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SECTION VI. 

Concerning the motion and resistance of simple pendulums. 
 

PROPOSITION XXIV. THEOREM XIX. 
 The quantities of matter in suspended bodies, the centres of oscillation of which are 
equidistant from the centre of suspension, are in a ratio compounded  from the ratio of the 
weights and in the square ratio of the times of the oscillations in a vacuum. 
 
[In this proposition and corollaries, the suspended bodies which are to be compared, are 
supposed to be oscillating on cycloidal arcs or on the arcs of exceedingly large circles. In 
addition, the acceleration of gravity is not assumed constant, but varies from place to 
place between the pendulums, and the force hence likewise on account of the gravitational 
forces differing, while the inertial masses in turn give rise to differing accelerations. 
(From an L. & J. note).  
 This section follows on from Section10, Book I, which the reader may wish to consult. 
We may also note here the use of the word funipendulus by Newton in describing what 
we call a simple pendulum, which is a made up Latin word, describing a body hanging 
from a rope or cord, and implied able to swing freely, or in this case for the cord to wrap 
around cycloidal cusps; the involute of the cycloid described being a similar inverted 
cycloid. A vertical cycloid arc supports simple harmonic motion of any amplitude for a 
particle travelling along such a curve under the influence of gravity, as can be worked out 
from the parametric equations of the curve, found in most older books on mechanics. (We 
note however, that the motion of a bead on a smooth wire of this shape has different 
boundary conditions from a pendulum swinging and suspended between the inverted arcs 
of a cycloid: as in the latter case the length of the pendulum is taken customarily as twice 
the diameter of the circle that generates the cycloid, so that the bob never comes into 
contact with the cycloid walls, only the string.) Thus the arc length is proportional to the 
(– ve) acceleration, and so to the force acting on the mass. These questions were taken up 
and solved analytically by Euler in Book II of his Mechanica, Chapter 3,  §545 – §601; 
see e.g. the translations by this writer. We will give here in addition, the partial analytic 
solutions of Brougham and Routh and from modern sources; the relevant notes of Leseur 
& Janquier are used occasionally to augment Newton's arguments.] 
 
 For the velocity, that a given force in a given material, can generate in a given time, is 
as the force and the time directly, and as the [quantity of] matter indirectly. So that the 
greater the force or the greater the time or the less the matter, from that a greater velocity 
will be generated. Because that is evident from the second law of motion. Now truly if  
the pendulums are of the same length, the motive forces in places at equal distances from 
the perpendicular are as the weights : and thus if two bodies describe equal arcs by 
oscillating, and these arcs may be divided into equal parts ; since the times in which the 
bodies describe the corresponding parts of arcs shall be as the times of the whole 
oscillations,  the velocities in turn, in the corresponding parts of the oscillations, shall be 
as the motive forces and the times of the whole oscillations directly, and inversely as the 
quantities of matter : and thus the quantities of matter are as the [motive] forces and the 
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times of oscillations directly and inversely as the velocities. But the velocities are 
inversely as the times, and thus the times directly and the velocities inversely together are 
as the squares of the times, and therefore the quantities of matter are as the motive forces 
and the squares of the times, that is, as the weights and the squares of the times. Q.E.D. 

[Thus, in an obvious notation, 
2

2
m w t
M W T
∝ × .] 

Corol. 1. Thus if the times shall be equal, the quantities of matter in the individual bodies 
shall be as the weights. 
Corol. 2. If the weight shall be equal, the quantities of matter shall be as the squares of the 
times. 
Corol. 3. If the quantities of matter shall be equal, the weights shall be inversely as the 
squares of the times. 
Corol.4. From which since the squares of the times, with all else being equal, shall be as 
the lengths of the pendulums, and if both the times and the quantities of matter are equal, 
the weights shall be as the lengths of the pendulums. 
Corol. 5. And generally, the quantity of matter of the pendulum is as the weight  and the 
square of the time directly, and inversely as the length of the pendulum. 
Corol. 6. But also in a non resisting medium, the quantity of matter in the pendulum is as 
the comparative weight, the square of the time directly, and the length of the pendulum 
inversely. For the comparative weight is the motive force of the body in some heavy 
medium, as I have explained above; and thus likewise performs in such a non-resisting 
medium as the absolute weight in a vacuum.  
Corol. 7. And hence an account may be clear both of comparing bodies between each 
other, as far as the quantity of matter in each, as well as comparing the weights of the 
same bodies in different places, and requiring an understanding of the variation of gravity. 
But with the most accurate experiments performed I have  always found that the quantity 
of matter in individual bodies are proportional to the weights of these. 
 

 
PROPOSITIO XXV. THEOREMA XX. 

 Bodies suspended as simple pendulums in which, with some medium present that 
resists in the ratio of instants of time, and suspended bodies which may be moving without 
resistance in a medium of the same specific gravity, complete oscillations on a cycloid in 
the same time, and describe proportional parts of the arcs in the same time. 
 
 Let AB be the arc of a cycloid, that the body D will 
describe by oscillating in some time in a non resisting 
medium. The same may be bisected in C, thus so that 
C shall be the lowest point of this ; and the 
accelerative force by which the body may be urged on 
if in some place D or d or E shall be as the length of 
the arc CD or Cd or CE. That force may be shown by 
the same arc, and since the resistance shall be as a moment of time [which is taken to 
mean that the resistance is constant], and it may be given thus, the same may be shown by 
the part CO of the given arc of the cycloid, and the arc Od may be taken in the ratio to the 
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arc CD that the arc CB has to the arc CB: and the force by which the body may be acted 
on at d in the resisting medium, since it shall be the excess of the force Cd over the 
resistance CO, may be shown by the arc CD, and thus it will be to the force, by which the 
body may be acted on in the medium without resistance at the place D, as the arc Od to 
the arc CD; and therefore also at the place B as the arc OB to the arc CB. Therefore if two 
bodies, D, d may depart from the place B, and may be acted on by these forces: since the 
forces from the beginning shall be as the arcs CB and OB, the first velocities and the first 
arc will be described in the same ratio. Let these arcs be BD and Bd, and the remaining 
arcs CD and Od will be in the same ratio. Hence the forces will remain proportional to 
CD and Od  themselves in the same ratio and from the 
start, and therefore the bodies may traverse the arcs to be 
likewise described in the same ratio. Therefore the forces 
and the velocities and the remaining arcs CD and Od will 
always be as the whole arcs CB and OB, and therefore 
these remaining arcs will be described likewise. Whereby 
the two bodies D and d will arrive at the places C and O 
at the same time, indeed the one at the place C in the non-
resisting medium, and the other at the place O in the resisting medium. But since the 
velocities at C and O shall be as the arcs CB and OB; these arcs, which the bodies 
likewise describe by going further, will be in the same ratio. Let these be CE and Oe. The 
force by which the body D may be retarded in the non-resisting medium at E is as CE, and 
the force by which the body d may be retarded in the resisting medium at e is as the sum 
of the force Ce, and of the resistance CO, that is as Oe; and thus the forces, by which the 
bodies may be retarded, are as the arcs CB and OB proportional to the arcs CE, Oe; and 
hence the velocities, retarded in that given ratio, remain in that same given ratio. 
Therefore the velocities and the arcs described by the same are always in that given ratio 
of the arcs CB and OB; and therefore if the whole arcs AB and aB may be taken in the 
same ratio, the bodies D and d likewise describe these arcs, and all the motion may be let 
go from the places A and a at the same time. Therefore all the oscillations are 
isochronous, and any parts of arcs BD and Bd, or BE and Be which are described at the 
same time shall be proportional to the whole arcs BA and Ba. Q.E.D. 
 
