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CHAPTER THREE 

 
CONCERNING THE MOTION OF A POINT  

ON A GIVEN LINE  IN A MEDIUM WITH RESISTANCE.  
 [p. 233] 

PROPOSITION 53.  
 

Problem.  
 

465.  If a body is acted on by a given force g in a medium with whatever resistance, to 
determine the motion of the body descending on a given curve AM (Fig.57), and the 
compressive force sustained by the curve at particular points.  
  

Solution.  
 The abscissa AP = x is placed along the vertical 
AP , the applied line PM = y and the arc AM = s; let 
the height corresponding to the speed of the body at 
M be equal to v, and the resistance at M is equal to R. 
Therefore it is evident from the previous chapter,  
(93), that if there is no resistance, then [the 
differential of the height becomes]   

.gdxdv =  
Now the resistance has lessened this increment of the 
speed and is equivalent to a tangential force R; and 
the effect of this force alone consists of this, that [the 
increment] becomes   

.Rdsdv −=  
On account of which, if both the force g  and the resistance are both likewise acting on 
the body, then this equation becomes   

,Rdsgdxdv −=  
and from which equation the speed of the body at any point M is to be elicited. [p. 234] 

[We have remarked on Euler's basic equations occasionally, which resemble but are 
not identical with certain modern equations describing the same phenomena. We note 
that no mention is made of mass, so presumably we are to assume that unit mass is used 
throughout, or that the forces or accelerations are organised so that the masses always 
cancel. In addition, one cannot perform a dimensional analysis on these equations, 
without accepting that certain physical quantities have been set equal to 1. Thus, terms 
such as gdx and – Rds may be viewed in the modern context as the increments of work 
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done on the body by gravity and against the body by friction, thus increasing or 
decreasing the kinetic energy of the body; however, the concepts of work and energy 
were in their infancy in Euler's day, although Johan Bernoulli and others had written 
some papers on what was then termed the vis viva.  

 Euler did not enter into this matter, and adhered to experimental facts when setting 
down his equations. Thus we should not view these equations from the modern 
physicist's conventional viewpoint, but rather from the mathematician's viewpoint. The 
idea that a moving body had something in common with the same body at rest at a greater 
height could perhaps best be explained at the time by referring to Galileo's experiments 
concerning bodies descending from rest down an inclined  plane : from these 
observations a height v could be made proportional to the square of the speed at the end 
of the descent. This gave Euler the idea of replacing squares of speeds with heights : he 
had no hesitation in ascribing such a function v equal to the height above the earth, for 
which v  was related to the speed of the body. In the first equation above, the force g is 
the force of  gravity somewhere, while on the earth's surface it has the value g = 1. Thus, 

gdxdv. =1 is simply a proportionality between two forces or accelerations per unit mass, 
while dv = dx for vertical motion near the surface or the earth. Such a proportionality is 
seen to be true under the circumstances that if V is the speed at the respective heights x 
and v in the locations where uniform gravity is g and 1, then 

v.xgVVv..gxV ΔΔΔ 1 gives 1222 ==== , here assumed at rest initially.  In addition, we 
have seen that even horizontal speeds are ascribed by such heights, which is thus little 
more than a mathematical convenience. If we view such equations as energy equations, 
then a factor of 2 or 2

1 is missing; hence these are not energy equations, for instead they 
are equations used to relate accelerations, and to transform squares of speeds into 
corresponding heights under the earth's gravity, and which has the great advantage of 
removing all speed and hence time dependence from the equations, which are thus 
rendered homogeneous for integration, etc. When the need arises, as in centripetal force 
below, the factor of 2 is inserted to deal with the absolute acceleration. In other places, 
where actual numbers are required, Euler referred to Huygens pendulum experiments to 
get the correct length of the pendulum for a swing of one second. 
{Recall that Huygens proposed the idea of measuring lengths in terms of seconds via his 
pendulum, were the second was an arbitrary constant time interval}. In a word then, view 
Euler's dynamical equations above and elsewhere as mathematically expedient 
transformations for solving dynamical problems, but realise that these transformations are 
not motivated by potential/kinetic energy conservation, although these can now be 
viewed as analogous to Euler's pioneering work.  We return to the text : ] 

And if the body descends from rest at A, the integration is thus to be put in place so 
that on placing x = 0 the height v = 0 also. Now if the body starts the descent at A with a 
given speed, on putting x = 0 in the integration, v must be made equal to the height of that 
initial speed. Moreover since the speed of the body is found, likewise the time is 
obtained, in which any arc AM you please is completed, by taking ∫ v

ds . As for the force 

sustained by the curve at M, it is observed that the curve at M is pressed on by two forces, 
clearly the centrifugal force and the normal force. We put the curve to be convex 
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downwards  and the element dx constant; the length of the radius of osculation directed 
along the opposite normal MN is equal to   

dxddy
ds3

, 

and thus the centrifugal force is equal to 

3
2

ds
vdxddy , 

which is pressing on the curve along the direction MN . Now the curve is pressed upon by 
a normal force along the same direction which is given by  

ds
gdy ; 

for the normal force arises only from the absolute force acting g, since the direction of the 
force of resistance is placed along the tangent and thus does not generate a normal force. 
Consequently the total force, which presses on the curve at M along the direction of the 
normal MN , is equal to   

 3
2

ds
vdxddy

ds
gdy + . 

Q.E.I.  
Corollary 1.  

466. Therefore the expression of the force pressing the curve agrees with that which we 
found in the case of the vacuum (83). Yet the curve is pressed in a medium with 
resistance by the same force as in a vacuum on account of the speed, upon which the 
centrifugal force depends, which is not varies by the resistance of the medium. [p. 235] 

 
Corollary 2.  

467. In this descent the body does not have the maximum speed as in a vacuum in which 
the tangent is horizontal at the point B, but at the place where dv = 0 at which it has the 
maximum speed, is found from this equation :  

 
in that point, where the sine of the angle, that the tangent to the curve makes with the line 
to the horizontal, is to the whole sine as the absolute force g to the resistance R at that 
place. 
  

Corollary 3.  
468. Therefore the speed of the body is increased as far as this point, in which the speed 
is a maximum; now beyond this point the speed decreases again since then Rds exceeds 
gdx and on this account makes dv negative.  
 

Corollary 4.  
469. If the resistance is as some power of the speed of which the exponent is 2m, and if 
the resisting medium is uniform, the exponent of this is k, where k is the height 
corresponding to the speed with which the body is moving, the resistance is allowed be 
made equal to the force of gravity; in this case  
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m

m

k
vR =  

and this equation is obtained defining the motion [note : the speed corresponds to the 
square root of the height always, hence vm is proportional to the speed] : p. 236] 

m

m

k
dsvgdxdv −= . 

Corollary 5.  
470. But if abscissae in taken on the axis BQ and we put BQ = 
x, QM = y and BM = s, on account of these a differential 
quantity  negative with respect to the former is obtained :  

Rdsgdxdv +−= .  
Which equation is thus to be integrated, so that on putting x = 0 
makes v = b, if indeed the body has acquired a certain speed at  
B to which the height b corresponds. But the force pressing 

along MN, that the curve sustains, is equal to 3
2

ds
vdxddy

ds
gdy − . 

 
Corollary 6.  

471. If the medium is uniform, and the exponent of this is k, the resistance is now 
proportional to some function of v, which is V, and such a function K of  k is taken, as V 
is of v; the resistance is given by K

VR = and thus this equation is obtained :  

K
Vdsgdxdv +−=  

with the axis BQ taken.  
 

