Notes on Napier’s Logarithms by Robert Burn, U.Ex. UK. 2015.

John Napier (1550 — 1617) Napeir, Nepair, Nepeir, Neper, Nepper, Naper, Napare, Naipper
Laird of Merchiston [The name appears in print as Napier, only after his death.]

1563 to university of St Andrews , no degree.

Perhaps to continent.

1593 Publication of A plain discovery of the whole revelation of St John. Also translated into Dutch, French and
German. Many editions.

1594 Communication between Kings of Scotland and Denmark gave indication to Tycho Brahe of a quicker method
for astronomical calculations, according to Kepler.

1614 Publication of latin Mirifici logarithmorum canonis Descriptio with tables of sines to seven figures.

1615 Visit of Briggs to Napier ; again in 1616.

1616 Publication of English Descriptio (D) (translation by Edward Wright) with tables of sines to six figures.

1617 Death of Napier

1618 2™ edition of English Descriptio

1619 Publication of latin Mirifici logarithmorum canonis Constructio, (C) with notes and appendix by Henry Briggs.
No log tables. Written before the Descriptio.[In Constructio logarithms are called artificial numbers.]

1888 Publication of English Constructio (translation by William Rae Macdonald). Reprint 1966.

Background to Napier’s logarithms
Seven figure sine tables. Regiomontanus (1541), Rheinhold (1554) C.59, Finck (1581) = Lansbergen (1591).

Prosthaphaeresis: Werner (1500ish), Tycho Brahe (1582); sin A.sin B = %4(diff of cosines) . So purpose of logarithms to
enable division of sines, and extraction of square and cube roots.

GP <> AP matching: Archimedes, The sand reckoner, Chuquet (1484), Rudolff (1526),Gemma Frisius (1540), Stifel
(1544) includes negatives in AP, C.de Boissiere (1554), Clavius 1583 [Practical Arithmetic, chapter 25, Geometrical
Progressions]. This matching was the heart of all logarithms before the connection with the hyperbola was known
(1647-9); Mercator (1668) and Newton.

Novelty Negative (defective) numbers in tables
Decimal fractions for computation. [Stevin 1585]

Construction of logarithms by movement and inequalities. Not followed by Briggs, and partly by Kepler.
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Models of Napier’s logarithms: logsines for each minute of arc from sin 90°= 10’ to sin 1’ = 2909.

1. Nlogy=10"1n10"/y. E.W.Hobson 1914, published lecture. Napier and the Invention of Logarithms,
Cambridge

Pro: Deduced from: C.25 Speed y’ = ky; C.23 x’ = const. Initially C.27 x=0, y = 10";
and C.26 x’ = -y’. Taking the constant x’ = 1, we get y’ = -y/10’, then integrate diff.eqn.

Anti: C.1, no obvious GP. C.32 proved but C.36 not proved but needed for C.39. Anachronistic as no natural
logarithms before 1649, and certainly no identification of e by Napier. Also continuity of speed not articulated by
Napier, though seemingly implied by C.36.

2. Nlog10’(1-107)"=x. F.Cajori 1913 (Am.Math. Monthly)  Anti-logs, as Whiteside.

Pro: Supported by C.1, Table 1 (C.16) and remarks about table 1 in C.21. Fits C.32, C.37, C.38 (for specific terms of
GP).

Anti: None of (1 —107), (1 —1/2000) or (1 —1/100) belong to the GP (1 — 10”)". Much of table 3 does not form a GP.
C.30 appears to rule out equal first steps along AP and GP, but C.31 reinstates. Universal use of C.36 needs
continuity of velocity.

3. Nlogy= 107Iog1/ey/107 (Macdonald translation 1888 page 91, also Glaisher in Tercenternary volume, p.65)

Although identical to the first model (and therefore prone to the same objections) the derivation is from model 2.
Since (1 —1/n)" — 1/e, after Euler, (1 — 107)210’ is close to but less than 1/e.

)n/ 10000000

Thus model 2 may be very nearly rewritten Nlog 10’(1/e =n/10’, which is equivalent to model 3.
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figure from Constructio to define logarithms

Definition of logarithm

Descriptio. Ch.1. Def.6

Constructio 26

The Logarithme therefore of any sine is a number
very nearly expressing the line, which increased
equally in the mean time, whiles the line of the
whole sine decreased proportionally into that
sine, both motions being equal-timed, and
beginning equally swift.