Corol. Therefore the most rapid motion does not fall on the lowest point C, but is found at 
that point O, by which the whole arc described aB may be bisected. And the body at once 
by progressing to a, may be retarded by the same steps by which before it was accelerated 
in its descent from aB to O.  
 
[This proposition follows at once from the isochronous nature of the oscillations, being 
independent of the amplitude; thus, the role of the resistance is merely to enable the 
system to pass through successive isochronous oscillations of diminishing amplitudes : on 
the assumption that there is no dependence of the time of oscillation on the resistance, 
which is certainly the case for damping of this kind.  
For a modern analysis; see, e.g. Chorlton, Textbook of Dynamics, p.96, V.N.:  Let l be 
twice the radius of the generating circle, s the arc length from C, v the velocity, and take 
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the mass of the particle as unity. Let 2
g
l f  be the constant resistance. We note that the 

intrinsic equation of the cycloid can be written as 2s l sinψ= , where ψ is the angle the 
tangent to the cycloid makes at this point, in the sense of increasing s. The motive force 

on the body can be written as ( ) ( )
22

2 22 2 2 or d s fg g gd s
l l ldt dt
s f s f−+ = = − −   ; this is the 

standard differential equation for S.H.M. about a point distant f  to the right of the lowest 

point, with the angular frequency 2
g
l , and we can immediately write down 

( ) ( )0 2
g
ls t s f cos t f= − + for the first half cycle of the motion starting from s0 and 

reaching the maximum tangential speed at f, where the attracting force becomes zero; 
however, when the particle comes to rest after completing the arc, the sign of the 

resistance changes, and a new equation can now be set up ( ) ( )
2

2 2
d s f g

ldt
s f+ = − +  for the 

other half of the swing, and solved for these conditions; the outcome being amplitudes of 
swings decreasing in an arithmetic progression, as an arc f is removed in each half swing 
while the frequency and hence the period of the oscillation is unchanged, as Newton has 
shown. B. & R. have incorrectly used l rather than 2l in their derivations.] 

 
 

PROPOSITION XXVI. THEOREM XXI. 
The oscillations of simple pendulums on a cycloid, which are resisted in the ratio of the 
velocities, are isochronous. 
 
 For if two bodies, at equal distances from the centre of suspension, by oscillating 
describe unequal arcs, and the velocities in the corresponding parts of the arcs shall be in 
turn as the total arcs ; the resistances proportional to the velocities, also in turn they will 
be as the same arcs. Hence if with the motive forces arising from gravity, which shall be 
as the same arcs, these resistances may be taken away or added on, the differences or the 
sums in turn will be in the same ratio of the arcs : and since the increments or decrements 
of the velocities shall be as these differences or sums, the velocities always will be as the 
whole arcs : Therefore the velocities, if in any case they shall be as the whole arcs, always 
will remain in the same ratio. But at the start of the motion, when the bodies begin to 
descend and to describe these whole arcs, the forces, since they shall be proportional to 
the arcs, will generate velocities proportional to the arcs. Therefore the velocities always 
will be as the whole arcs described, and therefore these arcs may be described in the same 
times. Q.E.D. 
[In this case analytically, the force equation can be written as 

2

2 22 0gd s ds
dt ldt

k s+ + = ; in the 

case of under damped motion, the particle oscillates with a reduced frequency, depending 
on the size of the damping coefficient k, and decays exponentially, or the amplitudes are 
in a geometric progression . Again, this is a standard equation that can be found in the 
appropriate texts.] 
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PROPOSITION XXVII. THEOREM XXII. 

 If for funicular bodies there is resistance in the square ratio of the velocities, the 
differences between the times of the oscillations in a resisting medium and the times of the 
oscillations in a non-resisting medium of the same specific gravity, will be nearly 
proportional to the arcs described. 
 
 For with equal pendulums in the resisting medium, unequal arcs A and B may be 
described ;  and the resistance of the body in the arc A to the resistance of the body in the 
corresponding arc B will be in the square ratio of the velocities, that is, as A2 to B2, as an 
approximation. If the resistance in the arc B should be to the resistance in the arc A as AB 
to A2 ; the times in the arcs A and B become equal, by the above Proposition. [As the 
resistances are again in the ratio of B to A.]  And thus the resistances A2 in the arc A, or 
AB in the arc B, brings about the excess of the time in the arc A above the time in the non-
resisting medium,  and the resistance B2 brings about an excess of the time in the arc B 
above the time in the non-resisting medium. But these excesses are as the effecting forces 
AB and BB as an approximation, that is, as the arcs A and B. Q.E.D. 
 
Corol 1. Hence from the times of the oscillations made, in the resisting medium, in 
unequal arcs,  the times of the oscillations are able to become known in the non-resisting 
medium of the same specific gravity. For the differences of the times will be to the excess 
of the time in the smaller arc above the time in the non-resisting medium, as the 
difference of the arcs to the minor arc. 
 
Corol. 2. The shorter oscillations are more isochronous, and the shortest may be carried 
out in the same times as in the non-resisting medium, approximately. Truly of these which 
are made in the greater arcs, the times then become a little greater, and therefore so that 
the resistance in the descent of the body in which time it may be produced, shall be 
greater for the ratio of the length to be described in the descent, than the resistance in the  
subsequent ascent in which the time is shortened. Moreover the time of the oscillations 
both of the shorter as well as of the longer may be seen never to be produced by the 
motion of the medium. For with the bodies slowed there is a little less resistance, for the 
ratio of the velocities, and with the accelerations a little more than from these which are 
progressing uniformly : and thus because the medium, from that motion it has acquired 
from the bodies, may be progressing in the same direction, in the first case is disturbed 
more, in the second less; and hence may agree more or less with the motion of the body. 
Therefore with descending pendulums the resistance will be greater, and in the ascent less 
than with the ratio of the velocities, and the time is increased from each cause. 
 
 
 
 
 
 
 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VI. 
Translated and Annotated by Ian Bruce.                                        Page 572 
PROPOSITION XXVIII. THEOREM XXIII. 

 If,  with a simple pendulum oscillating in the cycloid, it may be resisted in the ratio of 
the moments of time [i.e. constant resistive forces], the resistance of this to the force of 
gravity will be as the excess of the whole descending arc described over the whole 
ascending arc subsequently described, to the length of the pendulum doubled. 
 
 Let BC designate the descended arc described, Ca the 
ascended arc described, and Aa the difference of the arcs 
: and with the demonstrations and constructions which 
were put in place in Proposition XXV, the force will be, 
by which the oscillating body may be urged at some 
location  D, to the force of resistance as the arc CD to the 
arc CO, which is half of that difference Aa. And thus the 
force, by which the oscillating body may be acted on in 
the beginning or at highest point of the cycloid, that is, the force of gravity, will be to the 
resistance as the arc of the cycloid between the highest point of that and the lowest point  
C  to the arc CO; that is (if the arcs may be doubled): as the whole arc of the cycloid, or 
twice the length of the pendulum, to the arc Aa. Q. E. D. 
 