Scholium 1.  
472. I have given this formula twice for the increment of the speed for the two axes AP 
and BQ, since that is soon to be used in what follows. [p. 237] Clearly when the descent 
is made from the fixed point A, we use the first formula by taking AP for the axis. But if 
on the same curve several descents as far as the fixed point B are to be considered, as 
usually comes about in oscillatory motion, we use the second formula, in which BQ is 
had for the axis.   

  
Scholium 2.  

473. Since the formula, from which the motion of the body on the given line must be 
determined, has thus been prepared, in order that a few indeterminate cases can be 
separated from each other, often nothing can be concluded from that about the motion 
considered. On account of which it is agreed to pursue only these cases, for which the 
equation 

K
Vdsgdxdv m±=  

can be either separated or integrated.  Moreover all these cases can be reduced to three 
general cases. The first is, when the line on which the body is moving is straight ; for then 
on account of ndxds = the equation is changed into this  :   
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,dxnVgK

Kdv =−
±  

in which the indeterminates are separated from each other. The second case is, when V is 
present as a first power of v; for then the equation admits to integration.  The third case is 
when v has thus been prepared in the equation, that in the equation v and x everywhere 
constitute a number of the same power ; for then by the rule noted by Bernoulli the 
indeterminates can be separated from each other.  [Concerning the integration of 
differential equations, where an example of a method of integration is presented without 
the previous separation of the indeterminates. Comment. acad. sc. Petrop. 1 (1726), 
1728, p. 168; Opera Omnia Tom. 3, Lausannae et Geverae 1742, p. 108.] Moreover this 
comes about, if Vds is a single power of v and x. Besides these there are two other cases 
that permit integration, but these are not relevant here. [p. 238] The first is, if the 
resistance vanishes, which case has indeed been set out sufficiently in the previous 
chapter. The other case is, if the force g vanishes; concerning which there is no need that 
we treat this, since the motion on any given line  agrees with the motion on a straight line, 
about which enough has been said in the previous book. Besides also the equation can be 
separated in many more cases if it is the case that 2vV = , clearly whenever the equation 
for the curve has thus been prepared,  so that the equation can be reduced to the case that 
formerly Com. Riccati proposed. Now generally it is also possible to show the speed by a 
series in this case and for a finite expression to be defined, as I have given a general 
solution of the Riccati equation. [E31 in this series of translations] Therefore as the 
solution of a problem may be required, in addition to these three cases set out, 
immediately afterwards we explain this case also, in which the resistance is proportional 
to the fourth power of the speed.  

 
Scholium 3.  

474. Since this tract on the motion in a resisting medium is by all accounts difficult and 
complex, we will not apply ourselves to many hypotheses of the forces acting, as we did 
in the previous chapter, but the force acting shall be uniform and directed downwards and 
we do not elicit many centripetal forces to be acting. And when the force acting is put 
uniform, [p. 239] the resistance of the medium also can be put to agree with that ; for a 
fluid, that generates resistance, diminishes the force of gravity itself, and if that was not 
uniform, the absolute force cannot be put to be uniform in a straight line. Then also for 
that reason we can assume that the curve in which the body is moving lies in the same 
plane, by which we are able to remove many useless difficulties.  
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PROPOSITION 54.  
Problem.  

 
475.  If the body is always acted on by a uniform force g downwards in a medium with 
some resistance, to determine the motion of the ascending body on the given curve AM 
(Fig.58) and the force pressing on the curve sustained at individual points M.  
  

Solution.  
 In the vertical AP place the abscissa AP = x, PM = y and AM = s, and let the height 

corresponding to the speed of the body at A be equal 
to b and at  M the corresponding height is v, and the 
resistance at M is equal to R. Therefore it is the case, 
while the body rises, so the force acting g as well as 
the resistance R to be contrary to the motion. On this 
account likewise as in the previous proposition,   

.Rdsgdxdv −−=  
From which equation v is thus to be determined, so 
that on putting x = 0 makes v = b. Then with the 
resistance not present in the pressing force 
experienced by the curve, as above the total pressing 

force [which we would call the normal reaction now], that the curve sustains at M along 
the direction of the normal MN, [p. 240], 

= 3
2

ds
vdxddy

ds
gdy −  

with dx put constant; where ds
gdy the normal force and 3

2
ds

vdxddy− the centrifugal force, 

both placed along the direction MN. Q.E.I.  
 

Corollary 1.  
476. Hence in the ascent of the body on any curve, the speed of the body is continually 
made less and the point D is reached, at which the speed of the ascent of the body 
vanishes, if in the equation :  

Rdsgdxdv −−=  
after integration, putting v = 0.  

 
Corollary 2.  

477. If the body descending on the curve DMA should have this [hypothetical] equation  
Rdsgdxdv +−=  (470), 

from which it is understood that the ascent is not similar to the descent, as in a vacuum. 
But if [also] the resistance were to become negative or accelerating, then the ascent 
would be similar to the descent. Whereby the descent in the medium with resistance 
agrees just as much in the resisting medium with the ascent, and in turn with the 
acceleration.  
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Corollary 3.  
478. Since the equation for this ascent yet differs from the equation for the descent, since 
the value of the resistance R is put negative, it is understood from the same cases,  [p. 
241] in which the equation for the descent are to be separated or integrable, from which 
the equation for the ascent too can be treated in the same way.   
 

Corollary 4.  
479. If we set K

VR = , then this equation is found for the ascent on the curve  AM :   

K
Vdsgdxdv −−= . 

But for the descent there is had : K
Vdsgdxdv +−= . 

Whereby if the other equation is to be integrated, likewise also the integral of this 
equation is had only on putting –K  in place of K. [On rising, both dx and ds are 
considered as positive, and thus the height corresponding to the speed diminishes; 
however, on descending, dx is negative and thus –dx gives a positive contribution to the 
height and speed; however, energy dissipation means that the resistance term is negative. 
Thus, Euler's musings are here more connected with solving an equation than correctly 
handling the physical situation.] 
 

Scholium.  
480. Therefore following the three cases mentioned above, in which the equation found 
can be either separated or integrated, so that we can handle the descent as well as the 
ascent, clearly if the curve is given upon which the motion can be performed. Moreover 
then, from the given force acting, we can investigate the curve for resistance and the 
force acting on it. Thirdly if the motion should have a certain proposed property, we 
determine the curve which it satisfies according to the hypothesis of resistance it satisfies. 
Besides other problems follow, in which of these four quantities – resistance, motion, 
force pressing, and  the curve – two are given, and the remaining two are required. Then 
we also have indeterminate problems, for which all the curves are required, upon which 
the descending body  either acquires the same speed or completes these in the same time. 
[p. 242] Then the doctrine of brachistochrone lines follows, and finally the chapter ends 
with a treatment of oscillatory motion.   
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PROPOSITION 55.  
 

Problem.  
 

481.  In a medium with some kind of uniform resistance and under the hypothesis of 
uniform gravity g acting, to determine the motion of the body descending on the given 
straight line AMB (Fig.59) inclined in some manner to the horizontal.    
  

Solution.  
  With AP = x then AM = s = nx; PM = y and since the 
resistance of the medium is uniform, then let the resistance be  

K
VR = . Therefore with the height corresponding to the speed at 

M equal to v, then  

K
nVdxgdxdv −−=  (465).  

Hence this equation becomes :  
dxnVgK

Kdv =− , 

in which equation the indeterminates are separable from each 
other in turn; hence the equation is :   

∫ −= nVgK
Kdvx , 

 in which the integration is effected so that putting x = 0 makes v 
= 0, if indeed with the descent starts from A at rest. But if now it has an initial speed, this 
has to be introduced through the integration. The time to traverse the interval  AM is 
equal to 

∫ v
ndx . 