As for example, Let the two figures going afore
bee here repeated, and let B bee moved always,
and every where with equal, or the same
swiftnesse wherewith b beganne to bee moved
in the beginning, when it was in a. Then in the
first moment let b proceed from Ato C, and in
the same time let b move proportionally from a
to ¢, the number defining or expressing AC shall
be the Logarithme of the line, or sine ¢Z. Then in
the second moment let B bee moved forward
from Cto D. And in the same moment or time let
b be moved proportionally from c to d, the
number defining AD, shall be the Logarithme of
the sine dZ. So in the third moment let B go
forward equally from D to E, and in the same
moment let b be moved forward proportionally
from d to e, the number expressing AE the
Logarithme of the sine eZ. Also in the fourth
moment, let B proceed to F, and b to f, the
number AF shall be the Logarithme of the sine
fZ. And keeping the same order continually

The logarithm of a given sine is that number
which has increased arithmetically with the same
velocity throughout as that with which radius
began to decrease geometrically, and in the
same time as radius has decreased to the given
sine.

Let the line TS be radius, and dS a given sine in
the same line; let g move geometrically from T to
d in certain determinate moments of time.
Again, let bi be another line, infinite towards i,
along which, from b let a move arithmetically
with the same velocity as g had at first when at
T; and from the fixed point b in the direction of i
let @ advance in just the same moments of time
up to the point c. The number measuring the line
bc is called the logarithm of the given sine dS.
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(according to the former definition) the number
of AG shall be the Logarithme of the sine gZ. AH
the Logarithme of the sine hZ. Al the Logarithme
of the sine iZ. AK the Logarithme of the sine kZ,
and so forth infinitely.

In the Descriptio definition of logarithms (definition 6) is immediately preceded (without comment) by Definition 5,
and in the Constructio, the definition of logarithms (26) is preceded by 25.

Descriptio, Ch.1, Definition 5 Constructio, from section 25

Seeing that there may be a slower and a swifter For we observe that a moving point is declared
motion given than any motion, it shall more or less swift, according as it is seen to be
necessarily follow, that there may be a motion borne over a greater or less space in equal times.
given of equal swiftness to any motion (which Hence the ratio of the spaces traversed is

we define to be neither swifter nor slower). necessarily the same as that of the velocities. But

the ratio of the spaces traversed in equal times,
T1,12,34,45 &c., is that of the distances TS, 18,
2S, 3S, 4S, &c.. Hence it follows that the ratio of
one to another of the distances of g from S is the
same as that of the velocities of g at the points T,
1, 2, 3, 4, &c., respectively.

To a modern reader, the Descriptio definition sounds like a version of an intermediate value theorem for velocities.
But for Aristotle, velocity was not a magnitude, since it was not a ratio of homogeneous entities. It was none the less
possible to compare velocities by comparing distances travelled over the same time interval, as for Achilles and the
tortoise. In the parallel statement in the Constructio, where the ratio of speeds is equated to the ratio of spaces
traversed, the velocities at T, 1, 2, 3,... in the last sentence are thus equal to the velocities over the segments T1, 12,
23, 34..., according to Napier’s statements in the preceding sentences. Napier reiterates the use of equal time
intervals for both progressions. Notice the repeated use of the phrase ‘certain determinate moments of time’ in the
two definitions of logarithm. This view of velocity gives no means of determining instantaneous velocity, and the
phrase ‘certain determinate moments of time’ would be superfluous if velocity were changing continuously. There
was some discussion of varying speed in the 14" century, but the thinking which led to the concept of acceleration,
comes in Galileo’s Discourses on Two New Sciences (1633-7).

My own preferred model for Napier’s definition of logarithm is in fig.1, said to have been used by Edmund Gunter
(1581-1626) a colleague of Briggs [Hutton, Mathematical tables, p.84] and later by Huygens.

fig.1 fig.2

10%7 \
y g yr

Nlog y Nlog
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In Figure 1, the arithmetic progression is along the horizontal axis and the geometric progression is along the vertical

axis. Napier invariably drew the two axes parallel. The ‘curve’ in figure 1 has been drawn with short straight line

segments, but this is not visually evident. In figure 2, a small part of the graph has been enlarged, according to

Napier’s statements about velocity in C.25.

