the ascents are similar to the descents, every curve, which is a  
tautochrone for the descents is such too for the ascents. Whereby two tautochrone curves 
joined at the point A give a curve, upon which all the oscillations are isochrones. But yet 
by this reason the other problem, in which all the isochronous oscillations produced are 
required, is not perfectly resolved ; for it is possible to give an infinitude of curves 
satisfying this question, yet the parts of which are not suited to bringing about isochrones 
in the descents alone. Moreover the problem can be proposed in this manner : given any 
curve to find another, which joined with that curve produces all oscillations of equal 
times. [E012 : De innumerabilibus tautochronis in vacuo, Comment. acad. sc. Petrop. 6 
(1729), 1735; O.O. series II, vol. 4] Now before we advance to this problem, we bring 
forwards another problem, in which a curve is sought adjoined to a given curve, so that 
all the descents on this composite curve are completed in equal times. Which problem has 
given me the most difficulty since it was proposed to me by the most celebrated Dan. 
Bernoulli. [E024 : Solutio singularis casus circa tautochronismum, Comment. acad. sc. 
Petrop. 6 (1732/33), 1738; O.O. series II, vol. 4] Yet this problem can also be solved by 
this method, which I use in the investigation of tautochrones.    
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PROPOSITION 50.  

[p. 213] 
Problem.  

 
432.  According to  the hypothesis of gravity acting uniformly downwards, if the curve 
ANB is given (Fig. 54),  to find the curve BMF adjoined to that curve, so that all the 
descents upon the composite curve as far as A are completed in equal times, the descent 
starting from any point of the curve BMF.  
 

Solution. 
 If the descent starts from the lowest point B of the curve 
sought,  the descent is made along the given curve BNA only; 
hence the time of that, which is also given, must be equal to the 
times of all the descents. Let AD = a, AQ = u, AN = t and the 
equation is given between u and t. Moreover, for the curve 
sought, let BP = x, and BM = s. Now in any descent, let the 
speed at the point B correspond to the height b; the speed at the 
point  M corresponds to the height xb − and the speed at N 
corresponds to the height .uba −+  Therefore the descent time 
along the unknown curve is equal to ∫ − )xb(

ds , thus integrated, 

so that it vanishes on putting x = 0, and on putting x = b in place after the integration. 
Now the time along the known curve BNA is given by ∫ −+ )uba(

dt , thus integrated, so 

that it vanishes on putting u = 0, and putting u = a after the integration. [p. 214] 
Therefore the expression ∫ − )xb(

ds , after making x = b, must thus be arranged in order 

that,  if it is added to the expression of the time along BNA, then the letter b is not present 
within the sum ; for then the total time of the descent is a constant quantity and does not 
depend on b, or on the point of the curve BMF at which the descent started. Let the 
integral ∫ −+ )uba(

dt , after putting u = a, be equal to this series :  

 
 
Whereby, if  the descent starts from the point B, the time of the whole descent is equal to  
k, as b vanishes. Therefore k itself must be equal to the time of the whole descent along 
the composite curve, the start of the descent being taken from any point of the curve 
BMF. Now let the nature of the curve sought BMF be expressed by the following series :   

etc.        

etc.
32

32

−−−−−

−−−−−=

dxIxdxHxGxdxFdx

xdxDxxdxCxxBxdxxAdxds  

The ratio of the periphery to the diameter is put as 1:π , which in fact is ,:l 11 −−−  
thus so that it becomes :   
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.ll 11

1
1 −−=−= •
−
−π  

 
Now after integration, on putting x = b,  
 

etc.3
642
5312

42
31

2
1 2

Cb,Bb,Ab ..
..

)xb(
xdxCx

.

.
)xb(
xBxdx

)xb(
xAdx πππ === ∫∫∫ −−−

 

and 
 

etc.222 2
53
42

3
2 2

bHb,bGb,bF .
.

)xb(
dxHx

)xb(
xGdx

)xb(
xFdx === ∫∫∫ −−−

 

[We give an elementary working of the first integration here : Ab
)xb(

xAdx π2
1=∫ −

.  

∫∫∫ −−−−
==

2
24

22 )x(
xdx

)xbx(
xdx

)xb(
xdx

bb
. Let 2A and bAxX =−= , then 

∫∫∫∫ −−−

+

−−
+==

2222222
24

2 XA
AdX

XA
XdX

XA
dX)AX(

)x(
xdx

bb
. The second integral is just the arc 

length, since )arcsin(
22 A

X
XA

dX =∫ −
, for on substituting θsinAX = , and noting that the 

limits are 0 and b, or – A and A, the integral becomes AdA b
2

2

2

π
π

π

θ =∫
−

, on inserting the 

limits; note that Euler specified the limits each time, as the notion of a definite integral 
had not yet been formed, and the process of integration was viewed by him as the 
solution of a first order differential equation, which of course is correct. The first integral 

∫ − 22 XA
XdX is zero as it is an odd function, and the other integrations follow on integrating 

by parts successively. It is also possible, of course, to write the second integral as 
22log11

2222
AXX.

AX
AdX

XA
AdX −+−=−= ∫∫ −−

 This has been done, as Euler has 

performed the integration in this way using logarithms; which can be examined below in 
Example 1, (438), in which it is necessary to make the connection 11

1
1 −−=−= •
−
− llπ  

to relate the logarithmic result with the elementary derivation. Whether or not this is how 
Euler came upon this formula for π is still an open question, but here he has at least used 
the result to obtain the correct value of an integral, which is highly suggestive.] 
Since therefore the time for BNA is equal to k,  from the expression of these terms taken 
jointly with these other terms, the homogeneous terms involving b must be removed. 
Therefore the series becomes :  

π
ααπ •== 1

2
2
1 or  AA  

in a like manner,  
etc.531

642
31
42 ,C,B ..

..
.
.

π
γ

π
β

•• ==  
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and 

etc.2642
753

242
53

22
3

2
ιθηξ

••• ==== ..
..

.

. I,H,G,F [p. 215] 

On this account,  since etc,,,  etc, ιθηξδγβα ,,,  are known quantities as the curve ANB 
is given, this equation is obtained for the curve sought BMF :   
 

etc.)(-     

etc.)(

3
642
7532

42
53

2
3

2

2
531
642

31
42

1
2

++++

+++=

•

•
−

xxx

xxxxxds

..

..
.
.dx

..

..
.
.dx

ιθηξ

γβαπ  

 
the integral of which is 

etc.)(     

etc.)(

4
864
7533

64
532

4
3

2
1

3
753
6422

53
42

3
22

++++

+++=

•

•
−

xxxx-

xxxxxxs

..

..
.
.

..

..
.
.

ιθηξ

γβαπ  

 
I give the construction of this series: [The first integral is the time to fall the distance BN 
from rest at B; the second integral is the time to fall the total distance MBN starting from 
rest at M.]  

∫∫ −+−
−

)uba(
dt

)ua(
dt , 

the integral is taken thus, so that it vanishes on setting u = 0 [For the time to slide down 
AB is the same as the time to slide down the whole curve AB + BM, as the curve is a 
tautochrone]; then [after integrating] on making u = a a certain function of b is produced. 
Now )z(x −1 is put in place of b, and what is produced is to be called R. Then integrate 

z
Rdz , while x is considered as constant, thus as by putting z = 0. Then put z = 1 and a 

function of x is produced, which is equal to
x
sπ . And in this way an equation is produced 

for the curve sought. Q.E.I.  
 