PROPOSITION XXIX. PROBLEM VI. 
 For a body put in place oscillating on a cycloid resisting in the square ratio of the 
velocity, to find the resistance at individual places. 
 
 Let Ba be the whole arc described in 
an oscillation, and let C be the lowest 
point of the cycloid, and CZ the half arc 
of the whole cycloid, equal to the 
length of the pendulum ; and the 
resistance may be sought at some place 
D. The indefinite right line OQ may be 
cut at the points O, S, P, Q, by that rule, 
so that (if the perpendiculars OK, ST, PI, QE  may be erected and with centre O and with 
the asymptotes  OK, OQ , the hyperbola TIGE may be described cutting the 
perpendiculars ST, PI, QE in T, I & E, and through the point I , KF  may be drawn parallel 
to the asymptote OQ meeting the asymptote OK in K, and the perpendiculars ST and QE 
in L and F), the hyperbolic area PIEQ to the hyperbolic area PITS shall be as the arc BC 
described by the descent of the body to the arc Ca described by the ascent, and the area 
IEF to the area ILT as OQ to OS. Then the hyperbolic area PINM may be cut by the 
perpendicular MN which shall be to the hyperbolic area PIEQ as the arc CZ to the arc BC 
described in the descent. And if the hyperbolic area PIGR may be cut by the perpendicular  
RG, which shall be to the area PIEQ as some arc CD to the arc BC described in the whole 
descent, the resistance at the point D to the force of gravity, shall be as the area  
OR
OQ IEF IGH× − to the area PINM. 
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 For since the forces arising from gravity by which the body may be acted on at the 
places Z, B, D, a, shall be as the arcs CZ, CB, CD, Ca, and these arcs shall be as the areas  
PINM, PIEQ, PIGR, PITS; then both the arcs as well as the forces may be represented by 
these areas respectively.  Let Dd above be as the minimum distance described in the 
descent of the body, and likewise there may be shown by the area RGgr taken as the 
minimum from the parallels RG, rg, and rg may be produced to h, so that GHhg and RGgr 
shall be the decrements of the areas IGH and PIGR during the same time. And the 
increment   or Rr Rr

OQ OQGHhg IEF , Rr HG IEF− × −  of the area  OR
OQ IEF IGH× − , will be 

to the decrement RGgr of the area PIGR, or  to  or Rr
OQOR HG IEF OR GR OP PI× − × × ,  

that is (on account of the equality of 
     OR HG, OR HR OR GR, ORHK OPIK , PIHR & PIGR IGH× × − × − + ),  

as  to OR
OQPIGR IGH IEF OPIK+ − × . Therefore if the area OR

OQ IEF IGH× − may be 

called Y, and the decrement RGgr of the area PIGR may be given, the increment of the 
area Y will be as PIGR–Y. 
 But if V may designate the force arising from gravity,  proportional to the arc CD 
described, by which the body may be acted on at V, and R may be put in place for the 
resistance;  V R−  will be the whole force by which the body is acted on at D. And thus 
the increment of the velocity is as V R−   and that small element of the time in which it 
has been made jointly.  But also the velocity itself shall be as the increment of the 
distance described directly and inversely to the same element of the time. From which , 
since the resistance by hypothesis shall be as the square of the velocity, the increment of 
the resistance, (by Lemma II) will be as the velocity and the increment of the velocity 
jointly, that is, as the moment of the distance and V R−  together ; and thus, if the moment 
of the distance may be given, as V R− ; that is, if for a given force V it may be expressed 
by writing PIGR, and the resistance R may be expressed by some other area Z, as 
PIGR Z− . 
 Therefore the area PIGR uniformly decreasing by the removal of the given moments, 
the areas Y increase in the ratio PIGR Y− , and the area Z in the ratio PIGR Z− . And 
therefore if the areas Y and Z may be taken together and they shall be equal from the 
beginning, these by the addition of equal moments will be able to go on equal, and 
likewise from the equal moments at once the decreases vanish together. And in turn, if 
they both begin and vanish together, they will have equal moments and they will always 
be equal: hence that is the case because if the resistance Z may be increased, the velocity 
together with the that arc Ca, which will be described in the ascent of the arc, will be 
diminished, and at the point at which all the motion together with the resistance may 
cease by approaching closer to the point C, the resistance may vanish more rapidly than 
the area Y. And conversely it will arise when the resistance is diminished. 
 Now truly the  area Z begins and is definite when the resistance is zero, that is, in the 
first place the motion of the arc CD may be equal to the motion of the arc CB everywhere 
and the right line RG begins on the right line QE, & in the end the motion everywhere of 
the arc CD may be equal to the arc Ca and RG falls on the right line ST. And the area Y or 
OR
OQ IEF IGH× − begins and is defined where it is zero, and thus  and OR

OQ IEF IGH×  are  
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equal everywhere : that is (by the construction) where the right line RG successively 
begins on the right lines QE and ST. And hence these areas begin and vanish together, and 
therefore they are always equal. Therefore the area OR

OQ IEF IGH× −  is equal to the area  

Z, by which the resistance is expressed, and therefore it is to that area PINM through 
which gravity is expressed, as the resistance to the weight. Q.E.D. 
 
Corol. I. Therefore the resistance at the lowest place C is to the force of gravity, as the  
area OP

OQ IEF× to the area PINM. 

 
Corol: 2. But the maximum shall come about, when the area PIHR is to the area  IEF as 
OR to OQ. For in that case the moment of this (without doubt PIGR Y− ) becomes zero.  
 
Corol. 3. Hence also the velocity at individual places may become known, clearly which 
is in the square root ratio of the resistance, and the motion from the beginning itself may 
be equal to the velocity of the body on the same cycloid without resistance of oscillation. 
 Subsequently, on account of the difficult calculation by which the resistance and the 
velocity are required to be found by this proposition, it has been considered to attach the 
following proposition.  
 
[It is convenient to give here the Brougham & Routh derivation, starting from 

2 2dv
dsv s kvω= − −  in an obvious notation, where  2

2
g
lω = ; initially the particle is moving 

in the direction of the increasing arc; when it returns, the damping factor must change 
sign. B & R point out that the displacement cannot be written finitely as a function of 
time; however, it is possible to find the velocity of the particle at any point on the arc 
using an integrating factor. Put the equation in the form :  
 

2 22 2 2 2 2 2 22 2  or  2 2ks ks ksdv dv
ds dskv s e ke v e sω ω+ = − + = − , giving  

( )2 2
2 2 2 2 2 22  or  2

ksd v e ks ks ks
ds e s v e e sdsω ω= − = − ∫ , which in turn gives : 

2 2 22 2 2 2 2 2 1
22

ksks ks ks ks e
k k kv e e sds e s e ds C sω ωω ⎡ ⎤ ⎡ ⎤= − = − − = − −⎣ ⎦⎣ ⎦∫ ∫ . The constant C may 

be found by putting 
2

2
2

2
 when 0; in which case 

k
v V s C V ω= = = − ; if the damping is 

small, this finite expression can be expanded out approximately. These writers dismiss 
Newton's geometrical solution for the velocity as,  ' of no value except as a matter of 
curiosity'. We follow on with B. & R.'s analysis for deducing the law of the resistance 
from experiments with a pendulum, before examining Newton's general formulation of 
the problem in the next two propositions, for a small disturbance produced in the 
oscillation of any kind whatever. 
 Let the quantities s, t, ω , etc., have the same meaning as before, and let  f  be some 
small disturbance acting along the tangent of the motion of the particle. The equation of 
motion will then be, on adapting the original terminology slightly to more modern :  
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2