At this point many commentators on Napier take the heading of Constructio 25 “A geometrically moving point

approaching a fixed one has its velocities proportionate to its distances from the fixed one.”(which implies that the

‘subtangent’ to this ‘curve’ is of constant length) and translate it into the differential equation dy/dx = -ky, ignoring

the subsequent explanation by Napier. The continuity of velocities is then implicit. There is indeed a problem with

Napier’s development for which continuity of velocities would provide one solution. The problem is that the four

geometric progressions which Napier uses to construct his three Tables, in C.16-20, namely with common ratios
10’(1-107)", 10’(1 — 10™)", 10’(1 — 1/2000)" and 10’(1 — 10°%)" are disjoint apart from their first terms, and table Il
(C.20) consists of products of terms from the last two progressions. How then may Napier apply properties of a

single geometric progression to all these different ones and their products, as he will do consistently from

Constructio 36 onwards? Constructio 36 states “The logarithms of similarly proportioned sines are equidifferent.”

Descriptio ch.2 Proposition 1

Constructio section 36

The Logarithmes of proportional numbers and quantities
are equally differing.

As for example. The Logarithmes of the proportionall
sines, namely cz which is to ez as hz is to kz are
respectively the numbers defining AC, AE, AH, AK, (as is
manifest by the 6 Definition.) Now AC and AE differ by
the difference CE, and AH and AK by the difference HK.
But by the first definition and his corollary CE and HK are
equal: therefore the Logarithmes of the foresaid
proportional sines are equally differing. And so in all
proportionals.

For what affections and symptoms the Logarithmes
have gotten in their first beginning and generation, the
same must they needs retaine and keepe afterwards.
But in their beginning and generation, they are indued
with this affection, and this law is prescribed unto
them, that they bee equally differing, when their sines
or quantities are proportionall (as it appeareth by the
definition of a Logarithme, and of both motions, and
shall hereafter more fully appeare in the making of the
Logarithmes). Therefore the Logarithmes of
proportional quantities are equally differing.

The logarithms of equally proportioned sines are
equidifferent.

This necessarily follows from the definitions of a
logarithm and of the two motions. For since by these
definitions arithmetical increase always the same
corresponds to geometrical decrease similarly
proportioned, of necessity we conclude that
equidifferent logarithms and their limits correspond to
similarly proportioned sines. As in the above example
from the First table [C. 32 and 33], since there is a like
proportion between 9999999.0000000 the first
proportion after radius, and 9999997.0000003 the third,
to that which is between 9999996.0000006 the fourth
and 9999994.0000015 the sixth ; therefore 1.00000005
the logarithm of the first differs from 3.00000015 the
logarithm of the third, by the same difference that
4.00000020 the logarithms of the fourth, differs from
6.00000030 the logarithm of the sixth proportional. Also
there is the same ratio of equality between of the
respective limits of the logarithms, namely as the
differences of the less among themselves, so also of the
greater amongst themselves, of which logarithms the
sines are similarly proportioned.

Napier’s justification of this in the Constructio (shown above) is by means of terms from the progression

107(1 - 107)" and their logarithms. How then may it be extended to all the numbers which appear in his

computations? Gibson in the Tercentenary Volume [pp115-6] says that Napier provided no proof. Moulton [pp15-16]

attributes to Napier a twinge of conscience, as he wrote the beginning of Descriptio chapter 2.

Moulton wrote [p.15-16]: It is interesting to mark how Napier treats this jump from discontinuity to

continuous motion. He does not pass, as Newton did in his Fluxions, though a course of reasoning as to

infinitesimal quantities. There is no reference to them in Napier’s work. He proves his principle by reference
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to discontinuous motion, and calmly uses it as applicable to continuous motion. But he gives evidence of a
certain twinge of conscience in so doing, for after demonstrating his proposition by appeal to repeated
operations, i.e. to discontinuous motion, he gives us this cryptic sentence [material above in bold] What a
sentence for a mathematician to write! It is worthy of a philosopher discussing the existence of the
Absolute! It means nothing more than that Napier saw that his work must be true of continuous motion if it
was true of all discontinuous motion, and that he was not going to be delayed in his great and practical task
by any metaphysical difficulties that he foresaw could not affect his results.