Scholium 1.  
433. Clearly this singular but yet easy construction follows from that method which I 
have used in solving a former proposition by C. Riccati,  [E 31: Constructio aequationis 
differentialis dxydydxaxn 2+= , Comment. acad. sc. Petrop. 6 (1732/3), 1738, p. 231; 
O.O., series I, vol. 22. P. St.] and this previous solution gives the greatest joy, since, 
whatever the curve given should be, that sought can always be constructed with the help 
of this method, even if the equation itself, for which the curve is found, often can barely 
be handled. Besides it gives at once a finite equation, that otherwise would be found from 
the sum of the series.   
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Corollary 1. [p. 216] 
434. If in the equation found for the curve BMF , put x = 0, then ,ds dx

2
ξ−= hence the 

inclination of the curve at B to the vertical BP is known. Since therefore it is apparent 
how these two curves touch each other,  it is also required to determine the position of the 
tangent to the curve ANB at B.  
 

Corollary 2.  
435. Let DQ = p and BN = q (Fig. 54) ; then dqdt −=  and .pua =−  Hence the time to 

traverse BNA is equal to ∫ + )pb(
dq  with p = a put in this integral. Let Ldpdq =  be the 

relation [between p and q] at the point B, and generally it is of the form PdpLdpdq +=  
with P being a function of  p, such that it vanishes on putting p = 0. Therefore we may 
consider, with p vanishing, what kind of terms this equation 

∫∫ ++
=

)pb(
Ldp

)pb(
dq produces. Moreover on putting  p = a  it produces : 

,bL)ab(L 22 −+  [on integrating between 0 and a,] thus in the series taken, at the 

beginning it produces the term  bL2− (436), which agrees with bξ ; hence this makes 

.dqL dp
22  and ξξ −=−=  From which it is understood that the given curve and that sought  

have a common tangent at the joining point B.  
 

Scholium 2.  
436. I have said that bL)ab(L 22 −+  [expanded] in a series gives this term bL2− ; 

for the first term )ab( + gives these terms etc. 
2

++
a

ba  with other comparable 

terms. [p. 217] Moreover here, only the term Ldp gives a term of this form bξ . 
Whereby from that alone, the inclination of the curve at B can be concluded.  
 

Scholium 3.  
437. The construction of the curve sought that I have given, can also be changed in this 
way : after putting u = a in the [evaluated] integral ∫∫ −+−

−
)uba(

dt
)ua(

dt ,  and on 

writing xz in place of b, and the expression produced is called R, then 
)z(

Rdz
−1

 is 

integrated, in which x is treated as a constant quantity [i. e., the height of the point on the 
upper curve is fixed meantime], thus so that it vanishes on putting z = 0. Then on putting  
z = 1, that which comes about is equal to 

x
sπ ; and by this arrangement a more convenient 

equation is obtained for the curve sought.  
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Example 1.  
 

438. Let the given curve ANB be a cycloid, thus so that the equation of the cycloid 
becomes 

cu
cdudtcut == or  2  [note that this form of the inverted cycloid with upward 

pointing cusps is given in E001, p. 3 in this series, where c here denotes the diameter of 

the generating circle, is taken as 2a there, while u = y = ψ22 sina  or c
usin =ψ , and the 

arc ucsinats 24 === ψ , where 2ψ is the angle turned through by the generating 
circle, and the origin is taken at the lowest point on the curve; note in the integral below, 
which can be verified by differentiation, that Euler has changed the sign under the square 
root to introduce the 1−  in the numerator and used a form of logarithmic integration; a 
is simply the constant of integration.]; then [considering the whole curve as a cycloid] 

 
On putting u = a, there is obtained :   
 

 
Put xz in place of b, then the expression becomes :   

 
which multiplied by 

)z(
dz
−1

, gives   

 
the integral of which is :  [p. 218] 
 

 
which with the two final terms are equal to each other since .l. 11 −−=π   
Now put  z = 1; and there is obtained :  
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π
x

)xa(cac ++− 22 ,  

which must be put equal to
x
sπ . Hence this equation comes about :   

)xa(cacs ++−= 22  
or  

)BPAD(cANBMANBs +==+ 2 .  
From which it is apparent that the curve BMF is continuous with the given curve AND, 
thus, so that joined together they make a whole cycloid ; which itself follows from the 
nature of tautochronism, which the cycloid has been found to satisfy.  
 

Example 2.  
439. Let the given right line ANB be inclined at some angle to the horizontal ; the 
equivalent to the arc length is given by dt = ndu and  
 

 
Placing u = a and b = xz; then we have  

 
On account of which :  

 
Now,  
 

 
on integration, putting  z = 1. But ∫ −+−

+
)xzxzaza(

xzdzadz
2

, if after integration we put z = 1, 

gives xa
ax

x
xa .Aa +

++ 2
2

with xa
ax.A +

2 denoting the arc of a circle of radius equal to 1, the 

sine of which is xa
ax
+

2 . On this account,   

 
and hence [p. 219] 

 
The differential of this equation is :  
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Moreover this curve cannot ascend beyond a certain height, but only as far as in F, where 

we have ds = dx. Therefore on putting ds = dx we have xa
ax

n
n .A +
− = 211

π .  

Hence the ratio becomes : as 1−n:n thus the semi periphery of the circle, of which the 
radius is 1, to the arc of the same circle, of which the cosine is m; then mxa

xa =+
− and 

ma
)m(ax +

−= 1 . So that, if the DAB is 600, then n = 2 and m = 0 and thus BE = a = AD. From 

which it follows, if the angle DAB is greater than 600, then x > a, but if that angle is less 
than 600, then x < a. Moreover from the differential equation it is required that now as we 
have noted at the point B to be ds = ndx, then now always as far as F, to become ds < 
ndx, where it is ds = dx.  
 

Corollary 3.  
 

440. If the right line BNA is horizontal, then =∝n and a = 0. Moreover if  fan = , 

then x
fxdx

x
sdxds π

2−= , found from the differential equation, of which the integral is   

x
f

xx
fdx

x
s

ππ
42 == ∫−  

 and thus 
fxs π

4= . 

Therefore the curve is a cycloid, of which the lowest element of the given curve is kept in 
place.  
 

Corollary 4. [p. 220] 
441. If the differential equation xa

axndx .Andxds +−= 2
π  is again differentiated with dx put 

constant, there is produced : 
ax)xa(

nadxdds
+

−=
π

2
. From which equation it follows that the 

radius of osculation of the curve at B becomes infinitely small.  
 

Scholium 4.  
442. From the general differential equation   
 

 
it always follows to be the case that =∝dds on putting x = 0, unless 0=α . Therefore as 
often as α differs from zero, the radius of osculation of the curve sought is equal to zero 
at B. But if it is the case that 0=α , then the radius of osculation of the curve BMF at the 
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point B is found to equal  )1( 43

22

−ξ
η
ξ . From which in whatever proposed example, the 

radius of osculation at the point B becomes known at once.  
 

Example 3.  
443. Let the given line ANB have this equation, so that it becomes ,duCudt n= then the 

time to pass along NA is equal to ∫ −+ )uba(
duCun

. Putting 

 and  have  then we and 22 rfu;ruffba −==−=+  

 
 

Now since  [p. 221] 

∫ −+−+
−=

)uba(
duCu

)uba(
du n

,dr  integral  then the2  =  

 

 
 
Moreover since this quantity must vanish on putting u = 0 or fr = , the constant 
quantity must be added equal to   

 
 
Now on putting u = a or br =  and in place of the series etc. 1 521

1
31 −+− −

..
n.n

.
n there is 

placed  N; the total time of the descent along BNA is equal to :  2
1

2 +nCNf  

 
Restoring a + b in place of f and this time  is given :  
 

 
Therefore this series compared with the assumed series for expressing this time gives :  
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Hence there arises :  
 

 
 

Now the sum of this latter series is nxaCdx )( + , the integral of which is  1
)( 1

+
+ +

n
xaC n

. [p. 