Therefore with the value in terms of v put in place of dx , the time to traverse  
AM  is equal to  

∫ − vnVgK
nKdv

)(
, 

 which integral is thus to be taken, so that it vanishes on putting v  equal to the initial 
speed at A . Now the pressing force, that the line sustains at any point M  is constant, 
surely equal to the normal force :   

n
ng

ds
gdy )1( 2−= , 

since the centrifugal force vanishes on account of ddy = 0. Q.E.I. [p. 243] 
 

Corollary 1.  
482. Hence the speed of the body for some time is accelerating, as during that time  
gK > nV. But if once gK = nV, then the body is neither accelerated nor retarded. Now the 
speed of the body is diminished if at the start at  A it should be the case that  nV > gK.  
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Corollary 2.  

483. Therefore if the body starts to descend from A at rest, then the motion is always 
increasing thus yet as gK > nV always, clearly the final speed is that acquired at last from 
an infinite descent distance 

Corollary 3.  
484. Since the greater the angle BAC, the less is the terminal speed that the body is able 
to  acquire. Now the maximum terminal speed by which the body can progress uniformly 
is acquired by descending along a vertical straight line AC.  

 
Corollary 4.  

485. If the resistance were as the 2m power of the index of the speed, then  
mvV = and mkK = , hence this equation is obtained : [p. 244] 

∫ −
= mm

m

nvgk
dvkx  

and the time to pass along AM = ∫ − vnvgk
dvNk

mm

m

)(
.  

 
Example 1.  

486. The medium resists in the simple ratio of the speeds ; hence 2m = 1 and 

k
vndxgdxdv −= . 

Hence this gives :  

 
or by the series : 

 
if indeed the descent starts from A at rest. Moreover the time to complete the interval AM 
is equal to :  

 
Whereby if the time for AM is put equal to t, then this gives :   

 
and in the series expansion:  

 
Hence if the body in the descent along AB acquires the speed corresponding to the height  
b, from this there is found the height :  
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Example 2.  
486. The medium resists in the square ratio of the speeds; hence m = 1 and 

nvgk
gk

n
k

nvgk
kdv lx −− == ∫ , 

if indeed the body starts its descent from A at rest. Whereby if e is the number of which 
the logarithm is one, then [p. 245] 

 
On this account, if the body has a speed at B corresponding to the height b, then  

nbgk
gk

n
k lAC −= . 

And if the body descends through an infinite distance, it has a speed corresponding to the 

height n
gk .  Now the time to traverse the distance AM is equal to :   

 
So the distance x as the time can conveniently be expressed by a series, that we show 
generally for any value of the letter m in the following example.  

 
Example 3.  

488. Let the resistance be expressed by the 2m th power of the speed; then 

mm

m

nvgk
dvkdx
−

= ; 

[recall that always Euler takes the speed as proportional to the square root of a height v.] 
which gives on conversion to a series :   

 
From which there is found :  

 
 
But if the time to traverse  AM = t, which is   

v
ndxdt = , 

then we have :  
 

 
[p. 246] 

 
 



EULER'S MECHANICA VOL. 2.  
Chapter 3a.  

 Translated and annotated by Ian Bruce.                                page 380 
 

PROPOSITION 56.  
 

Problem.  
 

489.   A medium resists in some multiple ratio of the speeds, and the point A is given 
(Fig.60),  from which an infinite number of straight lines AM can be drawn; to  determine 
the curve CMD of this kind, so that a body descending along any line AM has the same 
speed at M.    
  

Solution.  
  Let 2m be the exponent of the power of the speed, to which 
the resistance is proportional, and calling AP = x and AM = z 
and putting z = nx.  Let the height corresponding to the speed 
at M be equal to v, which must be constant, namely equal to  b. 
Hence we have:   

mm

m

nvgk
dvkdx
−

=  

(485) with k detonating as above the exponent of the resistance 
and g the force acting downwards. Hence in finding the nature 
of the curve CM it is necessary to integrate the equation:  

mm

m

nvgk
dvkdx
−

=  thus so that on putting v = 0 also makes x = 0, 

moreover then b is to be put in place of v and x
z in place of n, 

and in this way we obtain the equation between  x and z expressing the nature of he 
curve. Moreover we have integrated the above equation proposed by a series (488), thus 
on putting b in place of  v we have :  
  

 
Put mq in place of n and it is multiplied everywhere by q; with which accomplished we 
have :   
 

 
The differential is taken and it is divided by bdg; there is obtained :  [p. 247] 
 
 

 
or 
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But since nqm =  and x
zn = , put 

m

m

x
z

1

1

in place of  q and there is produced :   

 
 

Which multiplied by m
m

m zx
11 −

goes to this :   

 
Moreover the construction of the curve easily follows from the equation :   
 

 
Moreover above we had the series equal to qx, from which it is apparent, if we put  

m

m

b
gkmq = , then b

gx  is to be equal to the harmonic series [p. 248] 

 

 
and thus x is to be infinite. If therefore  x is infinite, then m

m

b
gk

x
zmq == , from which it is 

evident that the straight line AE is an asymptote to the curve, and the cosine of the angle  
CAE to be m

m

gk
b . But the distance of the vertex of the curve C is at a distance AC from the 

point A, and is equal to this series :  

 
Moreover by necessity, it must be that mm gkb < ; for otherwise the vertex C stands at an 
infinite distance from the point A. Q.E.I.  
 

Corollary 1.  
490. If the applied line PM is called y, then  

 
with which values substituted in the equation, we have :  
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Corollary 2.  
491. pxy =  is placed in this equation; and the equation is changed into this :  

 
which equation multiplied by m

m
pp 2

21
)1(

−

+ is integrable; for it gives : [p. 249] 

 
 
which expression can be effected by quadrature.   
 

Corollary 3.  
492. If the resistance vanishes and the body is moving in a vacuum, then k becomes 

infinite; and from the series given above there is found :  g
bqqx = or g

bx = , thus the line 

CM is known to become horizontal.  
Scholium 1.  

493. Moreover since from the general equation little can be concluded about the nature of 
the curve,, we will pursue this inquiry further with specific examples. Moreover we 

assume such examples, in which the formula mm

m

bmqgk
dqbk

−
even admits to integration by 

logarithms, from which we arrive at finite expressions, from which the nature of the 
curve is easily seen . [From this paragraph it can be concluded that Cotes' formula was 
not known by Euler in the year 1736.  P. St.] 

Example 1.  
494. Therefore let the resistance be proportional to the speeds ; then 2

1=m . Putting AC = 
a; since the speed, that the body acquires on falling through AC, must correspond to the 
height b, then [p. 250] 

 
(486). Now this gives   

x
zq = or 2

2

x
zq =  

and 

 
which integral is thus to be taken, in order that on putting z = x or q = 1 makes x = a or to 
the assigned value of this. Hence this integral becomes :   
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which equation with 2

2

x
z  substituted in place of  q goes over into this equation :  

 
If q = 1, then this becomes :  

 
Moreover on putting  q = 1 + dq; there is obtained :   

 
But since 

q
1 is the cosine of the angle MAC, then dq  is 

equal to the sine of this angle.  On which account the 
increment of x is infinitely less than the increment of the angle  
MAC with MA incident on CA, from which it follows that the 
tangent of the curve at  C is  horizontal; the tangent of this 
curve at infinity or the asymptote is AE, with the cosine of the 

angle EAC becoming 
kg

b . Moreover this curve on the other 

side of the vertical AC  has an arc similar and equal to CMD. 
 