Napier never specified either the common ratio of his GP or the common difference of his AP. In C.21 he claimed
that a common ratio of 1 — 1/10’ gave small enough steps to approximate to the sines. But in Constructio 14 he listed
a chain of ratios of the form 1 — 10* and pointed out how the greater the value of k the smaller the effect of
multiplication by such a number. Napier’s calculations of logarithms involve at most seven places of decimals, and
therefore a common ratio of, say 1 — 10™*, would provide a geometric progression including, within his required
degree of accuracy, all the terms of the different progressions he was using, and their products. If this was Napier’s
understanding then the quotation which so amazed Moulton is a statement that a property, which is easy to check
with the first few terms of a geometric progression matched with an arithmetic progression (as in C.32), may be
claimed for terms far along the progression. Here Napier claims the central relationship between GPs and an AP.
This claim would have been easy to express with algebra.

Moulton was however right in part of his analysis. If Constructio 36 were assumed universally (not just for a
particular GP) then the graph as in figure 1 cannot contain any straight line segments. For if Nlog x and Nlog y are
known, C.37 implies that 2Nlog V(xy) = Nlog x + Nlog y, or Nlog \xy = %(Nlog x + Nlog y), whereas if in figure 1 the
section of the graph joining (Nlog x, x) to (Nlog y, y) were straight, we would have

Nlog %(x + y) = %(Nlog x + Nlog y). The two computations contradict one another since Vxy < %(x + y) when x # y. In
factif y = x(1 - 107), then %(x+y) - Vxy = (x/8)10™ so that, even so, the difference between discrete segments and
a smooth curve is in Napier’s terms ‘insensible’. Are there then in the Constructio any indications of continuity? Yes,
there is one, in C.30, where the double inequality of C.28 is applied to give 1 < Nlog 9999999 < 1.0000001. The
definition of logarithm in C.26, affirmed that movement along the GP line starts at the same speed as movement
along the AP line. A step by step change of speed along the GP line would imply that the first step along the GP line
(however small) was at the same speed as the speed on the AP line. This would suggest that the inequality obtained
in €.28, namely 10’ — y < Nlog y < (10’/y)(10” — y) should read 10’ — y < Nlog y < (10”/y)(10’ — y). In fact Napier
modified C.30 in C.31 where he affirmed 1 < Nlog 9999999 < 1.0000001. The stimulus for this, | believe, came from
his later computations. In €.39 and €.40, Napier generalised C.28 to obtain (x — y)/x < (Nlog y — Nlog x)/10’ < (x — y)/y
for x> y. When x and y were very close (and he only used the inequality when x and y were close) (x — y)/y could be
‘insensibly’ different from (x — y)/x, and then two simultaneous strict inequalities became contradictory, as in the
second example ofC.41. The initial equality of speeds along the GP and AP have not been forgotten however; in C.49
Napier affirmed that the first 87 Nlogsines in his table (down to sin 88°33’) could be found to the nearest integer by
taking Nlog y = 10’ — y, though he did not use this result consistently.

There is a further factor relating to continuity of velocities. Neither Briggs nor Kepler copied Napier’s construction of
logarithms, though Kepler obtained and used comparable inequalities. Kepler pointed out that there are numbers
(for example 8, 13, 18) which do not lie in any geometric progression but showed how repeated square roots may be
used to make a GP as dense as you may wish. Briggs used two methods, one of which involved constructing a
common ratio between 1 and 1 + 10

| have compared Napier’s tables with Nlog y = 10’In (10’/y) and with Nlog 10’(1 — 107)* = x. The difference between
the two models is less than 1 between sin 90° and sin 7%4°, with the first model slightly greater than the second.

6



Notes on Napier’s Logarithms by Robert Burn, U.Ex. UK. 2015.

Napier’s tables do not provide decisive evidence about whether one model is authentic. Napier’s logs are generally

(but not always) less than either of the models, and the difference appears to increase as the sines diminish. Model

2 uses exponents which do not appear in Napier and were in use from 1637. Model 1 uses both natural logarithms

and calculus which were further from Napier’s conceptions.

Appendix Summary of Constructio Those sections in D.E.Smith Source Book in Mathematics are labelled Sm.
Those sections in D.J.Struik Source Book in Mathematics 1200 — 1800 are labelled St. Numbers in bold refer to
earlier sections of the Constructio.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

[Sm,St] A logarithmic table “is picked out from numbers progressing in continuous proportion.”
[Sm,St] Arithmetical progressions (increasing); geometric progressions (increasing and decreasing)..
[St] Large numbers with “ciphers”. Greatest sine, sin 90° = 10,000,000.

[St] + 5. [St] Decimal fractions explained.