222] Whereby after integration there is obtained :  
 

 
 
Which is the equation for the curve sought BMF, which as often as it is constructed from 
a finite number of terms, so n becomes the terminus of  this series  etc.      2

5
2
3

2
1

2
1 ,,,− Now   

∫ −= ,ppdpN n)1( if p is put equal to 1 after the integration. And with this factor  

substituted it becomes : 

 
 

Whereby if 2
1−=n , since the integral is 2)1(

π=∫ − pp
dp ,  

etc.  then 3 if then 2 if 

  then 1 if   then,1 then 0 if since,But  etc.  then  if 

 then  if   then  if   then  if  then 

753
642

53
42

3
2

4864
753

2
7

464
53

2
5

44
3

2
3

42
1

2

..

..
.
.

...

...
..
..

.

.

N,n;N,n

;N,n;N,nN,n

;N,n;N,n;N,n;N

====

======

=======

π

ππππ

 

For if the curve is a cycloid, then 2
1−=n and thus it becomes   
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,aC)xa(Cs 22 −+=  

 as we found above (438).  
 

Scholium 5.  
444. Therefore, when ,duCudt n=  in this case the value for s is found and from the 
nature of the method it is understood, if dt is equal to the sum of some number of terms of 
this kind, then s is equal to the sum of the series of the individual terms produced. 
Therefore for this reason, if some curve is given, [p. 223] the series of terms of the form 

duCun  is sought equal to dt. And from all these the corresponding value of s is obtained. 

For if this is the nature of the given line ANB : 
c
udu

u
cdudt += , the first term gives 

cC =  and 2
1−=n , thus the arc becomes  

;acxacs 2)(2 −+=  the next term gives ,nC
c 42

11 N and  and π===  hence there 

arises :  

 
 
Hence the curve sought is expressed by the following equation :  

 
 

Example 4.  
445. Let the given curve be a circle of diameter c; then the equation is 
 

 
 
Now with some term taken separately and the value of ds found; there is obtained, on 
collecting all the terms :   

 
From which the following equation arises :  
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Which expression can be changed into many other forms. [p. 224]  
 

PROPOSITION 51.  
 

Problem.  
 

446.  According to the hypothesis of gravity acting uniformly downwards, if the curve  
AM (Fig. 55) is given, to find a curve AN of this kind, such that the oscillations which are 
performed on the composite curve MAN are all isochronous to each other. [E012]  
 

Solution. 
 Let the abscissa of the given curve AM be AP = u, the corresponding AM = t; on 
account of the given curve there is an equation between u et t. Then on the curve sought  
AN,  

 

 
putting the abscissa AQ = x and the arc AN = s. Now in some oscillation the speed at the 
point A corresponds to the height b and the time to traverse MAN is equal to 
  

∫∫ −−
+

)()( ub
ds

ub
dt . 

 
And if in this expression on putting u = b and x = b, the time of one semi-oscillation is 
produced , which since it has to be constant, the letter b evidently must disappear from 
the formula expressing it. Putting  
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QdxdsPdudt
x
hdx

u
fdu −=+=   and   

and the time of one semi-oscillation is equal to  
  

∫∫∫∫ −−−−
−++

)()()()(
 

22 xb
Qdx

ub
Pdu

xbx
hdx

ubu

fdu , 

 
after putting u = b and x = b. [p. 225] Moreover the two first terms of this expression are 
thus to be compared, in order that from these b vanishes on making u = b and x = b; 
clearly they give hf ππ +  withπ denoting the periphery of the circle of which the 
diameter is equal to one. Whereby if the later terms are thus to be compared, so that they 
destroy each other on making u = b and x = b, that which is required is found ; but it is 
necessary that P and Q are such quantities, which do not involve b, since they emerge in 
the equations of the curves. But the equation becomes   

0
)()(
=− ∫∫ −− xb

Qdx
ub

Pdu  

 
on making u = b and x = b, if Q is such a function of x as P is of u. Or, when there is no 
impediment,  where it may be less possible to set x = u, making x = u  and it is required 
that Q = P. Now given P from the equation of the curve AM given,  obviously  

u
f

du
dtP −= . On account of which this equation is obtained for the curve sought :   

u
fdu

u
hdu dtds +−=  

or 
fuhuts 22 +=+ ;  

from which equation the nature of the curve sought AN can be determined. Q.E.I.  
 

Corollary 1.  
447. Therefore on taking AP = u = x (Fig. 56), since AM = t and AN = s, then  

APhfstMANA )(2 +=+=+ ,  
 
 
 
 
 
 
 
 

 
or the sum of the arcs corresponding to the same abscissa is proportional to the square 
root of the abscissa AP.  
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Corollary 2. [p. 226] 

448. Therefore the curve sought AND thus ought to be compared, so that the sum of the 
arcs AM + AN is equal to the arc of the corresponding cycloid for the same abscissa AP. 
From which property it follows at once that all the oscillations are isochrones.  
 

Corollary 3.  
449. Hence the time of one oscillation is equal to the time of descent on the cycloid, of 
which at the bottom the radius of osculation is 2)(2 hf + . Or a pendulum of this 
length produces the smallest isochronous semi-oscillations by oscillating on the curve  
MAN. Now a pendulum of length 2

2
1 )( hf + performs whole isochronous 

oscillations.  
 

Corollary 4.  
450. Since the quantity h can be taken as you please, an infinite number of curves AND 
can be satisfied, and also h can be determined so that the time of an oscillation is a given 
quantity.  For if a one oscillation is to be isochronous to the oscillation of a pendulum of 
length 4

L , then we have :   

fhhfL L −=+= 2
2   thusand )(2 . 

Where L must be greater than 2f.  
 

Corollary 5.  
451. If the given curve  AM is a cycloid or 

u
fdudt = , then the other curve AN is also 

some cycloid ; [p. 227] for it becomes
x
hdxds = . And upon the two cycloids of this kind 

not only are the whole oscillations isochronous, but also the individual ascents and 
descents on whatever cycloid is completed in the same time.  
 

Example 1.  
452. Let the given curve be some straight line AM inclined to the horizontal, so that the 
equation becomes  dt = ndu; and this equation is produced for the curve sought with 

2
L in place of hf +  :  

ndxnduds
x
Ldx

u
Ldu −=−=

22
. 

Whereby if we call PN = y, it becomes :   

)1( 2
2

2
2 −+−= ndxdy

x
Ln

x
L , 

where 4
L denotes the length of the isochronous pendulum ; from which equation the 

equation of the curve sought can be constructed. Moreover, the curve has a turning point 
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at D and there it has a vertical tangent, which can be obtained by taking 212 )n(

LAC
+

= . 

Indeed the radius of osculation of the curve at the lowest point A is equal to L.  
 As well, this is to be noted, if n = 1, in which case the line AM  becomes a vertical line 
lying on AC, to be the algebraic curve sought ; for it becomes :   

x
LxLdxdy

2
22( −= ,  

the integral of which is 
 

 
or 

 
which free from irrationalities clearly becomes an equation of the fourth dimension.  The 
cusp D of this curve is obtained by taking 8

LAC = , in which case 3
LCD = .  