2
2d s

dt
s f .ω+ =  

If 0f = , the motion will be given by ( ) ( ); s Asin t v A cos tω ϕ ω ω ϕ= + = +  ; we assume 
that these are the equations of motion when f is not zero, and in which case A and ϕ  are 
functions of the time t (Camb. Phil. Trans. 1826), were the second equation is the 
differential of the first:  ( ) ( )( ) ( )ddA

dt dtsin t Acos t A cos tϕω ϕ ω ϕ ω ω ω ϕ+ + + + = + ; or  

 
( ) ( ) 0ddA

dt dtsin t Acos t ϕω ϕ ω ϕ+ + + = ; 
 
and since these equations satisfy the original equation of motion, we have 

( ) ( ) ( ) ( )2 2 or ddv dA
dt dt dts f , cos t A sin t Asin t fϕω ω ω ϕ ω ω ω ϕ ω ω ϕ+ = + − + + + + = ; 

leading to :  
( ) ( )d fdA

dt dtcos t A sin tϕ
ωω ϕ ω ϕ+ − + = .  

 
Solving these equations, we have : 
  

( ) ( ) and f d fdA
dt dt A.cos t .sin tϕ

ω ωω ϕ ω ϕ= + = − + ] 
 
These equations, when solved, will give the changes in the arc and the time, produced by 
the cause f.  
 If f is very small, then so are the variations of the amplitude A and of the phase ϕ , and 

so can be ignored when multiplied by f, as quantities proportional to 2f arise. Hence, if A' 
and ϕ ' are the new values of A and ϕ ,  
 

( ) ( )1 1  and  AA' A f cos t dt ' f sin t dtω ωω ϕ ϕ ϕ ω ϕ− = + − = − +∫ ∫ ; 

from which we learn that if f consists of two disturbing causes, the total disturbance will 
be equal almost to the sum of the two disturbances separately. 
 Suppose that mf kv= , i.e. the resistance is proportional to the mth power of the 
velocity, then the velocity in moving from the lowest point is :   

 
( ) ( ) and hence m m mv A cos t f kA cos tω ω ϕ ω ω ϕ= + = + ;  

 
on substituting in the above integrals, and integrating between the limits 

2 2 and t tπ πω ϕ ω ϕ+ = − + = , we have  
( )( )

( )( )( )
2 4 ...2

1 1 3 ....... , and  0m m mm m
m m mA' A k . A 'α ω ϕ ϕ− −−
+ − −

− = − − =  

 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VI. 
Translated and Annotated by Ian Bruce.                                        Page 576 

where  if  is odd, and 2 if  is even.  m mα π α= = Hence on ignoring second order 
quantities, since the phase is preserved, the time of the oscillations is unchanged, and the 
arcs decrease continually, and the difference between the arc described in the descent and 
that described on the subsequent ascent will be proportional to the same power of the arc 
that expresses the power of the velocity for the velocity, all else being unchanged. Thus 
the law governing the resistance can be found.] 
  

 
PROPOSITION XXX. THEOREM XXIV. 

 If the right line aB shall be equal to the arc of the cycloid that the body will describe by 
oscillating, and at the individual points of this D the perpendiculars DK may be erected, 
which shall be to the length of the pendulum as the resistance of the body at the 
corresponding points of the arc to the force of gravity : I say that the difference between 
the arc described in the whole descent and the arc described in the subsequent whole 
ascent multiplied by the half sum of the same arcs, will be equal to the area BKa occupied 
by all the perpendiculars DK. 
 
 For both the arc of the cycloid may be expressed in a whole oscillation, described by 
that right line itself equal to aB, as well as the arc which may be described in a vacuum by 
the length AB. AB may be bisected in C, and the point C will represent the lowest point of 
the cycloid, and CD will be the force 
arising from gravity, by which the 
body at D may be urged along the 
tangent to the cycloid, and it will have 
that ratio to the length of the pendulum 
that the force at D had to the force of 
gravity. Therefore that force may be 
expressed by the [arc] length CD, and 
the force of gravity expressed by the 
length of the pendulum, and if DK may be taken on DE, in that ratio to the length of the 
pendulum that the resistance has to the weight, DK will be expressing the resistance.  
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[It is convenient to interrupt Newton's discourse here, by noting that the intrinsic equation 
of the inverted cycloid is 4s a sinψ= , where ψ  is the tangent angle to the horizontal at 

the point P in question where the bob is present, and at this point the force along the 
tangent is 4

mgs
amg sinψ = , where 4a is the length of the pendulum and also the length of 

the complete arc of the cycloid, where the generating circle has radius a. Thus the force 
along the tangent at this point to the force of gravity is as the arc length to the length of 
the pendulum, as stated by Newton. In turn, the resistance f is to mg as the arc DE is to the 
whole arc 4a. Thus as above, all the tangential forces are represented by corresponding 
arcs, while the tangential velocity at this point is 4s a cosψ ψ= . In the diagram below, the 
radii CA  and CB are of length 4a, and ratios are taken for which the quantity ψ  is the 
same for the damped and undamped cases.] 
 
The semicircle BEeA may be put in place with centre C and with the radius CA or CB. 
Moreover, the body may describe the distance Dd in a minimum time, and with the 
perpendiculars DE and de erected, meeting 
the circumference at E and e, these will be 
as the velocities which the body in a 
vacuum, by descending from the point B, 
may acquire at the places D and d. This is 
apparent  (by Prop. LII. Book I.) And thus 
these velocities may be expressed by these 
perpendiculars DE and de; and the velocity 
DF as that acquired at D by [the body] 
falling from  B in the resisting medium. 
And if, with centre C and with radius CF, a circle FfM may be described crossing the 
right lines de and AB at  f and M,  M will be the place to which it would ascend henceforth 
without further resistance, and df  the velocity that it may acquire at d. From which also if 
Fg may indicate the moment of the velocity that the body D, by describing the distance 
taken as minimum Dd, loses from the resistance of the medium ; and CN may be taken 
equal to Cg: N will be the place to which the body henceforth would ascend without 
resistance, and MN will be the decrease in the ascent arising from the loss of that velocity. 
The perpendicular Fm may be sent to df, and the decrement Fg of the velocity DF arising 
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from the resistance DK, will be to the increment of this same velocity fm arising from the 
force CD, as the generating force DK to the generated force CD. But also on account of 
the similar triangles Fmf, Fhg, FDC:  fm is to Fm or  Dd as CD is to DF ; and from the 
equality, Fg is to Dd as DK to DF . Likewise Fh is to Fg as  DF to CF; and from the 
rearranged equation, Fh or MN to Dd is as DK to CF or CM; and thus the sum of all the 
terms MN CM×  will be equal to the sum of all the terms Dd DK× . At the moveable 
point M a rectangular coordinate may always be understood to be erected equal to the 
indeterminate CM, which may be drawn by a continued motion along the whole length 
Aa; and the  trapezium described by that motion or equal to this rectangle 1

2Aa aB× will 
be equal to the sum of all the products MN CM× , and thus to the sum of all Dd DK× , 
that is, to the area BKVTa. Q.E.D. 
 