 Scholium 2. 
495. Indeed generally it is also possible to show that the tangent of the curve at C must be 
horizontal. For on putting n = 1 in the series expressing x there is obtained :   

 
[p. 251] n in increased by the element dn; and there is obtained the momentary increment 
of AC equal to  
 

 

Now let n
1 be the cosine of the angle  MAC and thus the sine is equal to dnn

n 2)1( 2

=−  

on putting 1 + dn in place of n. On account of which the increment of AC is infinitely less 
than the increment of the angle; and thus AC is normal to the curve DMC.  
 

Example 2.  
496. Let the resistance be proportional to the square of the speed, then 1=m  and on 
putting AC = a; the equation becomes :   

 
 

Now it is then the case that x
znq ==  
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and 

 
Hence there is obtained :  

 
and hence it follows that :  
 

 
on putting this value of a in place of b.  Moreover this equation is used to construct the 
curve most conveniently :  

 
in which z is AM and q is the secant of the angle MAC. 

 
Scholium 3. 

497. In the solution of the problem in finding the equation of the curve CMD we have 
been using a certain sum of that series ; [p. 252] now it is possible to elicit the same 
equation without the series in the following manner. Since  

 
this equation expresses the nature of the curve sought, if we put v = b after the integration 
and x

z in place of n. On account of which  

 
is differentiated, on putting not only v, but also n to be variable, and then v is put equal to 
the constant b and x

z in place of n, the differential equation is obtained for the curve 

sought. So that this can be effected, I put mp
n 1= , when there is produced   

 
For the sake of brevity we put  

 
and the differential equation is equal to this :  

QdpPdvdx += , 
if p is also taken as a variable. But since P is a function of zero dimensions of v and p, 
then [see E45 in this series of translations]  

QpPvx +=  
and thus  
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p
Pv

p
xQ −= .  

Therefore with this value substituted in place of Q there is produced :   

 
Now mn

1−
 is restored in place of p and there arises :   

 
in which equation n has been taken equally variable with both v et x. Now put  v = b,  
dv = 0 and x

zn = and this equation is had : [p. 253] 

 
which agrees with the equation found above.   
 

PROPOSITION 57.  
 

Problem.  
 

498.  If the resistance were in some multiple ratio of the speed, to find the curve (Fig.61),  
which has this property, that a body descending on any chord AM arrives at M from A in 
a given constant time.    
  

Solution.  
   With the vertical AC drawn, put AP = x,  AM = z and let x

zn = . 

With the speed at M corresponding to the height v, and the 
resistance equal to m

m

k
v  let the time be t in which the body descends 

along AM , which must be a constant quantity. From the preceding 
we have  
 

 
(485). It is needed in finding the nature of the curve AMC that either 
equation is to be integrated, if it is possible, and the value of v from 

the one equation is substituted into the other equation and then x
z  is written in place of n, 

with which accomplished an equation is had between x and z expressing the nature of the 
curve. [p. 254] But if the integration cannot be performed conveniently, either equation is 
to be differentiated on putting n to be a variable, and afterwards on putting dt = 0, from 
the two equations found v must be eliminated, from which an equation is produced 
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containing only n and x, which as x

zn = shows the nature of the curve sought.  Towards 

doing this, putting mp
n 1= , from which we have :  

 
Of the former of these equations, by taking p to be a variable also, the differential has 
now been found :  
 

 
 
(497). To the other equation to be differentiated I put :   

 
and it becomes :  

QdpPdvdt += . 
Moreover, since P is a function of v and p of dimensions 2

1−− m , then 

QpPvtm +=− )(2
1  

and hence 

 
With which value substituted in place of Q there is produced :  
  

 
 
Now let ct 2= and dt = 0; we have :   
 

 
 
From these two equations dv is eliminated and there comes about :   

 
or [p. 255] 

 
 

on putting x = rp. This value is substituted in place of v in the equation  
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or in this 

 
Indeed in the case is which 2

1=m or the resistance is proportional to the speeds, then the 
equation becomes  pdv = vdp or pv α=  and 

 
thus it follows to be zz = ax; as in this hypothesis of the resistance the curve AMC is a 
circle everywhere as in a vacuum. According to other hypotheses of the resistance, unless 
the equation for either variable can be integrated, on eliminating v a difference of the 
differentials [i. e. a second – order differential equation] equation is had expressing the 
nature of the curve between z and x. Q.E.I.  

 
Corollary 1.  

499. If we put v = up, then:  
pdv–vdp = ppdu. 

And hence this arises  

 
 
which value substituted in the equation 

 
gives an equation between p et r, from which an equation is formed between x and z. [p. 
256] 
  

Corollary 2.  
500. Hence in the medium, which offers resistance in the simple ration of the speeds, it is 
apparent that the curve AMC is a circle. And thus according to this hypothesis of the 
resistance the times of the descents along particular chords drawn from the point A are 
equal to each other.   

  
Example 1.  

501. Let the resistance be proportional to the square of the speeds ; then m = 1 and 

 
or 

 
Now besides the time  

 
or 
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thus this becomes :  

 
Hence on eliminating v and with x

z put in place of n there is obtained:  

  

 
 

or 

 
In this case the curve is 

 
if therefore putting AC = a, it becomes [p. 257] 
  

 
thus it is  

 
or 

 
Therefore  

 
is the equation for the curve AMC. If the resistance should be very small, then the 
quantity k is extremely large and thus :  

 
and the logarithm of this is equal to :   
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In a similar way,  

 
And on this account this equation is obtained for the curve AMC : 

 
or 

 
Hence it is observed, if the resistance completely vanishes, or k is made infinitely great,  
the equation becomes 2zax = and thus the curve is the circle  AMC. But if the medium 
were the rarest, then 

 
and  on differentiation,  

 
If now this becomes zdz = xdx,  then the applied line PM has a maximum value or it is 
the place where the tangent to the curve is vertical, clearly   

 
thus the equation becomes :  

 
from which equation the value of z is approximately  

 
and [p. 258] 
 

 
Therefore the curve is widest above the middle and is wider everywhere than the height  
AC.  
 

Corollary 3.  
502. Therefore if [another] straight line or curve is a tangent to this curve AMC at M,  
thus so that it is situated wholly outside the curve AMC, the body released from A arrives 
faster by descending along the chord AM than upon any other straight line drawn from A 
to that other curve.   
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Example 2.  

503. Let m be a positive number and the resistance is very small; then k is a very large 
quantity and hence   

 
On account of which:  

 
and hence there is produced :  

 
and 

 
Moreover with these values substituted, this equation is produced : [p. 259] 

 
Since now x

zn = , this equation is obtained :  

 
or 
 

 
if the medium is very rare. Thus it is apparent, if the resistance vanishes completely, for 
the equation be become gcxz =2 or the curve AMC is a circle of diameter AC. 
 

Scholium.  
504. Therefore if the curve AMC is known and any line is given, it is possible to 
determine the straight line AM, upon which the body descending from A arrives at the 
given line the quickest. Cleary the curve AMC has to be constructed, which the given line 
touches at some point M; and the right line  AM is that line, upon which the body by 
descending from A quickest arrives at the given line. And in a like manner in the 
preceding problem, if the right line or curve touches the curve CMD (Fig. 60) at M, the 
body by descending from A along AM as far as to the tangent line to the curve CMD 
acquires a greater speed than by descending along another right line drawn from A to that 
line. Therefore from these it is possible to solve problems, in which the right line is 
required drawn from A to the given line, upon which the body on descending either 
acquires the maximum speed or arrives the quickest at that line. [p. 260]  On account of 
which we will not tarry longer with these problems, but we progress to the consideration 
of ascents upon given right lines.  
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CAPUT TERTIUM  

 
DE MOTU PUNCTI SUPER DATA LINEA  

IN MEDIO RESISTENTE.  
[p. 233] 

PROPOSITIO 53.  
 