 
Example 2. [p. 228] 

453. Let the given curve AM be a circle of radius a; then  

)2( 2uau
adudt

−
= . 

Hence with 2
L in place of hf +  the equation becomes :   

 

 
From which the equation follows :   
 

 
The cusp of the curve AND is where   
 

 
or 

 
 
Putting L = a; this becomes  

 
But if L = 2a, this becomes  
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thus making x = a = AC. And in this case the length of the isochronous pendulum  is 2

a .  
[From the equation:   

 
it follows that  

 
On putting L = a this makes 

 
but if L = 2a, this becomes  

 
thus it is concluded that the value x = a does not satisfy the problem. Note by P. St.] 

 
Scholium 1.  

454. If therefore it can be brought about that a pendulum can perform oscillations on a 
composite curve of this kind, and equally the oscillations of this pendulum are 
isochronous, and as if it were moving on a cycloid.  And on this account whatever curve 
can be used for tautochronism. There remains the question concerning this, as to how the 
curve is to be prepared with the given curve, so that it makes one continuous curve with 
the given curve, which we set out in the following proposition.  
 
 [p. 229] 
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PROPOSITION 52.  
 

Problem.  
 

455.  According to hypothesis of uniform gravity acting uniformly downwards, to find the 
continuous curve MAN, upon which all the semi-oscillations can be completed in equal 
times.  
 

Solution.  
 Therefore let MAN be the continuous curve (Fig. 56) and on that AP = x, AM = t, and 
AN =  s. A new indeterminate [i. e. variable] z is assumed, and both x and t are thus given 
in terms of z, so that on putting z positive the part AM of the curve is produced, while on 
putting  z negative the negative part AN is produced. Now since for the other part, x 

maintains the same value, x must be such a function of  z, which remains the same, if z is 
taken either to be positive or negative, or x must be an even function of z. Then t must be 
a function of this kind of z, in order that it produces s, if  – z is put in place of  z. But 
since the arc s falls on the other side of the axis, the value of this is negative with respect 
to the curve AM; whereby, if in the value t, – z is put in place of  z, it must produce – s. 
Now let R be an odd function of z and S an even function of z, and put t = R + S; this 
becomes  – s = – R + S ; hence  t + s = 2R. Let the length of the isochronous pendulum 
be equal to a; since this is hfa +=2 , it follows that  axst 22=+ and hence 

axR 2= and a
Rx 2

2
= . Moreover, since x must be an even function of z, from this 

expression, that by itself can be obtained; for since R is an odd function, the square of this 
is an even function.  Therefore let R = z; then axz 2=  and S must be an even function 
of ax2 or of x . From which done this equation is obtained : Saxs −= 2 for all the 
continuous tautochrone curves. [p. 230] Let

ax
TdxdS
2

=  ; then T is some odd function of 

x . Wherefore it becomes 
ax
Tdxadxds

2
−= and  

 
on putting PN = y. From which equation an infinite number of tautochronous curves are 
found. Q.E.I.  
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Corollary 1.  
456. Therefore the curve AN found in this manner is a tautochrone with the continuous 
part AM of itself. Now by the preceding problem an infinite number of other curves AM 
are given, which joined with the curve AN produce isochronous oscillations.  
 

Corollary 2.  
457. By the preceding proposition, all the curves AM, of which this is the equation :  
  

 
produces isochronous oscillations with the curve AN . But the length of the isochronous 

pendulum of these oscillations is equal to 4
)( 2ca+ .  

 
Corollary 3.  

458. Hence among these infinite curves AM with AN producing isochronous oscillations 
is that continuous with AN, in which c = a. And the length of the isochronous pendulum 
becomes equal to a, as we have assumed.  
 

Corollary 4.  
459. If we put c = 0, then also this curve AM, of which the equation is 

ax
Tdxdt
2

=  or   

t = S,  is tautochronous with the curve AN . And in this case the length of the pendulum is  

4
a . [p. 231] Hence as often as bxT 2= , so also tautochronism is produced with the 
right line AN, if thus it is inclined at an angle, such that the secant of the angle MAP is 

equal to b
a .  

Corollary 5.  
460. Since the curve AN must be normal to the axis AP at A,  it is required that T vanishes 
on putting x = 0. Also likewise it follows from this, since a – T must be a positive 
quantity,  even at the starting point A. For if T should become infinite on putting  x = 0, 
agreeing with infinite modes, yet thus, as S vanishes on putting x = 0, the curve AN falls 
on the other part of the axis AP and the curve has a cusp at A and the body, after 
descending on MA, ascends on reflection on AN, which would be contrary to the nature of 
the oscillations. 
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Corollary 6.  
461. Therefore if T vanishes on putting x = 0, the radius of osculation at A, which is dx

sds , 

as s = y in this place is equal to  a and thus the oscillations agree with the smallest 
oscillations of the pendulum of length a, as we assumed.  
 

Corollary 7.  
462. The part of the curve AN has a vertical tangent at D and a cusp there ; since the point 
is found from this equation axTa 2=−  on taking AC equal to the value of  x from this 
equation. The other part too AM has a cusp, if somewhere it becomes :  axTa 2=+ . 
 

Corollary 8. [p. 232] 
463. If it happens that S = 0 and T = 0, then axs 2= . Whereby the curve is a cycloid 
and the part AN is equal and similar to the curve AM. Hence it is a continuous cycloid 
curve, upon which all the oscillations are completed in the same time.   
 

Example.  
464. Let bxT 2= , in which case the curve AN is also a tautochrone with the right line 

AC making an angle, the cosine of which is b
a ; then the equation arises :  

 

Moreover, there is obtained  
ax

axbxbxaadxdy
2

)2222( 2 −+−= .  

Which equation also agrees with that, which we found for the curve in the preceding 
proposition, which constitutes a tautochrone with a straight line (452), if L is written for a 

and n for b
a .  Whereby if  b = a, an algebraic curve NAM also is found, which is a  

tautochrone, the equation of which is :   

x
axadxdy 2

22−=  

and the integral of this is :  
 

 
 
Which is that curve, which constitutes a tautochrone with the vertical right line,  as we 
found above (452). Now the length of the isochronous pendulum is equal to a, if the body 
is oscillating on this curve. But if it is moving on the right line AC and on part of the 
curve AN, the length of the isochronous pendulum is 4

a . And if D is the cusp of the curve, 
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then 8

aAC = , now the other root AM rises to infinity. Besides this algebraic tautochrone 

curve others are easily found.  
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CAPUT SECUNDUM  

 
DE MOTU PUNCTI SUPER DATA LINEA IN VACUO.  

[p. 211] 
PROPOSITIO 49.  

 
Problema.  

 
430.  Si corpus sollicitur a potentiis quibuscunque, invenire curvam  AM (Fig. 53), super 
qua omnes descensus ad punctum A usque fiant aequalibus temporibus.  
 

Solutio.  
 

Quaecunque fuerint potentiae sollicitantes, eae omnes 
reduci possunt ad duas, quarum altera corpus perpetuo 
deorsum trahat secundum MQ, altera vero horizontaliter 
secundum MP. Sit vis, quae secundum MQ trahit, = P et 
vis, quae secundum MP trahit, = Q; dicatur  AP = x, PM 
= y, AM = s sitque celeritas in puncto A debita altitudini 
b et celeritas in M debita altitudini v. His positis erit  

∫∫ −−= .QdyPdxbv  Quare si ponatur h = b et  

zQdyPdx =+ ∫∫ , erit v functio unius dimensionis 

ipsarum h et z et propterea m = 1 (408). Quamobrem habebitur pro curva quaesita ista 
aequatio  

∫∫ +== )QdyPdx(aazs 22  

seu  

∫+∫

+=
)QdyPdx(a

aQdyaPdxds . 