 
[We see now that Newton's diagram above considers the arc length lost due to the friction 
in a half cycle: in the one hand it is the sum of all the decrements of the arc given by the 

sum of Dd DK× , and on the other 
hand it is the difference of the initial 
and final arcs in the half oscillation, 
given by the sum of MN CM× . We 
return now to B. & R., who give a 
simple explanation of the final 

formulas produced by Newton geometrically in the following corollary :  Let the straight 
line aB be drawn equal to the arc of the cycloid described by the oscillating body, and at 
each point D draw the perpendicular DK equal to the fraction 2

1
ω

 of the resistance at D. 

Let 0 1 and a a be the arcs described in the descent and subsequent ascent , then the area 

under the curve aKB is ( ) 1 0+ 
1 0 2 a aa a− . This can be proven readily, for the equation of 

motion is 2dv
dsv s f ,ω+ =  for some resistance f; and we have  

1
1

0
0

2 2 2 2 then on integrating, 2 ds 
a

adv
ds a

a

v s R, v s fω ω
+

+

−
−

⎡ ⎤+ = + =⎣ ⎦ ∫ . Now, at the limits of 

integration, the speed v is zero, and hence ( )
1

0

2 2 2
1 0 2

a

a

a a fdsω
+

−

− = ∫ , or ( )
1

2

0

2 21
1 02

a
fds

a

a a
ω

+

−

− = ∫  

as required.  
 We have now to find the nature of the resistance that describes the curve aKB. As 
previously, we have ( ) ( ) and  s Asin t v A cos tω ϕ ω ω ϕ= + = + . Now, if y is the ordinate 

and the resistance is of the form mkv , then DK or y becomes equal to 
( ) ( )2

2m m m m m mky A cos t kA cos t
ω

ω ω ϕ ω ω ϕ−= + = + , while the distance x from the 

initial geometric centre + half the differences of the ascending and descending arcs, 1 0
2

a a− , 
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gives an average location about which the oscillation takes place : thus, at least 
approximately, ( )1 0

2
a ax Asin tω ϕ−+ = + . 

 Now, if the resistance varies as the velocity, then ( )1 0
2

a ax Asin tω ϕ−+ = + and 

( )ky Acos tω ω ϕ= + , and on eliminating t, we have approximately, 

( ) ( )1 0
2 2 2

2
a a y

kx Aω−+ + = , which is the equation of an ellipse, if we consider A as being 

time independent. (There is a misprint in the original equation here.) 
 Again, if the resistance varies with the velocity squared, we have 

( )1 0
2

a ax Asin tω ϕ−+ = + as before, while ( )2 2y kA cos tω ϕ= + , and on eliminating t, we 

have : ( )1 0
2 2

2
a a y

kx A−+ + = , which is the equation of a parabola, again on treating A as 

constant. ] 
  
Corol. Hence from the law of the resistance and the difference of the arcs Ca and CB the 
difference Aa can always be deduced for the proportion of the resistance to the weight 
approximately.  
 For if the resistance DK shall be uniform, the rectangular figure BKTa will be under Ba 
and  DK; and thence the rectangle under 1

2 Ba  and Aa will be equal to the rectangle under  

Ba and DK, and DK will be equal to 1
2 Aa . Whereby since DK shall be expressing the 

resistance, and the length of the pendulum an expression of the weight, the resistance to 
the weight will be as 1

2 Aa  to the length of the pendulum ; everything has been shown as 
in Prop. XXVIII. 
 If the resistance shall be as the velocity, the figure BKTa  will approximate to an 
ellipse. For if the body, in the non-resisting medium, may describe by oscillating the 
whole length BA, the velocity at some place D may be as the applied ordinate DE of the 
circle with diameter AB. Therefore with Ba in the resisting medium, and BA in the non 
resisting medium, they may be described in around equal times ; and thus the velocities at 
the individual points of Ba, shall be approximately to the velocities at the corresponding 
points of the length BA, as Ba is to BA; the velocity at the point D in the resisting medium  
will be as the applied ordinate Ba of the circle or ellipse described on the diameter ; and 
thus the figure BKVTa  will be approximately an ellipse. Since the resistance may be 
supposed proportional to the velocity,  OV shall be an expression of the resistance at the 
middle point O;  and the ellipse BRVSa, with centre O, described with semi-axes  OB and 
OV, and the figure BKVTa, equal to the rectangle Aa BO× , will be approximately equal. 
Therefore Aa BO× is to OV BO× as the area of this ellipse to OV BO× : that is, Aa to OV 
as the area of the semicircle to the square of the radius, or approximately as 11 to 7: And 
therefore 7

11 Aa  shall be to the length of the pendulum as the resistance of the oscillating 
body at O to the weight of the same. 
 But if the resistance DK shall be in the square ratio of the velocity, the figure BKVTa 
will be nearly a parabola having the vertex V and the axis OV, and thus will be 
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approximately equal to the rectangle under 2
3 Ba  and OV. Therefore  the rectangle under  

1
2 Ba  and Aa is equal to the rectangle under 2

3 Ba  and OV, and thus OV equals 1
4 Aa : and 

therefore the resistance of the oscillating body at O to the weight of this is as 3
4 Aa  to the 

length of the pendulum. And I think that these conclusions have been taken care of  
abundantly enough in practical matters. For since the ellipse or parabola BRVSa may 
agree with the figure BKVTa at the mid-point V,  this if either the part BRV or VSa 
exceeds that figure, it will be deficient from that figure by the same for the other part, and 
thus it will be approximately equal to the same. 
 
 

PROPOSITION XXXI. THEOREM XXV. 
 If the resistance in the individual proportional parts of the arcs of an oscillating body 
described may be augmented or diminished in a given ratio ; the difference between the 
arc described in the descent and the arc subsequently described in the ascent, will be 
increased or diminished in the same ratio. 
 
 For that difference arises from the retardation of the pendulum by the resistance of the 
medium, and thus is proportional to that retarding resistance. In the above proposition the 
rectangle under the right line 1

2 aB  and the difference Aa of these arcs CB and Ca was 
equal to the area BKTa. And that area, if the length aB may remain, may be increased or 
decreased in the ratio of the applied ordinates DK [i.e. the y ordinate]; that is, in the ratio 
of the resistance, and thus is as the length aB and the resistance jointly. And hence the 
rectangle under Aa and 1

2 aB  is as aB and the resistance jointly, and therefore Aa is as the 
resistance. Q.E.D. 
 
Corol. I. From which if the resistance shall be as the velocity, the difference of the arcs in 
the same medium will be as the total arc described , and conversely. 
 
Corol. 2. If the resistance shall be in the square ratio of the velocity, that difference will 
be in the square ratio of the whole arc, and conversely. 
 
Corol. 3. And generally, if the resistance shall be in the cubic or some other power of the 
velocity, the difference will be in that same ratio of the total arc, and conversely. 
 
Corol. 4. And if the resistance shall be partially in the simple ratio of the velocity, and 
partially in the same square ratio, the difference will be partially in the ratio of the whole 
arc and partially in the ratio of the whole arc squared, and conversely. The law will be the 
same both for the ratio of the resistance for the velocity, and which is also the law of that 
difference for the length of the arc. 
 