Problema.  
 

465.  Si corpus sollicitetur deorsum a potentia uniformi g in medio quocunque resistente, 
determinare motum corporis descendis super data curva  AM (Fig.57) et pressionem, 
quam curva in singulus punctis sustinet.  
  

Solutio.  
 Ponatur in verticali AP abscissa AP = x, applicata 
PM = y et arcus AM = s sitque altitudo celeritati 
corporis in M debita = v et resistentia in M = R. 
Manifestum iam est ex capite praecedente [(93)], si 
nulla esset resistantia, fore  

.gdxdv =  
Resistentia vero minuit hoc celeritatis incrementum et 
aequipollet vi tangentiali = R; eiusque solius effectus 
in hoc consisteret, ut foret  

.Rdsdv −=  
Quamobrem si et potentia sollicitans g et resistantia 
ambae simul in corpus agunt, erit  

,Rdsgdxdv −=  
ex qua aequatione celeritas corporis in quovis puncto M est eruenda. [p. 234] 
Atque si corpus in A ex quiete descendat, integratio ita est instituenda, ut facto x = 0 
prodeat quoque v = 0. Verum si data cum celeritate corpus in A descensum inceperit, in 
integratione effici debet, ut positio x = 0 fiat v aequalis altitudini debitae illi celeritati 
initiali. Cum autem inventa fuerit celeritas corporis, habebitur simul tempus, quo quivis 
arcus AM absolvitur, sumendo ∫ v

ds . Quod ad pressionem, quam curva in M sustinet, 

spectat, curva in M duplici vi premitur, vi centrifuga scilet et vi normali. Ponamus 
curvam esse convexam deorsum et elementum dx constans; erit longitudo radii osculi in 
contrariam partem normalis MN directi  
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= dxddy

ds3
, 

unde vis centrifuga erit  

3
2

ds
vdxddy= , 

qua curva secundum directionem MN premitur. Secundum eandem vero directionem 
curva premetur a vi normali, quae est  

= ds
gdy ; 

vis normalis enim a potentia absoluta g tantum oritur, quia directio vis resistentiae est in 
tangente sita ideoque nullum vim normalem generat. Consequenter tota vis, qua curva in 
M secundum directionem normalis MN premitur, est  

= 3
2

ds
vdxddy

ds
gdy + . 

Q.E.I.  
Corollarium 1.  

466. Expressio ergo vis curvam prementis congruit cum ea, quam in vacuo invenimus 
(83). Neque tamen curva in medio resistente eadem vi premitur qua in vacuo ob 
celeritatem, a qua vis centrifuga pendet, quae a medio resistente variatur. [p. 235] 

 
Corollarium 2.  

467. In isto descensu corpus non ut in vacuo maximum habet celeritatem in puncto B, in 
quo tangens est horizontalis, sed posito dv = 0 locus, in quo corpus maximum habet 
celeritatem, invenitur ex hac aequatione  

g
R

ds
dxRdsgdx == seu   

in eo puncto, ubi sinus anguli, quem tangens curvae cum linea horizontali constituit, est 
ad sinum totum ut potentia absolutae g ad resistentiam R in eo loco. 
  

Corollarium 3.  
468. Celeritas corporis igitur augetur usque ad hoc punctum, in quo celeritas est maxima; 
ultra vero hoc punctum celeritas iterum decrescit, quia tum Rds excedit gdx et hanc ob 
rem fit dv negituvum.  

Corollarium 4.  
469. Si resistentia fuerit ut potestas quaecunque celeritatum, cuius exponens est 2m, et si 
medium resistens fuerit uniforme, cuius exponens sit k, ubi k est altitudo celeritati debita, 
quacum corpus movetur, resistentiam patitur vi gravitait aequalem; hoc ergo casu erit 

m

m

k
vR =  

atque ista habebitur aequatio ad motum definiendum [p. 236] 

m

m

k
dsvgdxdv −= . 
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Corollarium 5.  
470. Sin autem abscissae in axe BQ capiantur fueritque BQ = x, QM = y et BM = s, 
propter harum quantitatum differentialia negativa respectu priorum habebitur  

Rdsgdxdv +−= . Quae aequatio ita est integranda, ut posito x = 0 fiat v = b, si quidem 
celeritas in B, quam corpus in hoc puncto obtinet, huic altitudiini fuerit debita. At pressio 
secundum MN, quam curva sustinet, est 

= 3
2

ds
vdxddy

ds
gdy − . 

 
Corollarium 6.  

471. Si medium fuerit uniforme, cuius exponens sit k, resistentia vero functioni 
cuicunque ipsius v, quae sit V, proportionalis, sumatur K talis functio ipsius k, qualis V est 
ipsius v; erit resistantia K

VR = ideoque habebitur ista aequatio 

K
Vdsgdxdv +−=  

sumto axe BQ.  
Scholion 1.  

472. Formulam hic duplicem incrementum celeritas exhibentem dedi pro duobus axibus 
AP et BQ, quia in sequentibus mox illa utemur. [p. 237] Scilicet quando descensus 
semper fit ex fixo puncto A, utemur priore formula AP pro axe sumente. At si in eadem 
curva plures descensus ad punctum fixum usque B sint considerandi, ut in motu 
oscillatorio usu venit, posteriore formula utemur, in qua BQ pro axe habetur.  

  
Scholion 2.  

473. Quia formula, ex qua motus corporis super data curva determinari debet, ita est 
comparata, ut indeterminatae paucis casibus a se invicem separari, saepe ex ea nihil, quod 
ad motum spectat, concludi licet. Quamobrem eos tantum casus evolvere convenit, 
quibus aequatio K

Vdsgdxdv m±=  vel separari vel integrari potest. Hi autem casus omnino 
ad tres casus generales reducentur. Primus est, quando linea, super qua corpus movetur, 
est recta; tum enim ob ndxdx = aequatio transit in hanc  

,dxnVgK
Kdv =−

±  

in qua indeterminatae sunt a se invicem separatae. Secundus casus est, quando in V 
unicam tantum obtinet dimensionem v; tum enim aequatio integrationem admittit. Tertius 
casus est, quando tam v quam aequatio pro curva ita est comparata, ut in aequatione v et x 
ubique eundem dimensionum numerum constituant; tum enim per regulam notam 
Bernoullianam indeterminatae a se invicem possunt separari.  [De integrationibus 
aequationum differentialium, ubi traditue methodi alicuius specimen integrandi sine 
praevia separatione indeterminatarum. Comment.acad.sc.Petrop. 1 (1726), 1728, p. 168; 
Opera Omnia Tom. 3, Lausannae et Geverae 1742, p. 108.] Hoc autem evenit, si in Vds 
unica fuerit dimensio ipsarum v et x. Praeter hos quidem casus essent duo alii 
integrationem admittentes, sed qui huc non pertinent. [p. 238] Primus est, si resistentia 
evanescit, qui vero casus in praecendente capite iam sufficienter est pertractatus. Alter 
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casus est, si potentia sollicitans g evanescit; de quo autem non est opus, ut agamus, quia 
motus super quacunque linea congruit cum motu super linea recta, de quo in praecedente 
libro iam satis est dictum. Praeterea quoque multis casibus aequatio separationem 
admittit, si fuerit 2vV = , quoties scilicet aequatio pro curva ita est comparata, ut aequatio 
ad casum aequationis, quam quondam Com. Riccati proposuit, potest reduci. Generaliter 
vero etiam potest in hoc casu celeritas per seriem exhiberi atque finita expressione 
definiri, quemadmodum ego generalem aequationem Riccatianae dedi constructionem. 
[E31] Quoties igitur natura rei requiret, praeter tres casus expositos subinde quoque hunc 
casum, in quo resistentia biquadrato celeritatis est proportionalis, evolvemus.  