At quia est )dydx(ds 22 += , erit  

 
 
In ipso ergo principio A , ubi est 0=+ ∫∫ QdyPdx , erit 0=+QdyPdx seu 

.Q:Pdx:dy −=  Atque ut ex praecedentibus intelligitur, tempus cuiusque descensus 
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aequatur tempori, [p. 212] quo in hypothesi gravitatis = 1 pendulum longitudinis 2a 
descensum absolvit. Q.E.I.  

 
Scholion.  

431. Si habeatur curva, super qua omnes descensus fiunt eodem tempore, facile erit dare 
curvas, super quibus oscillationes omnes eodem tempore peragantur. Nam quia in vacuo 
ascensus similes sunt descensibus, omnis curva, quae est tautochrona pro descensibus, 
talis quoque pro ascensibus. Quare duae curvae tautochronae coniunctae in puncto A 
dabunt curvam, super qua omnes oscillationes sunt isochronae. Attamen hac ratione 
alterum problema, quo curvae omnes oscillationes isochronas producentes requiruntur, 
non perfecte solvitur; dari enim possunt curvae infinitae huic quaestioni satisfacientes, 
quarum tamen partes non sint aptae ad descensus solos isochronos efficiendos. Problema 
autem hoc modo proponi potest : data curva quacunque invenire aliam, quae cum ea 
coniuncta producat omnes oscillationes aequidiurnas. [E012 : De innumerabilibus 
tautochronis in vacuo, Comment. acad. sc. Petrop. 6 (1729), 1735; O.O. series II, vol. 4] 
Nunc vero antequam ad haec progrediamur, aliud problema proferemus, in quo quaeritur 
curva datae curvae adiungenda, ut omnes descensus super hac curva composita 
absolvantur temporibus aequalibus. Quod problema ut maxime difficillimum mihi 
quondam erat propositum a Cl. Dan. Bernoulli. [E024 : Solutio singularis casus circa 
tautochronismum, Comment. acad. sc. Petrop. 6 (1732/33), 1738; O.O. series II, vol. 4] 
Attamen hac methodo, qua in investigatione tautochronarum utor, etiam istud problema 
resolvi potest.   

 
PROPOSITIO 50.  

[p. 213] 
Problema.  

 
432.  In hypothesis gravitatis uniformis deorsum tendentis si detur curva ANB (Fig. 54),   
invenire curvam BMF ei adiungendam, ut omnes descensus super hac curva composita 
ad A usquae absolvantur aequalibus temporibus, in quocunque curvae BMF puncto 
descensus incipiat.  
 

Solutio. 
 Si descensus incipiat in infimo curvae quaesitae puncto B, 
descensus fiet per datam curvam BNA tantum; eius ergo tempori, 
quod etiam dabitur, aequalia esse debent omnium descensuum 
tempora. Sit AD = a, AQ = u, AN = t dabiturque aequatio inter u 
et t. Pro curva autem quaesita sit BP = x, et BM = s. Nunc in 
descensu quocunque sit celeritas in puncto B debita altitudini b; 
erit celeritas in M debita altitudini xb − atque celeritas in N 
debita altitudini .uba −+  Tempus ergo descensus per curvam 
incognitam est  

∫ − )xb(
ds , ita integratum, ut evanescat posito x = 0 et post 



EULER'S MECHANICA VOL. 2.  
Chapter 2g 

 Translated and annotated by Ian Bruce.                                page 354 
integrationem posito x = b. Tempus vero per curvam cognitam BNA erit ∫ −+ )uba(

dt , ita 

integratum, ut evanescat posito u = 0 et post integrationem posito u = a. Expressio ergo 

∫ − )xb(
ds , postquam factum est x = b, ita debet esse comparata, [p. 214] ut, si addatur ad 

expressionem temporis per BNA, ex aggregato penitus egrediatur littera b; tum enim 
totius tempus descensus erit quantitas constans neque pendens a b seu a puncto curvae 
BMF, in quo descensus incepit. Sit integrale ∫ −+ )uba(

dt  postquam positum est u = a 

aequale huic seriei  

 
Quare si descensus in puncto B incipiat, tempus totius descensus erit = k ob 
evanescentem b. Ipsi k ergo aequale esse debet tempus totius descensus per curvam 
compositam, in quocunque curvae BMF puncto ponatur initium descensus. Sit nunc 
curvae quaesitae BMF natura sequente serie expressa  

etc.        

etc.
32

32

−−−−−

−−−−−=

dxIxdxHxGxdxFdx

xdxDxxdxCxxBxdxxAdxds  

Ponatur peripheriae ad diametrum ratio 1:π , quae revera est ,:l 11 −−−  ita ut sit  

.ll 11
1
1 −−=−= •
−
−π  

Est vero post integrationem posito x = b  
etc.3

642
5312

42
31

2
1 2

Cb,Bb,Ab ..
..

)xb(
xdxCx

.

.
)xb(
xBxdx

)xb(
xAdx πππ === ∫∫∫ −−−

 

et  
 

etc.222 2
53
42

3
2 2

bHb,bGb,bF .
.

)xb(
dxHx

)xb(
xGdx

)xb(
xFdx === ∫∫∫ −−−

 

Quo igitur horum terminorum cum illis terminis coniunctim tempus per BNA 
exprimentibus aggregatum aequaetur ipsi k, termini homogenei b involventes sese tollere 
debent. Fiet igitur  

π
ααπ •== 1

2
2
1 seu  AA  

similique modo  
etc.531

642
31
42 ,C,B ..

..
.
.

π
γ

π
β

•• ==  

atque  
etc.2642

753
242

53
22

3
2

ιθηξ
••• ==== ..

..
.
. I,H,G,F [p. 215] 

Quamobrem, cum etc,,, etc, ιθηξδγβα ,,,  sint quantitates cognitae propter curvam 
ANB datam, habebitur pro curva quaesito BMF ista aequatio  
 

etc.)(     

etc.)(

3
642
7532

42
53

2
3

2

2
531
642

31
42

1
2

++++

+++=

•

•

−

−

xxx

xxxxxds

..

..
.
.dx

..

..
.
.dx

ιθηξ

γβαπ  
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cuius integralis est  

etc.)(     

etc.)(

4
864
7533

64
532

4
3

2
1

3
753
6422

53
42

3
22

++++

+++=

•

•

−

−

xxxx

xxxxxxs

..

..
.
.

..

..
.
.

ιθηξ

γβαπ  

Cuius seriei hanc do constructionem : sumatur  

∫∫ −+−
−

)uba(
dt

)ua(
dt , 

ita ut evanscat posito u = 0; tum fiat u = a et prodibit functio quaedam ipsius b. Ponatur 
)z(x −1 loco b, et quod prodit, sit R. Tum integretur 

z
Rdz , dum x ut constans 

consideretur, ita ut posito z = 0. Deinde ponatur z = 1 et prodibit functio ipsius x, quae 
erit = 

x
sπ . Hocque modo prodibit aequatio pro curva quaesita. Q.E.I.  

 
Scholion 1.  