[St] May ignore fractions < 1.

Round up or down; no rule here. {surds, D. def.3}

Adding inequalities.

Multiplying inequalities.

. Subtraction of inequalities.

. Division of inequalities.

. Conversion of vulgar fractions to decimal inequalities.

. Construction of geometric progressions easy by subtraction of convenient fraction.

. eg ratios of 1-1/10, 1- 1/100, 1- 1/1000 etc

.Also 1-%, 1-1/20, 1 - 1/200, etc.

. [Sm,St] Table I. 101 terms of 10’(1 — 1/10°)" = 10’r" to seven places of decimals

. [Sm,St] Table II. 51 terms of 10’(1 — 1/10°)" to six places of decimals: note 10’(1 - 1/10°)

is close to 107(1 — 1/107)*.

[Sm]Table Il rectangular. First column 21 terms of 10’(1 — 1/2000)" to five places of decimals:

note 107(1 — 1/2000) is close to 107(1 - 1/10°)*.

[Sm,St] First row of table IlI. 69 terms of 10’(1 — 1/100)" to four places of decimals: note 10’(1 - 1/100)

is close to 10(1 — 1/2000)%.

[Sm,St] Complete table 11l with 107(1 — 1/2000)(1 — 1/100Y to four places of decimals. Last number in table 11|
107(1 - 1/2000)*(1 — 1/100)°® = 4998609.4034 < 107/2.

[Sm,St] Reiterates the four ratios used in the construction of the three tables. The ratio nearest to 1 is in the
first table, and the terms of that progression are at most 1 unit apart, so there is no need to work with a
geometric progression with smaller steps.

[Sm,St] Logarithms are needed for table IIl.

Arithmetical increase by equal distances in equal times or moments. {D.ch1, Def.1 + coroll}

Geometrical decrease by proportional parts in equal times. A point moving from T towards S geometrically
reaches points 1, 2, 3, 4 etc in equal times or moments. T1 =r.TS, 12 =r.1S, 23 =r.2S, etc. {D, def.2 + coroll,

p.3 top}
[St] Velocities on intervals T1, 12, 23, 34 etc in proportion to TS, 1S, 2S, 3S etc. So velocities are continued in

proportion to distances from S.[NB constant on each interval.]

[Sm,St] Logarithm defined: Geometric decrease on one line from T to S. Arithmetic increase on another line.
For d on TS, the logarithm of dS is the distance of arithmetic increase, during the same time (or moment) that
the geometric decrease takes place from T to d, where the two moving points start at the same speed.

7
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{D, def.6, exp on p5}

27. [Sm,St] Nlog TS = 0. {D, ch1, p6 conseq.}. TS = 10’. Also logs of nums greater than whole sine (TS) are

defective (negative).

28. [Sm,St] Since geometric speed is decreasing, Nlog x > 10’ —x. Now (10/x)10” > 10. And (107/x)10, 10, x

are in GP, so from (107/x)10’ to 10’ is travelled in the same time as 10’ to x, so (10’/x)10” - 10’ > Nlog x.

29. [Sm,St] 107 — x < Nlog x < (10”/x)(10” —=x) Theorem 1

30. [Sm,St] From 29, 1 < Nlog 999999 < 1 + 1/999999

31. [Sm,St] Nlog 999999 may be taken to be any number in [1, 1.0000001].

32. [Sm,St] In a geometric progression 10°7", if Nlog 10’r = a, then Nlog 107> = 2a, etc.

33. [St] From 30, 31 and 32, we may deduce bounds for the logarithms of all the terms in Table | down to 1071,

34. [St] Nlog x — Nlog 10” = Nlog x.

35. [St] Nlog x + (Nlog y — Nlog x) = Nlog y.

36. [Sm,partly St] If x/y = kx/ky, then Nlog x — Nlog y = Nlog kx — Nlog ky. [as if x, y, kx, ky all belong to the same

geometric progression, illustrated but not stated.] Result from 32. {D, ch.2, prop.1, similar illustration in words}

37.[St] 2 Nlog ar = Nlog a + Nlog ar?, from 36. {D, ch.2, prop.2, 3}

38. [Sm,St] Nlog a + Nlog ar® = Nlog ar + Nlog ar?, from 36. {D, ch.2. prop 4, 5, 6}

39. [Sm,St] Applying 29 to (107/x)y, we get 10’ — (10”/x)y < Nlog y — Nlog x < (x/y)(10” - (107/x)y)

40. [St] (x —y)/x < (Nlog y — Nlog x)/10” < (x—y)/y Theorem 2

41. Exs of 40. Especially x = 10’(1 — 1/107)'® and y = 10’(1 - 1/10°), with 33, to find bounds on Nlog y.

42. Use 41 to find bounds on all Nlogs in Table Il, down to 10’(1 — 10°)*°.

43. Use 40 and 42 to find Nlogs of sines (or bounds) within table II.

Especially x = 107(1 - 1/10°)*° and y = 10’(1 — 1/2000).