 
Scholion 3.  

474. Quia haec de motu in medio resistente tractio per se est difficilis et intricata, non ad 
plures vis sollicantis hypothesis, ut capite praecedents fecimus, eam accommodabimus, 
sed nobis perpetuo potentia sollicitans erit uniformis et deorsum directa neque de viribus 
centripetis multum erimus solliciti. Atque cum potentia sollicitans ponatur uniformis, [p. 
239] medium resistens quoque tale poni conveniet; fluidum enim, quod resistentiam 
generat, ipsam corporis gravitatem minuit, et si id non esset uniforme, potentia absoluta 
non recte uniformi poneretur. Deinde etiam propter eandem rationem curvam, in qua 
corpus movetur, totam in eodem plano positam assumemus, quo multas difficultates 
nullam utilitatem afferentes removeamus.  
 

PROPOSITIO 54.  
 

Problema.  
 

475.  Si corpus perpetuo sollicitetur deorsum a potentia uniformi g in medio quocunque 
resistente, determiare motum corporis super data curva  AM (Fig.58) ascendentis et 
pressionem, quam curva in singulus punctis M sustinet.  
  

Solutio.  
 In verticali AP posita abscissa AP = x, PM = y et 
AM = s sit atitudo celeritati corporis in A debita = b 
et in M debita = v atque resistentia in M = R. Erit 
igitur, dum corpus ascendit, tam potentia sollicitans 
g quam resistentia R motui contraria. Hanc ob rem 
erit simili modo quo in praecendente propositione   

.Rdsgdxdv −−=  
Ex qua aequatione v ita debet determinari, ut facto x 
= 0 fiat v = b. Deinde cum resistentia in 
pressionem, quam curva patitur, non ingrediatur, 
erit ut supra pressio tota, [p. 240] quam curva in M 
secundum directionem normalis MN sustinet, 

= 3
2

ds
vdxddy

ds
gdy −  
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posito dx constante; ubi ds

gdy denotat vim normalem et 3
2

ds
vdxddy− vim centrifugam, 

utramque iuxta MN directam. Q.E.I.  
 

Corollarium 1.  
476. In ascensu corporis ergo super quacunque curva celeritas corporis perpetuo 
imminuitur atque punctum curvae D reperietur, in quo corporis ascendentis celeritas 
evanescit, si in aequatione  

Rdsgdxdv −−=  
post integrationem ponatur v = 0.  

 
Corollarium 2.  

477. Si corpus super curva DMA descenderet, haberetur ista aequatio  
Rdsgdxdv +−=  (470), 

ex qua intelligitur ascensum non esse similem descendsui ut in vacuo. Sed si resistentia 
fieret negativa seu accelerans, tum ascensus similis foret descensui. Quare descensus in 
medio resistente congruet cum ascensu in medio tantundem accelerante et vicissim. 

 
Corollarium 3.  

478. Quoniam aequatio pro ascensu hoc tantum differt ab aequatione pro descensu, quod 
resistentia R valorem induat negativum, intelligitur iisdem casibus, [p. 241] quibus 
aequatio pro descensu separari vel integrari potest, iisdem quoque aequationem pro 
asensu simili modo tractari posse.  
 

Corollarium 4.  
479. Si fuerit K

VR = , erit pro ascensu super curva AM haec aequatio  

K
Vdsgdxdv −−= . 

At pro descensu habetur 

K
Vdsgdxdv +−= . 

Quare si illa aequatio poterit integrari, simul quoque aequationis habebitur integrale 
ponendo tantum –K loco K.  
 

Scholion.  
480. Secundum tres igitur casus supra memoratos, quibus aequatio inventa vel separari 
vel integrari potest, tam descensum quam ascensum pertractabimus, si scilicet detur 
curva, super qua motus fieri ponitur. Deinde autem ex datis potentia sollicitante, 
resistantia et pressione curvam investigabimus. Tertio si motus quaedam proprietas fuerit 
proposita, curvam determinabimus, quae in data resistentiae hypothesi satisfaciat. 
Praeterea sequentur alia problemata, in quibus harum quatuor rerum – resistentiae, motus, 
pressiones et curvae – duae dantur, reliquae duae requiruntur. Habebimuis deinceps 
quoque problemata indeterminata, quibus omnes curvae requiruntur, super quibus corpus 
descendens vel eandem celeritatem acquirit vel eas eodem tempore absolvit. [p. 242] 
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Tum sequetur doctrina de lineis brachystochronis atque tandem caput concludet de motu 
oscillatorio tractatio.  
 

PROPOSITIO 55.  
 

Problema.  
 

481.  In medio resistente uniformi quocunque et hypothesi gravitatis uniformi g, 
determiare motum corporis descendentis super linea recta AMB (Fig.59) ad horizontalem 
utcunque inclinata.   
  

Solutio.  
  Posita AP = x erit AM = s = nx; PM = y et quia resistentia 
medium resistens est uniforma, erit resistentia K

VR = . Posita 
ergo altitudine celerati in M debita = v erit  

K
nVdxgdxdv −−=  (465).  

Unde fit 
dxnVgK

Kdv =− , 

in qua aequatione indeterminatae sunt a se invicem separatae; erit 
ergo  

∫ −= nVgK
Kdvx , 

 in qua integratione efficiendum est, ut posito x = 0 fiat v = 0, si 
quidem descensu in A ex quiete incipiat. Sin vero habeat celeritatem initialem, haec per 
integrationem est introducenda. Tempus per spatium AM est  

= ∫ v
ndx . 

Posito ergo loco dx eius valore in v habebitur tempus per AM = ∫ − vnVgK
nKdv

)(
, quod 

integrale ita est sumendum, ut posita v = celeritati initiali in A evanescat. Pressio vero, 
quam linea in quovis puncto M sustinet, est constans, nempe aequalis vi normali  

n
ng

ds
gdy )1( 2−= , 

quia vis centrifuga evanescit ob ddy = 0. Q.E.I. [p. 243] 
 

Corollarium 1.  
482. Celeritas corporis ergo tam diu acceleratur, quam diu est gK > nV. At si semel fuerit 
gK = nV, corpus neque accelerabitur neque retardabitur. Diminuetur vero corporis 
celeritas, si in initio A fuerit nV > gK.  
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Corollarium 2.  
483. Si ergo corpus in A descensum a quiete incipiat, motus perpetuo crescet, ita tamen, 
ut semper sit gK > nV, quippe quae est ultima celeritas, quam descensu per infinitum 
spatium demum acquiret.  

Corollarium 3.  
484. Quo maior ergo est angulus BAC, eo minor est ultima, quam corpus acquirere potest, 
celeritas. Maximam vero celeritatem ultimam, qua aequabiliter progreditur, acquirit 
descensu super recta verticali AC.  

Corollarium 4.  
485. Si resisentia fuerit ut potestas indicis 2m celeritatum, erit mvV = et mkK = , unde 
ista habebitur aequatio [p. 244] 

∫ −
= mm

m

nvgk
dvkx  

atque tempus per AM = ∫ − vnvgk
dvNk

mm

m

)(
.  