433. Constructio haec prorsus singularis, set facilis tamen, sequitur ex ea methodo, qua 
usus sum in aequatione a C. Riccati quondam proposita construenda,  [E 31: Constructio 
aequationis differentialis dxydydxaxn 2+= , Comment. acad. sc. Petrop. 6 (1732/3), 
1738, p. 231; O.O., series I, vol. 22. P. St.] atque hac potissimum gaudet praerogativa, 
quod, quaecunque fuerit curva data, quaesita eius ope semper possit constui, etiamsi 
aequatio ipsa, quae pro curva invenitur, minime saepe tractari possit. Dat praeterea statim 
aequationem finitam eam, quae alias ex summatione serierum inveniretur.  

 
Corollarium 1. [p. 216] 

 
434. Si in aequatione pro curva BMF inventa ponatur x = 0, erit ,ds dx

2
ξ−= unde 

inclinatione curvae in B ad verticalem BP innotescit. Quo igitur appareat, quomodo hae 
duae curvae invicem cohaereant, oportet quoque positionem tangentis curvae ANB in B 
determinare.  
 

Corollarium 2.  
435. Sit DQ = p et BN = q (Fig. 54) ; erit dqdt −=  et .pua =−  Unde tempus per BNA 

erit = ∫ + )pb(
dq  posito in hoc integrali p = a. Sit in ipso puncto B ;Ldpdq = erit 

generatim PdpLdpdq +=  existente P tali functione ipsius p, quae evanescat posito p = 
0. Videamus ergo, evanescente p qualem terminum haec aequatio 

∫∫ ++
=

)pb(
Ldp

)pb(
dq producat. Prodit autem posito p = a : ,bL)ab(L 22 −+  unde in 

serie initio assumta prodit terminus bL2− (436), qui convenit cum bξ ; erit ergo 
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.dqL dp
22 et  ξξ −=−=  Ex quo intelligitur curvam datam et quaesitam in puncto 

coniunctionis B commumem habere tangentem.  
 

Scholion 2.  
436. Dixi bL)ab(L 22 −+  in serie dare hunc terminum bL2− ; nam )ab( + dat 

termions hos etc. 
2

++
a

ba  cum aliis comparandos. [p. 217] Hic autem solus terminus 

Ldp dat terminum huius formae bξ . Quare ex eo tantum de inclinatione curvae in B 
concludere licet.  

Scholion 3.  
437. Constructio curvae quaesitae, quam dedi, etiam hoc modi immutari potest : 
scribatur, postquam in integrali ∫∫ −+−

−
)uba(

dt
)ua(

dt  positum est u = a, loco b hoc xz 

et vocato eo, quod prodit, R integretur 
)z(

Rdz
−1

, in quo x ut quantitas constans tractetur, ita 

ut evanescat posito z = 0. Tum ponatur z = 1 atque id, quod provenit, aequetur 
x
sπ ; 

hacque ratione plerumque commodius aequatio pro curva quaesita obtinetur.  
 

Exemplum 1.  
 

438. Sit curva data ANB cyclois, ita ut sit 
cu

cdudtcut == seu  2 ; erit 

 
Ponatur u = a et habebitur  
 

 
Ponatur xz loco b et habebitur  

 
quo multiplico per 

)z(
dz
−1

 habebitur  
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cuius integrale est [p. 218] 
 

 
qui duo ultimi termini sunt inter se aequales ob .l. 11 −−=π  Ponatur nunc z = 1; 
habebitur  

π
x

)xa(cac ++− 22 ,  

quod aequale est ponendum ipsi 
x
sπ . Hinc provenit ista aequatio  

)xa(cacs ++−= 22  
seu  

)BPAD(cANBMANBs +==+ 2 .  
Ex quo patet curvam BMF esse continuationem datae AND, ita ut coniunctae totam 
cycloidem constituant; id quod ex natura tautochronismi, cui cyclois satisfacere  inventa 
est, per se sequitur.  

Exemplum 2.  
439. Sit linea data ANB recta ad horizontem utcunque inclinata; erit dt = ndu atque  
 

 
Ponatur u = a atque b = xz; erit  

 
Quamobrem erit  

 
Est vero  
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postquam in integrali positum est z = 1. At ∫ −+−

+
)xzxzaza(

xzdzadz
2

, si post integrationem 

ponatur z = 1, dat xa
ax

x
xa .Aa +

++ 2
2

denotante xa
ax.A +

2 arcum circuli radii = 1, cuius sinus 

est xa
ax
+

2 . Quocirca erit  

 
hincque [p. 219] 

 
Huius aequationis differentialis est  
 

 
 
Curva haec autem non ultra datam altitudinem poterit ascendere, ut in F usque, ubi erit  

ds = dx. Posito igitur ds = dx erit xa
ax

n
n .A +
− = 211

π .  

Fiat ergo ut 1−n:n ita semipheripheria circuli, cuius radius est 1, ad arcum eiusdem 

circuli, cuius cosinus sit m; erit mxa
xa =+

− atque ma
)m(ax +

−= 1 . Ut si fuerit angulus DAB 600, 

erit n = 2 et m = 0 ideoque BE = a = AD. Ex quo sequitur, si angulus DAB fuerit maior 
quam 600, fore x > a, at si ille angulus minor fuerit quam 600, fore x < a. Ceterum ex 
aequatione differentiali opportet ut iam notavimus in puncto B fore ds = ndx, tum vero 
perpetuo fieri ds < ndx usque in F, ubi est ds = dx.  
 

Corollarium 3.  
 

440. Si linea recta BNA fuerit horizontalis, erit =∝n et a = 0. Si autem fit fan = , 

erit x
fxdx

x
sdxds π

2−= ex aequatione differentiali inventa, cuius integrale est  

x
f

xx
fdx

x
s

ππ
42 == ∫−  

 ideoque  
fxs π

4= . 

Curva ergo erit cyclois, cuius infimum elementum curvae datae locum tenet.  
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Corollarium 4. [p. 220] 
441. Si aequatio differentialis xa

axndx .Andxds +−= 2
π  denuo differentietur posito dx 

constante, prodibit 
ax)xa(

nadxdds
+

−=
π

2
. Ex qua aequatione sequitur curvae in B radium 

osculi fore infinite parvum.  
 

Scholion 4.  
442. Ex aequatione generali differentiali  
 

 
sequitur semper fore =∝dds posito x = 0, nisi fuerit 0=α . Quoties igitur non fuerit 

0=α , radius osculi curvae quaesitae in B erit = 0. At si fuerit 0=α , tum radius osculi 

curvae BMF in puncto B invenitur = )1( 43

22

−ξ
η
ξ . Ex quo in quovis exemplo proposito 

statim radius osculi curvae in puncto B innotescit.  
 

Exemplum 3.  
443. Sit linea data ANB hanc habuerit aequationem, ut sit ,duCudt n= erit tempus per NA 

= ∫ −+ )uba(
duCun

. Ponatur et  erit  et  22 rfu;ruffba −==−=+  

 
 

Cum vero sit [p. 221] 

∫ −+−+
−=

)uba(
duCu

)uba(
du n

,dr erit  2  =  

 

 
 
Quia autem haec quantitas evanescere debet facto u = 0 seu fr = , erit quantitas illa 
constans addenda =  

 
 
Ponatur nunc u = a seu br =  atque loco seriei etc. 1 521

1
31 −+− −

..
n.n

.
n ponatur N; prodibit 

totum descensus per BNA tempus = 2
1

2 +nCNf  

 
Restituatur a + b loco f et orietur hoc tempus =  
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Haec igitur series cum serie assumta hoc tempus exprimente comparata dat  
 

 
 

Hinc oritur  
 

 
 

Huius vero seriei posterioris summa est nxaCdx )( + huiusque integralis 1
)( 1

+
+ +

n
xaC n

. [p. 