Corol. 5. And thus if  with a pendulum successively describing unequal arcs, the ratio of 
the increment or decrement of this difference for the length of the described arc can be 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VI. 
Translated and Annotated by Ian Bruce.                                        Page 581 

found and also the ratio may be come upon of the increment and decrement of the 
resistance for a larger or smaller velocity. 
 

General Scholium. 
 From these Propositions, through the oscillations of pendulums in mediums of any 
kinds, it is permitted to find the resistance of the mediums. Indeed I have investigated the 
resistance of the air by the following experiments. A wooden sphere weighing  7

2257  

ounces Avoirdupois, made with a diameter of 7
86  London inches, I have hung from a 

hook securely enough by a thin thread, thus so that between the hook and the centre of 
oscillation of the sphere should be 1

210 feet. I noted a point on the thread ten feet and one 
inch distance from the centre of suspension, and in the region of that point I have put in 
place a ruler separated into inches, with the aid of which I could observe the lengths of the 
arcs described by the pendulum. Then I have counted the oscillations in which the sphere 
lost an eighth part of its motion. If the pendulum may be drawn away from the 
perpendicular to a distance of two inches, and then it may be sent off, thus so that in its 
whole descent it may describe an arc of two inches, and in the first whole oscillation, 
composed from the descent and the subsequent ascent, an arc of almost four inches : the 
same lost an eighth part of its motion in 164 oscillations, thus so that in its final ascent it 
described an arc of one and three quarter inches. If the first arc described an arc of four 
inches;  it lost an eighth part of the motion in 121 oscillations, thus so that in the final 
ascent it described an arc of 1

23  inches. If the first descent described an arc of eight, 
sixteen, thirty two or of sixty four inches , then an eighth part of the motion was lost in  

1 1 2
2 2 369 35 18 , 9, , , oscillations respectively. Therefore the difference between the first arc 

descended and the final arc ascended, in the first, second, third, forth, fifth and sixth case 
was of 1 1

4 2 1 2 4 8, , , , , inches respectively. These differences may be divided in each case by 
the number of oscillations, and into one mean oscillation, by which the arc of 

1 1
4 23 , 7 ,15 30 60 120, , ,  inches were described, the difference of the arcs described in the 

descent and subsequent ascent [i.e. the difference in the amplitude per half oscillation in 
modern terms] will be 81 1 1 4 24

656 242 69 71 37 29, , , , ,  parts of an inch respectively. But these are 
approximately in the square ratio of the arcs described in the larger oscillations, truly in 
the smaller a little greater than in this ratio ; and therefore (by Corol. 2. Prop. XXXI. of 
this book) the resistance of the sphere, when it may be moving faster, is in the square ratio 
of the velocity as an approximation; when it moves slower, a little greater than in this 
ratio.  
 Now V may designate the maximum velocity in some oscillation, and let A, B, C be 
given quantities, and we may suppose that the difference of the arcs shall be  

3
2 2AV BV CV+ + . Since the maximum velocities in the cycloid shall be as half of the arcs 

described in the oscillation, truly in the circle as half chords of these arcs, and thus with 
equal arcs the velocities shall be greater in the cycloid than in the circle, in the ratio of 
half the arcs to the same chords ; but the times in the circle shall be greater than in the 
cycloid in the inverse ratio of the velocity, it is apparent the differences of the arcs (which 
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are as the resistance and the square of the time jointly) to be approximately the same, in 
each curve : for these differences must be increased in the cycloid, together with the 
resistance, in around the square ratio of the arc to the chord, on account of the velocity 
increased in that simple ratio ; and to be diminished, together with the square of the time, 
in the same square ratio. And thus so that it comes about by reduction to the cycloid, that 
the same differences of the arcs are required to be taken which were observed in the 
circle, indeed the greatest velocities are required to be put in place analogous either with 
the halve or whole arcs, that is to the numbers 1

2 1  2  4  8 16, , , , , .  Therefore we may write in 
the second, fourth and sixth case the numbers 1, 4 and 16 for V; and in the second case 

there will be produced the difference of the arcs  
1
2

121 A B C= + + ;  1
2

2
35 4 8 16A B C= + +  

in the fourth case ; and 2
3

8
9 16  64 256 A B C= + +  in the sixth case. And from these 

equations, by placing together and reducing analytically, there shall be  
0 0000916  0 0010847   0 0029558A , , B , , & C ,= = = . Therefore the difference of the arcs 

is as 
3
2 20 0000916 0 0010847 0 0029558, V , V , V+ +  ; and therefore since (by the corollary 

of Proposition XXX applied to this case) the resistance of the sphere in the average arc 
described in the oscillation, where the velocity is V, shall be to the weight of this as  

3
2 27 7 3

11 10 4AV BV CV+ +  to the length of the pendulum ;  
[for this theorem asserts that at any point in the oscillation, the resistive force f shall be to 
the weight of the bob mg as the ordinate DK to the length of the pendulum l : fDK

l mg= ; 

we have shown above that the area under the curve is  ( ) 1 0+ 
1 0 2 a aa a− ; and for the case of 

an approximate ellipse, half the area of such an ellipse is 11
2 7
ab abπ , where the semi-

minor axis b is the maximum resistance fm , and the semi-major axis a is 2
aB ; hence 

( ) ( ) ( )1 0 1 0+ + 7 7 711
1 0 1 0 1 02 7 2 11 11 11  or   a a a aaB

m m aBa a f f a a a a AV− − = − = ; Newton gives 
a similar argument in the corollary above for the elliptic case and also for the parabolic 
case depending on the square of the velocity, while the middle term is an approximate 
average of both cases.]  
 
 If the numbers found may be written with A, B and C, the resistance of the sphere to its 
weight becomes as 

3
2 20 0000583 0 0007593  0 0022169, V , V , V+ + to the length of the 

pendulum between the centre of suspension and the ruler, that is, to 121 inches. From 
which since V may be appointed equal to 1 in the second case, 4 in the fourth, and 16 in 
the sixth: the resistance will be to the weight in the second case as 0,0030345  to 121, in 
the fourth as 0,041748 to 121, and in the sixth as 0,61705 to 121. 
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 The arc that the noted point on the string described in the sixth case was  
2
3

8 5
299120  or 119−  inches. And therefore since the radius must be 121 inches, and the 

length of the pendulum between the point of suspension and the centre of the sphere must 
be 126 inches, the arc that the centre of sphere described was 3

31124 inches. Because the 
maximum velocity of the body, on account of the resistance of the air, does not fall on the 
lowest point of the arc described, but is situated almost at the centre of the arc : this 
motion will be almost the same if the sphere described the half arc of 3

6262 inches in a 
non-resisting in the whole descent in a cycloid, to which we have reduced the motion of 
the pendulum above: and therefore the velocity will be equal to that velocity that the 
sphere may acquire, by falling perpendicularly, and in that case describing an arc equal to 
the versed sine of that height.  
 