44. Use 40 and 43 to find bounds on Nlogs of first column of table IIl, especially 10”(1 — 1/2000)*

45. Use 40 and 44 to find bounds on Nlog 107(1 — 1/100).

46. Use 43 and 45 to find logarithms within bounds of seven decimal places to all numbers in table Ill.

Nlog 4998609.4034 = 6934250.8007528.

47. [Sm,St] Give all numbers in table Il (the radical table) to four decimal places and their logarithms to one
place of decimals. Pay attention to rounding up or down.

48. [Sm,St] Shall use radical table to construct full logarithmic table.

49. [St] From 28: If sin A > 9996700, then Nlog sin A = 10" —sin A to the nearest unit.

This is valid down to 88°33’, but Napier does not use it consistently.

50. [St] Use 40 to find Nlog sines lying within Radical table.

51. [Sm, St] Nlog sin A— Nlog 2 sin A = 6931469.22 for all A.

52. [Sm, St] Nlog sin A — Nlog 10 sin A = 23025842.34 for all A.

53. Values of Nlog sin A— Nlog k sin A, for k = 2, 4, 8, 10, 20, 40, 80, 100, 200, 400, 800, 1000, 2000, 4000, 8000,
10000, 20000, 40000, 80000, 100000, 200000, 400000, 800000, 1000000, 2000000, 4000000, 8000000,
10000000. Nlog sin A — Nlog 10’sin A = 161180896.38.

54. Find Nlog sines outside radical table. To find Nlog 378064. 378064 x 20 = 7561280.

By 50, Nlog 7561280 = 2795444.9. Add 29957311.56 (from k = 20, 53) to get Nlog 378064= 32752756.

55. [Sm, St] 107/2 : sin A/2 = cos A/2 : sin A.

56. [Sm, St] 2 Nlog sin 45° = Nlog sin 30°.

57. [Sm, St] Nlog sin 30° + Nlog sin A = Nlog sin A/2 + Nlog cos A/2. From 55 and 38.

58. If A >45°, and we know logs within radical table, then Nlog sin A/2 = Nlog sin 30° + Nlog sin A — Nlog cos A/2

(or Nlog sin (90° - A/2)). May thus obtain Nlog sin A for A > 22 %°. Then repeat method for A > 11%°. And so on.

59. [Sm, St] Prepare table as in Descriptio except with half the number of pages. Sines from Reinhold.

8
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60. Calculation of Nlog sin 2°10’ using 54 and 58 give different answers. Recommend starting again with more

digits.
Constructio 28 and 29 Theorem 1
P
Q
R A fig.3
B
10071077 ly C
107
y
S D
-Nlogy O Nlogy Nlog

AB < AC =AM = MR =RQ < PR, so0 10’ -y < Nlog y < 10’(10"/y) — 10" = (10"/y)(10” — y).

Constructio 39 and 40 Theorem 2

fig.4

1007

Nlog w Nlog x
@] - Nlog y Nlog

Choose w/10 = x/y. Then, using €.36, Nlog w = Nlog x — Nlog y. Apply figure 3 to w.
(v =x)/y < (Nlog x — Nlog y)/10’ < (y — x)/x.
Natural Logarithms ?

Various ways of relating Napier’s logarithms to natural logarithms have been proposed, and because areas under a
hyperbola are sufficiently flexible to model any system of logarithms it will always be possible to find such a
connection. The determination to expect such a connection was supported by the practice of referring to natural
logarithms as ‘Napierian’ which was common during the 19" and the first half of the 20" century. The most serious
fault in this regard appears in O.Toeplitz, The Calculus, a genetic approach (1963) where he has presumed that
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Napier’s logarithms were natural logarithms. However, in the second edition (1618) of Edward Wright’s English

translation of the Descriptio, a supplementary appendix is added near the beginning including the following table.