222] Quare post integrationem habebitur  
 

 
 
Quae est aequatio pro curva quaesita BMF, quae toties ex terminorum numero finito 
constat, quoties n fuerit terminus huius seriei  etc.      2

5
2
3

2
1

2
1 ,,,− Est vero  

∫ −= ,ppdpN n)1( si post integrationem ponatur p = 1. Hacque facta substitutione est 
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Quare si fuerit 2

1−=n , quia est 2)1(
π=∫ − pp

dp ,  

 etc. erit  3 sierit  2 si

 1 si erit, 1est  0 si quia,At  etc.  erit 

 si erit  si erit  si erit  si erit 

753
642

53
42

3
2

4864
753

2
7

464
53

2
5

44
3

2
3

42
1

2

..

..
.
.

...

...
..
..

.

.

N,n;N,n

;N,n,N,nN

,n;N,n;N,n;N,n;N

====

=====

========

π

ππππ

 

Ut si curva fuerit cyclois, erit 2
1−=n ideoque erit   

,aC)xa(Cs 22 −+=  
 ut supra invenimus (438).  
 

Scholion 5.  
444. Quando igitur est ,duCudt n= hic valor pro s invenitur atque ex ipsa methodi natura 
intelligitur, si dt aequetur aggregato aliquot huiusmodi terminorum, tum s aequalem fore 
aggregato serierum a singulis terminis productarum. Hac igitur ratione, si curva dat [p. 
223] furerit quaecunque, series est quaerenda terminorum huius formae duCun ipsi dt 
aequalis. Atque ex iis omnibus debitus ipsius s valor obtinebitur. Ut si fuerit natura lineae 

datae ANB haec 
c
udu

u
cdudt += , primus terminus dat cC =  et 2

1−=n , unde fit  

;acxacs 2)(2 −+=  alter terminus dat ,nC
c 42

11 Net  et  π===  unde oritur  

 

 
Curva quaesita ergo sequente aequatione exprimetur  

 
 

Exemplum 4.  
445. Sit curva data circulus diametri c; erit  
 

 
 
Sumto nunc quolibet termino seorsim et inveniatur valor ipsius ds; habebitur colligendis 
omnibus  
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Ex quibus sequens aequatio nascitur 
 

 
 
[p. 224]Quae expressio in multas alias formas transmutari potest.  
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PROPOSITIO 51.  
 

Problema.  
 

446.  In hypothesis gravitatis uniformis deorsum tendentis si detur curva AM (Fig. 55),   
invenire curvam AN eiusmodi, ut oscillationes, quae peraguntur super curva composita 
MAN, sint omnes inter se isochronae. [E012]  
 

Solutio. 
 Sit datae curvae AM abscissa AP = u, arcus respondes AM = t; dabitur ob curvam 
datam aequatio inter u et t. Deinde in curva quaesita AN  

 

 
ponatur abscissa AQ = x et arcus AN = s. Iam in oscillatione quacunque sit celeritas in 
puncto A debita altitudini b eritque tempus per MAN =  

∫∫ −−
+

)()( ub
ds

ub
dt . 

Atque si in hac expressione ponatur u = b et x = b, prodibit tempus unius 
semioscillationis; quod cum debeat esse constans, ex formula id exprimente littera b 
prorsus evanescere debet. Ponatur  

QdxdsPdudt
x
hdx

u
fdu −=+= et     

eritque tempus unius semioscillationis =  

∫∫∫∫ −−−−
−++

)()()()(
 

22 xb
Qdx

ub
Pdu

xbx
hdx

ubu

fdu , 

postquam positum est u = b et x = b. [p. 225] Huius autem expressionis duo priores 
termini iam ita sunt comparati, ut b ex iis evanescat facto u = b et x = b; dant nimirum 

hf ππ +  denotante π  peripheram circuli diametri = 1. Quare si posteriores termini 
ita fuerint comparati, ut sese destruant facto u = b et x = b, habibitur id, quod quaeritur; 
at P et Q tales necesse est sint quantitates, quae b non involvant, quia in aequationes 
curvarum ingrediuntur. At erit  

0
)()(
=− ∫∫ −− xb

Qdx
ub

Pdu  
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facto u = b et x = b, si Q talis fuerit functio ipsius x, qualis P est ipsius u. Seu, cum nihil 
impediat, quo minus possit x = u, fiat x = u oportebitque esse Q = P. Datur vero P ex 

aequatione curvae AM datae quippe est 
u
f

du
dtP −= . Quocirca pro curva quaesita haec 

habebitur aequatio  

u
fdu

u
hdu dtds +−=  

seu  
fuhuts 22 +=+ ;  

ex qua aequatione determinatur nature curvae quaesitae AN. Q.E.I.  
 

Corollarium 1.  
447. Sumta igitur AP = u = x (Fig. 56), sum sit AM = t et AN = s, erit  

APhfstMANA )(2 +=+=+ ,  
 

 
 
 
 
 
 
 

 
seu summa arcuum eidem abscissae respondentium proportionalis est radici quadratae ex 
abscissa AP.  

Corollarium 2. [p. 226] 
448. Curva igitur quaesita AND ita debet esse comparata, ut summa arcuum AM + AN 
aequalis sit arcui cycloidis eidem abscissae AP respondentis. Ex qua proprietate sponte 
fluit omnes oscillationes esse isochronas.  
 

Corollarium 3.  
449. Tempus ergo unius oscillationis aequatur tempori descensus super cycloide, cuius in 
infimo radius osculi est 2)(2 hf + . Seu pendulum huius longitudinis producet 
semioscillationes minimas isochronas oscillatinibus super curva MAN. Pendulum vero 
longitudinis 2

2
1 )( hf + peraget totas oscillationes isochronas.  

 
Corollarium 4.  

450. Quia quantitatem h pro lubitu accipere licet, infinitae curvae AND satisfaciunt; 
atque etiam poterit determinari, ut tempus oscillationis sit datae quantitatis. Ut si una 
oscillatio isochrona esse debeat oscillationi penduli longitudinis 4

L , erit  
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fhhfL L −=+= 2
2  ideoque )(2 . 

Quare L maius esse debet quam 2f.  
 

Corollarium 5.  
451. Si data curva AM fuerit cyclois seu 

u
fdudt = , altera curva AN erit quoque cyclois 

quaecunque; [p. 227] fit enim 
x
hdxds = . Atque super duabus huiusmodi cycloidibus non 

solum integrae oscillationes erunt isochronae, sed etiam singuli ascensus et descensus 
super qualibet cycloide absolventur eodem tempore.  
 

Exemplum 1.  
452. Sit curva data AM recta utcunque ad horizontem inclinata, ut sit dt = ndu; prodibit 

pro curva quaesita posito 2
L loco hf +  haec aequatio  

ndxnduds
x
Ldx

u
Ldu −=−=

22
. 

Quare si vocetur PN = y, erit  

)1( 2
2

2
2 -ndxdy

x
Ln

x
L +−= , 

ubi 4
L denotat longitudinem penduli isochroni; ex qua aequatione curva quaesita poterit 

construi. Curva autem in D habebit punctum reversionis ibique tangentem verticalem, 
quod habebitur sumendo 212 )n(

LAC
+

= . Curvae vero in infimo loco A radius osculi est  

= L.  
 Hic praeterea notandum est, si n = 1, quo casu linea AM fit recta verticalis in AC 
incidens, fore curvam quaesitam algebraecam; erit namque  

x
LxLdxdy

2
22( −= ,  

cuius integralis est  
 

 
seu 

 
quae ab irrationalitate prorsus liberata fit quatuor dimensionum. Huius curvae cuspis D 
habebitur sumendo 8

LAC = , quo casu fit 3
LCD = .  
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Exemplum 2. [p. 228] 
453. Sit curva data AM circulus radii a; erit  

)2( 2uau
adudt

−
= . 