[Note from L. & J. : The body by 
oscillating may describe the arc Ba in the 
resisting medium, and the arc BA in the 
non-resisting medium; let C be the lowest 
point of the cycloid; O, the midpoint of the 
arc Ba; and the arc CD shall be equal to the 
arc BO :  the maximum velocity acquired in 
the descent of the body in the resisting 
medium in the arc BO is to the maximum 
velocity acquired in the arc BC in the 
resisting medium as the arc BO, to the arc 
BC. But if the body by falling from the 
location D in the non-resisting medium may describe the arc DC, also its velocity at C 
acquired by the descent through the arc DC, in the same place in the descent through the 
arc BC will be as the arc CD, or equally, BO, to the arc BC. Therefore the velocity in the 
resisting medium acquired by the resisting medium at O is equal to the velocity that the 
body falling in the non-resisting medium by the arc DC BO= may have at C; and 
therefore that velocity is equal to that velocity that the body may be able to acquire by 
falling perpendicularly in the non-resisting medium, and in that case by describing its own 
height FC equal to the versed sine of the arc CH.  Now P shall be the point of suspension, 
PC the length of the pendulum; SDC the half cycloid; SG and DF normals to PC, and 
CHGC the circle with the diameter GC described cutting the secant DF in H. The chord 
CH may be joined, and the arc of the cycloid 2 2SD GC CH= − , and the arc 2SG GC=  
and thus the arc 2DC CH= . But moreover, from the nature of the circle, 

( )
2
4 22 or  and  hence  or CF CH CF CH DC

CH CG CG PCCH DC ,= =  ; that is, the versed sine CF is to the arc 

CD, as the same arc to double the length of the pendulum.] 
 But that versed sine in the cycloid is to the arc itself 3

6262  as the same arc to a length 
double the length of the pendulum 252, and therefore equal to 15,278 inches. Whereby  
that velocity is what a body itself may be able to acquire, and in its own case  by falling 
through a distance of 15,278 inches. Therefore with such a velocity the sphere is subject 
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to a resistance, which shall be to its weight as 0,61705 to 121, or (if that part of the 
resistance only may be considered which is as the square ratio of the velocity) as 0,56752 
to 121. 
 But I have found by a hydrostatic experiment that the weight of this wooden sphere to 
be equal to a water sphere of the same size as 55 to 97: and therefore since 121 shall be in 
the same ratio to 213,4, the resistance of the prepared sphere with the velocity of 
progression to the weight itself is as 0,56752 to 213,4 that is, as 1 to 1

50376 . From which 
since the weight of the water sphere, in which time the sphere continued uniformly with 
the velocity may describe a length of 30,556 inches, may be able to generate all that 
velocity by the sphere falling, it is evident that the force of the resistance continued 
uniformly in the same time may be able to remove a velocity in the smaller ratio 1 to 

1
50376 , that is, the part 1

50

1
376 of the whole velocity. And therefore in which time the 

sphere, with that uniform velocity continued, may be able to describe a length of half its 
own diameter, or of 1

163 inches, and it may lose the 1
3542  part of its motion. 

 I was also counting the number of oscillations in which the pendulum lost the fourth 
part of its motion. In the following table the top numbers indicate the lengths of the arcs 
described in the first arc, expressed in inches and parts of inches : the middle numbers 
indicate the length of the arc described in the final ascent ; and at the lowest level stand 
the number of oscillations. I have described the experiment as more accurate than in 
which only the eighth part was lost. Anyone who wishes may test the calculation. 
 

First descent  2 4 8 16 32 64 
Final ascent   1

21  3 6 12 24 48 
Number of osc. 374 272 1

2162 1
283 2

341 2
322  

 
 
 Later I suspended a leaden sphere with a diameter of 2 inches, and with a weight of  

1
426  ounces Avoirdupois by the same thread, thus so that the interval between the centre 

of the sphere and the point of suspension should be 1
210 , and I counted the number of 

oscillations in which a given part of the motion was lost. The beginning of the following 
tables shows the number of oscillations in which an eighth part of the whole motion had 
ceased; the second the number of oscillations in which a quarter part of the same 
oscillations had been lost. 
  

First descent  1 2 4 8 16 32 64 
Final ascent   7

8  7
4  1

23  7 14 28 56 
Number of osc. 226 228 193 140 1

290 53 30 
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First descent  1 2 4 8 16 32 64 
Final ascent   3

4  1
21  3  6 12 24 48 

Number of osc. 510 518 420 318 204 121 70 
 
 In the first table by selecting from the third, fifth, and seventh observations, and by 
expressing the maximum velocity for these observations particularly by the numbers 1, 4, 
16 respectively, and generally by the quantity V as above: from the third observation 

1
2

193 A B C= + + will arise, in the fifth 1
2

2
90 4 8 16A B C= + + , and in the seventh 

8
30 16 64 256A B C= + + . Truly these reduced equations give  

0 0014  0 000297  0 000879A , , B , , C ,= = = .  From thence the resistance of motion of the 
sphere arises with the velocity V in that ratio to its weight of 1

426 ounces, that it has  
3
2 20 0009 0 000208 0 000659, V , V , V+ +  to the length of the pendulum of 121 inches. And 

if we may consider only that part of the resistance which is in the square ratio of the 
velocity, this will be to the weight of the sphere as 20 000659, V to 121 inches. But this 
part of the resistance in the first experiment was to the weight of the wooden sphere of  

27
2257 ounces as  0 002217  to 121, V : and thence the resistance of the wooden sphere to 

the resistance of the leaden sphere (with the same velocities of these), as 
7 1
22 457 by 0 002217 to 26  by 0 000659, , , that is, as 1

37 to 1. The diameters of the two 

sphere were of 7
86  and 2 inches, and the squares of these are in turn as 1

447  and 4, or 
15
1611   and 1 approximately. Therefore the resistances of these equally moving spheres 

were in a smaller ratio than the double of the diameters. But we have not yet considered 
the resistance of the thread, which certainly by the size it was, and that ought to be taken 
away from the resistance of the pendulums found. This I was not able to define 
accurately, but yet I found it to be greater than the third part of the resistance of the  
smaller pendulum; and then I have learned that the resistance of the spheres, without the 
resistance of the thread, are almost in the square ratio of the diameters. For the ratio 

1 1 1
3 3 37  to 1− − , or 1

210  to 1 is not far removed from the ratio of the diameters 15
1611  

squared to 1. 
 Since the resistance of the thread shall be of less concern in the larger spheres, I have 
also tested an experiment with a sphere the diameter of which was 3

418  inches. The length 
of the pendulum between the point of suspension and the centre of oscillation was 

1
2122 inches, between the point of suspension and the knot on the string 1

2109  inches. The 
first arc of the pendulum in the descent from the node described 32 inches. The arc in the 
ascend after five oscillations from the same knot described 28 dig. The sum of the arcs or 
the whole arc described in the oscillation from the centre was  60 inches. The difference 
of the arcs was 4 inches. The tenth part of this or the mean difference between the descent 
and the ascent the oscillation was 2

5  of an inch. So that as the radius 1
2109  to the radius 
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1
2122 , thus the whole arc 60 inches described by the knot in the oscillation from the 

centre, to the whole arc 1
867  inches described in the oscillation from the centre of the 

sphere, and thus the difference 2
5  in. to the new difference 0,4475 in. If the length of the 

pendulum, with the length of the arc described remaining, were increased in the ratio 126 
to 1

2122 ; the time of the oscillation may be increased and the velocity of the pendulum 
may be diminished in that square root ratio, the true difference of the descent and 
subsequent ascent of the arcs  0,4475 may remain. Then if the arc described may be 
increased in the ratio 3 1

31 8124  to  67 , the difference 0,4475 itself may be increased in that 
ratio squared, and thus 1,5295 will arise. Thus these may themselves be considered, under 
the hypothesis that the resistance of the pendulum may be in the square ratio of the 
velocity. Hence if the pendulum may describe the whole arc of 3