Sin. Logarith. Sin. Logarith. | Sine. Logarithme.
1 000000 100 | 4605168 | 10000 9210337
2 693146 200 | 5298314 | 20000 9803483
3 1096612 300 | 5703780 | 30000 10308949
4 1386294 400 | 5991462 | 40000 10596631
5 1609437 500 | 6214605 | 50000 10819774
6 1791758 600 | 6396925 | 60000 11002095
7 1945909 700 | 6551077 | 70000 11156246
8 2079441 800 | 6684609 | 80000 11289778
9 2197223 900 | 6802391 | 90000 11407560

10 2302584 1000 | 6907753 | 100000 11512921
20 2995730 2000 | 7600899 | 200000 12206067
30 3401196 3000 | 8006365 | 300000 12611533
40 3688878 4000 | 8294047 | 400000 12899215
50 3911021 5000 | 8517190 | 500000 13122358
60 4094342 6000 | 8699511 | 600000 13304679
70 4248493 7000 | 8853662 | 700000 13458830
80 4382025 8000 | 8987194 | 800000 13592362
90 4499807 9000 | 9104976 | 900000 13710144

The supplement ofthe table for tenth and
hundredth  parts

Sin. Logarith. Sin. Logarith. | Sine. Logarithme.
1.1 95311 1.7 530628 1.04 39222
1.2 182321 1.8 587786 1.05 48790
1.3 262364 1.9 641853 1.06 58269
1.4 336473 1.01 9951 1.07 67659
1.5 405465 1.02 19803 1.08 76962
1.6 470004 1.03 29560 1.09 86177

At an initial glance, the table looks remarkably like a table of natural logarithms. The structure of the table with sines
to the left of their related logarithms appears similar to that of Napier’s main tables in the Descriptio. However the
publication precedes that of the Constructio which came out the following year, with parts of which this table is
closely related. Many of the numbers given here match those of C.51, 52 and 53, which are deduced from Napier’s
universal property of logarithms: “The logarithms of equally proportioned sines are equidifferent.”, algebraically,
Nlog a — Nlog ka = Nlog b — Nlog kb. So the value of this expression does not depend on either a or b. So we may
determine the value with any choice of a. In the latin Descriptio, and in the Constructio, Nlog 10’ = 0. In the English
Descriptio (as here) Nlog 10° = 0. Putting b = 10°/k, we get Nlog b — Nlog kb = Nlog 10%/k. (*)

Now Nlog 10°%/jk = Nlog 10°/jk — Nlog 10%/k + (Nlog 10°/k — Nlog 10°) = Nlog 10°%/j + Nlog 10%/k.(**) This is the kind of
structure we expect with common logarithms, though modified for Napier’s. The heading ‘sine’ for the number
columns is misleading. If the logarithm is Nlog 10°/k, the ‘sine’ next to it is k.

This table is given under the heading: “To find out the Logarithm of any sine or number whatever by helpe of this
Table.” A worked example is provided.

To find Nlog 257. Finding Nlogs is easy if the number whose Nlog is required is near to sin 90°, from C.49.
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257 x 3000 = 771000. This is not large enough. Multiply this by 1.2.
771000 x 0.2 = 154200.
771000 + 154200 = 925200. Still not large enough. Multiply this by 1.08.
925200 x 0.08 = 74016
925200 + 74016 = 999216. This is big enough, and 999216 = 3888 x 257.
Now Nlog 257 — Nlog 999216 = Nlog 257 — Nlog 3888x257 = Nlog 10°/3888 (from *), so from (**)
= Nlog 10°/3000 + Nlog 10°/1.2 + Nlog 10°/1.08
Now Nlog 257 = Nlog 999216 + Nlog 10°/3000 + Nlog 10°/1.2 + Nlog 10°/1.08.
The first term here is 784 (from C.49) and the other three terms may be read off from the table:
8006365 + 182321 + 76962 = total 8266432.
It will now be clear that the purpose of this table is not to set up a new form of logarithms, but to find the
Nlogarithms of sines or numbers which do not appear in the table given in the Descriptio.

As said before, this appendix and table predate the publication of the Constructio, (though the author of this
appendix must have been familiar with the contents of the Constructio) where decimal points appear for the first
time. The decimal points in the table and working above, were inserted for clarity. | have also corrected a misprint by
writing 1.05 where 1.26 appears in the original.
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