Hinc posito 2
L loco hf +  erit  

 

 
Ex qua aequatione sequitur  
 

 
Cuspis curvae AND erit, ubi est  
 

 
seu  

 
 
Ponatur L = a; fiet  

 
At si L = 2a, erit  

 
unde fit x = a = AC. Hocque casu longitudo penduli isochroni est 2

a .  
[Ex aequatione  

 
sequitur  

 
Posito L = a fit  

 
at si L = 2a, erit  

 
unde concluditur valorem x = a problemati non satisfacere. P. St.] 
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Scholion 1.  
454. Si igitur efficiatur, ut pendulum in huiusmodi curva composita oscillationes peragat, 
eius oscillationes aeque erunt isochronae, ac si in cycloide movetur. Atque hanc ob rem 
quaecunque curva ad tautochronismum adhiberi poterit. Restat in hoc negotio ista 
quaestio, quemadmodum curvam datam comparatam esse oporteat, ut inventa cum data 
unam curvam continuam constituat, id quod sequente propositione praestabimus.  
 
 [p. 229] 

PROPOSITIO 52.  
 

Problema.  
 

455.  In hypothesi gravitatis uniformis deorsum tendentis invenire curvam continuam 
MAN, super qua omnes semioscillationes absolvantur aequalibus temporibus.  
 

Solutio.  
 Sit igitur curva MAN (Fig. 56) curva continua in eaque AP = x et AM = t et AN =  s. 
Assumatur nova indeterminata z atque x et t ita dentur in z, ut posita z affirmativa prodeat 
curvae pars AM, at posita z negativa prodeat curvae pars AN. Quia nunc pro ultraque 
parte x eundem obtinet valorem, debebit x talis esse functio ipsius z, quae eadem maneat, 
sive z affirmative sumatur sive negative, seu x debet esse functio par ipsius z. Deinde t 
eiusmodi esse debet functio ipsius z, ut prodeat s, si ponatur – z loco z. At quia arcus s in 
alteram partem axis cadit, eius valor erit negativus respectu curvae AM; quare, si in 
valore t ponatur – z loco z, prodire debet – s. Sit nunc R functio impar ipsius z et S eius 
functio par et ponatur t = R + S; fiet – s = – R + S ; unde fit t + s = 2R. Sit longitudo 
penduli isochroni = a; quia est hfa +=2 , debebit esse axst 22=+ hincque erit 

axR 2= et a
Rx 2

2
= . Quia autem x debet esse functio par ipius z, ex hac expressione id 

per se obtinetur; cum enim R sit functio impar, eius quadratum erit functio par. Sit igitur 
R = z; erit axz 2=  atque S debebit esse functio par ipsius ax2 seu ipsius x . Quo 
facto habebitur ista aequatio Saxs −= 2 pro omnibus curvis continuis tautochronis. [p. 
230] Sit

ax
TdxdS
2

=  ; erit T functio impar quaecunque ipsius x . Quapropter fiet  

ax
Tdxadxds

2
−= atque  

 
posito PN = y. Ex qua aequatione infinitae curvae tautochronae continuae reperiuntur. 
Q.E.I.  
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Corollarium 1.  
456. Curva igitur hoc modo inventa AN est tautochrona cum sui ipsius parte continua AM. 
Dantur vero per praecedens problema infinitae aliae curvae AM, quae cum AN coniunctae 
oscillationes isochronas producunt. 
 

Corollarium 2.  
457. Per praecedentem propositionem omnis curva AM, cuius haec iest aequatio  

 
oscillationes isochronas cum curva AN producit. At harum oscillationum longitudo 

penduli isochroni est = 4
)( 2ca+ .  

 
Corollarium 3.  

458. Inter has ergo infinitas curvas AM cum AN oscillationes isochronas producentes ea 
est continua cum AN, in quae est c = a. Atque longitudo penduli isochroni fit = a, ut 
assumsimus.  
 

Corollarium 4.  
459. Si ponatur c = 0, erit cum curva AN quoque tautochrona haec curva AM, cuius 
aequatio est 

ax
Tdxdt
2

=  seu t = S. Hocque casu longitudo penduli est 4
a . [p. 231] Quoties 

ergo est bxT 2= , toties quoque linea recta cum AN tautochronismum producit, si ita 

fuerit inclinata, ut anguli MAP secans sit = b
a .  

 
Corollarium 5.  

460. Quia curva AN in puncto A ad axem AP normalis esse debet, oportet, ut T evanescat 
posito x = 0. Idem etiam sequitur ex eo, quod a – T debeat esse quantitas affirmativa, 
saltem in initio A. Si enim T fieret infinitum posito x = 0, id quod infinitis modis accedere 
potest, ita tamen, ut S evanescat posito x = 0, curva AN in alteram axis AP partem caderet 
curvaque in A haberet cuspidem et corpus, postquam super MA descendit, per 
reflexionem super AN ascenderet, quod esset contra naturam oscillationum. 
 

Corollarium 6.  
461. Si igitur T evanescit posito x = 0, radius osculi in A, qui est dx

sds , ob s = y in hoc loco 

erit = a ideoque oscillationes congruent cum oscillationibus minimis penduli longitudinis 
a, ut assumsimus.  
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Corollarium 7.  
462. Curvae portio AN habebit in D tangentem verticalem ibique cuspidem; quod 
punctum invenitur ex hac aequatione axTa 2=− sumendo AC = valori ipsius x ex hac 
aequatione. Altera quoque pars AM habebit cuspidem, si alicubi fuerit axTa 2=+ . 
 

Corollarium 8. [p. 232] 
463. Si fuerit S = 0 et T = 0, erit axs 2= . Quare curva erit cyclois atque portio AN 
aequalis et similis curvae AM. Est ergo cyclois curva continua, super qua omnes 
oscillationes absolvuntur eodem tempore.  
 

Exemplum.  
464. Sit bxT 2= , quo casu curva AN quoque est tautochrona cum recta AC angulum 

constituente, cuius cosinus est b
a ; erit  

 

Habebitur autem 
ax

axbxbxaadxdy
2

)2222( 2 −+−= .  

Quae aequatio etiam congruit cum ea, quam in propositione praecedente pro curva 
invenimus, quae cum recta tautochronam constituat (452), si modo scribatur L pro a et n 

pro b
a .  Quare si fuerit b = a, curva quoque algebraica invenitur NAM, quae est 

tautochrona, cuius aequatio est  

x
axadxdy 2

22−=  

et integralis haec  
 

 
 
Quae est ea ipsa curva, quae cum recta verticali tautochronam constituit, ut supra 
invenimus (452). Longitudo vero penduli isochroni est = a, si corpus in hac curva 
oscillatur. At si moveatur super recta AC et parte curvae AN, longitudo pendul isochroni 
erit 4

a . Atque si D fuerit cuspis curvae, erit 8
aAC = , alter vero ramus AM in infinitum 

ascendit. Praeter hanc curvam tautochronam algebraicam aliae vix inveniri poterunt.  
 
 
 
 
 