Exemplum 1.  
486. Resistat medium in simplici ratione celeritatum; erit 2m = 1 atque  

k
vndxgdxdv −= . 

Hinc fit  

 
vel per seriem  

 
si quidem descensus in A ex quiete incipiat. Tempus autem per spatium AM erit = 
 

 
Quare si tempus per AM ponatur = t, erit  

 
atque in serie  

 
Si ergo corpus in descensu per AB acquisivit celeritatem altitudini b debitam, ex hac 
reperitur altitudo  
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Exemplum 2.  
486. Resistat medium in duplicata ratione celeritatum; erit m = 1 et  

nvgk
gk

n
k

nvgk
kdv lx −− == ∫ , 

si quidem corpus in A ex quiete ascensum inchoaverit. Quare si e sit numerus, cuius 
logarithmus est unitas, erit [p. 245] 

 
Hanc ob rem, si corpus in B habuerit celeritatem altitudini b debitam, erit 

nbgk
gk

n
k lAC −= . Atque si corpus per spatium infinitum descendat, habebit celeritatem 

altitudini n
gk debitam. Tempus vero per spatium AM erit =  

 
Per series tam spatiam x quam tempus commode exprimitur; id quod generaliter pro 
quovis valore litterae m in sequente exemplo monstrabimus.  

Exemplum 3.  
488. Sit resistentia ut potestas exponentis 2m celeritatum; erit  

mm

m

nvgk
dvkdx
−

= ; 

quae expressio in seriem conversa dat  

 
Ex qua invenitur  

 
 
Atque si ponatur tempus per AM = t, quia est  

v
ndxdt = , 

erit  
 

 
[p. 246] 
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PROPOSITIO 56.  
 

Problema.  
 

489.  Resistat  medium in ratione quacunque multiplicata celeritatum datumque sit 
punctum A (Fig.60),  ex quo infinitae rectae AM sint eductae; determinare curvam CMD 
huiusmodi, ut corpus per quamlibet rectam AM descendens in puncto M eandem habeat 
celeritatem.    
  

Solutio.  
  Sit 2m exponens potestatis celeritatis, cui resistentia est 
proportionalis, dicaturque AP = x et AM = z et ponatur z = nx.  
Sit altitudo celeritati in M debita = v, quae debet esse constans, 
scilicet = b. Erit ergo  

mm

m

nvgk
dvkdx
−

= (485) 

denotante ut supra k exponentem resistentiae et g potentiam 
sollicitatem deorsum tendentem. Ad naturam curvae CM ergo 
inveniendam oportet integrare aequationem mm

m

nvgk
dvkdx
−

= ita 

ut posito v = 0 fiat quoque x = 0, tum autem poni b loco v 
atque x

z loco n, hocque modo obtinebitur aequatio inter x et z 

naturam curvae exponens. Per seriem autem supra 
aequationem propositam integravimus (488), unde posito b loco v habebimus 
  

 
Ponatur mq loco n et multiplicetur ubique per q; quo facto habebimus  
 

 
Sumantur differentialia et dividatur per bdg; habebitur [p. 247] 
 
 

 
seu  
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At quia est nqm =  et x
zn = , ponatur 

m

m

x
z

1

1

loco q et prodibit  

 
 

Quae multiplicata per m
m

m zx
11 −

abit in hanc  

 
Constructio autem curvae facilius sequitur ex aequatione  
 

 
Supra autem habuimus seriem ipsi qx aequalem, ex qua patet, si fuerit m

m

b
gkmq = , tum 

b
gx  aequari seriei harmonicae [p. 248] 

 

 
ideoque esse x infinitum. Si igitur x is infinitum, erit m

m

b
gk

x
zmq == , ex quo perspicitur 

rectam AE fore curvae asymtoton et cosinum anguli CAE fore m

m

gk
b . Verticis autem 

curvae C a puncto A distantia AC aequalis erit huic seriei  

 
Debet autem esse necessario mm gkb < ; alias enim vertex C a puncto A infinite distaret. 
Q.E.I.  
 

Corollarium 1.  
490. Si applicata PM vocetur y, erit  

 
 

quibus valoribus in aequatione inventa substitutis habebitur  
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Corollarium 2.  
491. Ponatur in hac aequatione pxy = ; transmutabitur ista aequatio in hanc  

 
quae aequatio per m

m
pp 2

21
)1(

−

+ multiplicate sit integrabilis; habebitur enim [p. 249] 
  
 

 
quae expressio per quadratures effici potest.  
 

Corollarium 3.  
492. Si resistentia evanescat corpusque in vacuo moveatur, fit k infinitum; atque ex supra 
data serie invenitur g

bqqx = seu g
bx = , unde cognoscitur lineam CM fieri rectam 

horizontalem.  
Scholion 1.  

493. Quia autem ex hac aequatione generali parum ad cognitionem curvae potest 
concludi, in exemplis specialibus hanc disquisitionem ulterius prosequemur. Talia autem 

assumemus exempla, in quibus formula mm

m

bmqgk
dqbk

−
integrationem saltem per logarithmos 

admittit, quo ad expressiones finitas perveniamus, ex quibus facile erit curvae naturam 
perspicere. [Ex hoc paragrapho concludi potest Eulero formulam Cotesianam anno 1736 
notam non fuisse.  P. St.] 

Exemplum 1.  
494. Sit igitur resistentia ipsis celeritatibus proportionalis; erit 2

1=m . Ponatur AC = a; 
quia celeritas, quam corpus per AC cadendo acquirit, debita esse debet altitudini b, erit [p. 
250] 
 
 

 
(486). Deinde vero erit  

x
zq = seu 2

2

x
zq =  

atque  

 
quod integrale ita est accipiendum, ut posito z = x seu q = 1 fiat x = a vel eius valori 
assignato. Erit ergo  
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quae aequatio loco q substituto 2

2

x
z abit in hanc  

 
Si q = 1, fit  

 
Fiat autem q = 1 + dq; habebitur  

 
At quia 

q
1 est cosinus anguli MAC, erit dq = sinui huius anguli. Quamobrem 

incrementum ipsius x infinities minus est quam incrementum anguli MAC incidente MA 
in CA, ex quo sequitur tangentem curvae in C esse horizontalem; huiusque curvae  
tangens in infinito seu asymtota erit AE existente anguli EAC cosinu 

kg
b . Ceterum haec 

curva ex altera verticalis AC parte arcum habebit similem et aequalem ipsi CMD. 
 

 Scholion 2. 
495. Generaliter quidem etiam ostendi potest curvae tangentem in C esse debere 
horizontalem. Posita enim n = 1 in serie x exprimente habetur  

 
[p. 251] Augeatur n elemento dn; habebitur incrementum momentaneum ipseus AC =  
 

 

Est vero n
1 cosinus anguli MAC ideoque sinus = dnn

n 2)1( 2

=−  posito 1 + dn loco n. 

Quamobrem incrementum ipsius AC infinities est minus quam incrementum anguli; atque 
ideo AC normalis erit in curvam DMC.  
 

Exemplum 2.  
496. Sit resistentia ipsis quadratis celeritatis proportionalis; erit 1=m  positique AC = a; 
erit  

 
 

Deinde vero est  

x
znq ==  

atque  
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Habebitur ergo  

 
unde sequitur 
 

 
posito loco b eius valore in a. Ad curvam autem constructuendam commodissime 
adhibetur haec aequatio  

 
in qua z est AM et q est secans anguli MAC. 

 
Scholion 3. 

497. In solutione problematis ad inveniendam aequationem curvae CMD usi fuimus seriei 
cuiusdam summatione; [p. 252] eandem vero aequationem sine seriebus sequenti modo 
elicere licet. Quia est  

 
haec ipsa aequatio exprimit naturam curvae quaesitae, si post integrationem ponatur v = b 
et x

z loco n. Quamobrem si  

 
differentietur, posito non solum v, sed etiam n variabili, atque tum ponatur v constans = b 
et x

z loco n, habebitur aequatio differentialis pro curva quaesita. Ad hoc efficiendum pono 

mp
n 1= , quo prodeat  

 
Ponamus brevitatis gratia  

 
sitque aequatio differentialis haec  

QdpPdvdx += , 
si etiam p variabilis accipiatur. Quia autem P est functio nullius dimensionis ipsarum v et 
p, erit  

QpPvx +=  
ideoque  

p
Pv

p
xQ −= .  
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Hoc igitur loco Q valore substituto prodibit  

 
Restituatur mn

1−
loco p et orietur  

 
in qua aequatione n aeque variabilis est assumta ac v et x. Nunc ponatur v = b, dv = 0 et 

x
zn = atque habebitur ista aequatio [p. 253] 

 
quae cum aequatione supra inventa congruit.  
 

PROPOSITIO 57.  
 

Problema.  
 

498.  Si resistentia fuerit in quacunque multiplicata ratione celeritatum, invenire curvam 
(Fig.61),  huius proprietatis, ut corpus descendens super quavis subtensa AM dato 
tempore ex A ad M perveniat.    
  

Solutio.  
   Ducta verticali  AC ponatur AP = x,  AM = z sitque x

zn = . 

Posita altitudine celeritati in M debita = v, et resistentia = m

m

k
v  sit 

tempus, quo corpus per AM descendit, = t, quod debet esse quantitas 
constans. Habebimus ergo ex praecedentibus 
 

 
(485). Quocirca ad naturam curvae AMC inveniendam opus est, ut 
utraque aequatio, si fieri potest, re ipsa integretur et valor ipsius v 
ex altera aequatione in altera substituatur atque tum loco n scribatur 

x
z , quo facto habebitur aequatio inter x et z naturam curvae quaesitae exprimens. [p. 254] 

At si integrationes non commode perfici poterunt, utraque aequatio est differentianda 
ponendo quoque n variabili, et postquam positum est dt = 0, ex duabus aequationibus 
inventis eliminari debet v, quo prodeat aequatio n et x tantum contens, quae ob 

x
zn = exhiberet naturam curvae quaesitae. Ad hoc ponatur  mp

n 1= , quo habeamus  

 
 
Quarum aequationum illius, sumto quoque p variabili, differentialis iam est inventa 
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(497). Ad alteram aequationem differentiandum pono  

 
sitque  

QdpPdvdt += . 
Quia autem P est functio ipsarum v et p dimensionum 2

1−− m , erit  

QpPvtm +=− )(2
1  

atque hinc  

 
Quo valore loco Q substituto prodibit  

 
Sit nunc ct 2= atque dt = 0; habebimus  

 
Eliminetur ex his duabus aequationibus dv et proveniet  

 
seu [p. 255] 

 
 

posito x = rp. Substituator hic valor loco v in aequatione  

 
vel in hac  

 
Casu quidem, quo 2

1=m seu resistentia celeritatibus proportionalis, erit pdv = vdp seu 
pv α=  et  

 
unde sequitur fore zz = ax; quamobrem in hac resistentiae hypothesi curva AMC est 
circulus omnino ut in vacuo. In aliis hypothesibus, nisi re ipsa aequatio alterutra 
integretur, eliminata v habebitur aequatio differentio–differentialis inter z et x naturam 
curvae exprimens. Q.E.I.  
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Corollarium 1.  
499. Si ponatur v = up, erit  

pdv–vdp = ppdu. 
Atque hinc erit  

 
qui valor substitutus in aequatione  

 
dabit aequationem inter p et r, ex qua aequatio inter x et z formabitur. [p. 256] 
  

Corollarium 2.  
500. In medio ergo, quod resistit in simplici celeritatum ratione, apparet curvam AMC 
esse circulum. Atque ideo in hac resistentiae hypothesi tempora descensuum per per 
singulas circuli chordas ex puncto A ductas sunt inter se aequalia.  

  
Exemplum 1.  

501. Sit resistentia quadratis celeritatum proportionalis; erit m = 1 atque  

 
seu 

 
Praeterea vero erit  

 
seu  

 
unde fit  

 
Eliminata ergo v et x

z posito loco n habebitur 
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seu  

 
In hac curva est  

 
si igitur ponatur AC = a, erit [p. 257] 
  

 
unde erit 

 
seu  

 
Erit igitur 

 
aequatio pro curva AMC. Si resistentia fuerit valde parva, erit k quantitas vehementer 
magna atque ideo  

 
huiusquae logarithmus erit =  

 
Simili modo erit  

 
Atque hanc ob rem habebitur pro curva AMC haec aequatio  

 
seu 

 
Unde perspicitur, si resistentia prorsus evanescat seu k fiat infinite magnum, fore 

2zax = atque ideo curvam AMC circulum. At si medium rarissimum fuerit, erit  
 

et differentiando  
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Si nunc fiat zdz = xdx, habebitur applicata PM maxima seu locus, ubi tangens curvae est 
verticalis, scilicet  

 
unde fit  

 
ex qua aequatione ipsius z valor quam proxime est  

 
atque [p. 258] 
 

 
Curva ergo latissima est supra medietatem ibique latior est quam altitudo AC.  
 

Corollarium 3.  
502. Si igitur linea recta vel curva hanc curvam AMC in M tangat, ita ut tota extra 
spatium AMC sit sita, corpus ex A ad eam lineam citius perveniet descendendo super 
chorda AM quam super quavis alia recta ex A ad eam lineam ducta.  
 

Exemplum 2.  
503. Sit m numerus affirmativus et resistentia valde parva; erit k quantitas vehementer 
magna atque hinc  

 
Quocirca erit  

 
hincque prodit 

 
atque  

 
His autem valoribus substitutis prodit ista aequatio [p. 259] 

 
Quia vero est x

zn = , habebitur ista aequatio  
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seu 
 

 
si medium est rarissimum. Unde patet, si resistentia penitus evanescat, fore gcxz =2 seu 
curvam AMC circulum diametri AC. 
 

Scholion.  
504. Si igitur cognita fuerit curva AMC et detur linea quaecunque, determinari poterit 
recta AM, super qua corpus ex A celerrime ad datam lineam pertingat. Scilicet 
construenda est curva AMC, quae datam lineam tangat v.g.in M; eritque recta AM ea 
recta, super qua corpus descendendo ex A citissime ad lineam datam perveniat. Atque 
simili modo in praecedente problemate, si recta vel curva tangat curvam CMD (Fig. 60) 
in M, corpus ex A descendendo per AM usque ad lineam tangentem curvam CMD 
maiorem acquiret celeritatem quam descendendo super quavis alia recta ex A ad eam 
lineam ducta. Ex his igitur solvi possunt problemata, quibus requiritur recta ex A ad 
datam lineam ducta, super qua corpus descendendo vel maximam acquirat celeritatem [p. 
260] vel citissime ad eam lineam pertingat. Quamobrem hisce problematibus non diutus 
immorabimur, sed ad ascensum superlineis rectis considerandum progrediemur.  
 
 