31124  inches, and the 
length of this between the point of suspension and the centre of oscillation should be126 
inches, the difference of the arcs described in the descent and subsequent ascent should be  
1,5295 inches. And this difference taken by the weight of the pendulum, which was 208 
inches, gives 318,136. Again when the above pendulum constructed from the wooden 
sphere with the centre of oscillation, that was 126 inches from the point of suspension, 
described a whole arc of 3

31124  inches, the difference of the descending and ascending 

arcs was 2
3

126 8
121 9 by  , which taken by the weight of the sphere, which was 7

2257 ounces, 

produced 49,396. Moreover I multiplied these differences into the weights of the spheres 
so that I could find the resistances of these. For the differences are arising from the 
resistances, and they are as the resistance directly and the weights inversely. Therefore the 
resistances are as the numbers 318,136 and 49,396. But the part of the resistance of the 
small sphere, which is in the square ratio of the velocity, was to the whole resistance as 
0,56752 to 0,61675, that is, as 45,453 to 49,396 ; and the part of the resistance of the 
greater sphere may be almost equal to the whole resistance itself,  and thus these parts are 
as 318,136 to 45,453 approximately, that is, as 7 to 1. But the diameters of the spheres 

3 7
4 818  and 6  ; and the squares of these 9 17

16 64351  and 47  are as 7,438  to 1, that is, 
approximately as the resistances of the spheres 7 to 1. The difference of the ratios in not 
much greater, than what can arise from the resistance of the string. Therefore these parts 
which are of the resistances, which are with equal spheres, as the squares of the velocities; 
are also, with equal velocities, as the squares of the diameters of the spheres. 
 Of the other spheres, with which I have used in these experiments, the greatest was not 
perfectly spherical, and therefore in the calculation reported here I have ignored certain 
details for the sake of brevity ; not being too concerned in the accuracy of the calculation 
in a not very satisfactory experiment. And thus I  might have chosen, since the 
demonstration of empty space may depend on these, so that experiments might be tried 
with several greater and more accurate spheres. If spheres may be taken in geometric 
proportion, e.g. the diameters of which shall be 4, 8, 16, 32 inches ; from the progression 
of the experiments it may be deduced what must come about from still larger spheres. 
 Now indeed for comparing the resistances of different fluids between each other I have 
tried the following. I have prepared a wooden box four feet long, with width and height of 
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one foot. This I filled with spring water without the lid, and I have arranged so that 
immersed pendulums may be moving by oscillating in the water medium. Moreover a 
leaden sphere with a weight of 1

6166  ounces, and with a diameter of 5
83  inches is moved 

as we have described in the following table, it may be seen with the length of the 
pendulum from the point of suspension to a certain marked point on the string of 126 
inches, but to the centre of the oscillation of 3

8134  inches. 
 

First descent arc described by point 
marked on the string, in inches  

64 32 16 8 4 2 1 1
2  1

4  

Final ascent arc described, in inches   48 24 12 6 3 1
21  3

4  3
8  5

16  
Difference of the arcs, proportional to 
the motion lost, in inches.  

16 8 4 2 1 1
2  1

4  1
8  1

16  

Number of oscillations in water.   29
60  1

31  3 7 1
411  2

312  1
313  

Number of oscillations in air. 1
285   287 535      

 
 In the experiment of the fourth column, an equal motion with 535 oscillations in air, 
and 1

31  in water were lost. The oscillations in air were indeed a little faster than in water. 
But if the oscillations in water were accelerated in that ratio so that the motion of the 
pendulums in each medium were made with equal velocities, the same number 1

31  of 
oscillations would remain in water, from which the same motion was lost as at first, on 
account of the increased resistance and likewise the square of the time diminished in the 
same ratio squared. Therefore with equal velocities of the pendulums equal motions have 
been lost, with 535 oscillations in the air and with 1

31  oscillations in water; and thus the 

resistance of the pendulum in water is to its resistance in air as 535 to 1
31 . This is the 

proportion of the whole resistance in the case of the fourth column. 
 Now 2AV CV+ may designate the difference of the arcs described in the descent and 
in the subsequent ascent by the sphere in air I set in motion with the maximum velocity V 
; and since the maximum velocity in the case of the fourth column shall be to the 
maximum velocity in the case of the first column, as 1 to 8; and that difference of the arcs  
in the case of the fourth column to the difference in the case of the first column as  

1
2

162
535 85 to  or as 1

285  to 4280: we may write in these cases 1 and 8 for the velocities,  and 

1
285  and 4280 for the differences of the arcs, and there becomes 1

285A C+ = ; and 
8 64 4280A C+ =  or 8 535A C+ =  ; and thence by the reduction of the equation there 
comes about 31 2

2 4 77 449 ,  64 ,  and   21C C A= = =  : and thus the resistance since it shall b 

as 27 3
11 4AV  CV+ , it will become as  26 9

11 5613 48V  V+ . Whereby in the case of the fourth 
column when the velocity was 1, the whole resistance is to its proportional part with the 
square of the velocity, as 6 9 912

11 56 17 5613 48  or  61  to  48 +  ; and thus the resistance of the 
pendulum in water is to that part of the resistance in air,  which is proportional to the 
square of the velocity, and which alone in the more rapid motions come to be considered, 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VI. 
Translated and Annotated by Ian Bruce.                                        Page 588 

as 912
17 5661  to 48  and 535  to 1

51 taken jointly, that is, as 571 to 1. If the whole string of the 
pendulum should be immersed in water, its resistance would be greater still ; and thus that 
resistance of the pendulum oscillating in water, which is proportional to the square of the 
velocity, and which alone comes to be considered in more rapidly moving bodies, shall be 
to the resistance of the same whole pendulum, oscillating in air with the same velocity, as 
around 850 to 1, that is, as the density of water to the density of air approximately. 
 In this calculation that part of the resistance of the pendulum in the water must also be 
taken, which might be as the square of the velocity, but (which may be considered as a 
surprise) the resistance in water may be increased in a ratio greater than the square. With 
the cause of this matter requiring to be investigated,  I came upon this [explanation],  that 
the area should be exceedingly narrow for the size of the sphere of the pendulum, and the 
motion of the water going before was being impeded exceedingly by its own narrowness. 
For if the sphere of a pendulum, the diameter of which was one inch, were immersed,  the 
resistance was increased approximately in the square ratio of the velocity. I tested that by 
the construction of a pendulum with two spheres, the lower and smaller of which could 
oscillate in water, the upper and greater being attached just above the water, and by 
oscillating in the air, might aid the motion of the pendulum and render it more long 
lasting. Moreover the experiments set up in this manner may themselves be had as 
described in the following table. 
 

Arc described in the first descent.  16 8 4 2 1 1
2  1

4  
Arc described in the final ascent.   12 6 3 1

21  3
4  3

8  5
16  

Diff. of the arcs, prop.to motion lost. 4 2 1 1
2  1

4  1
8  1

16  
Number of oscillations. 3

83 1
26 1

1212  1
521  34 53 1

562  
 
 
 By requiring the resistances of mediums to be compared between each other,  I also 
arranged that iron pendulums could oscillate in quicksilver. With the length of the string 
of the iron pendulum to be nearly three feet, and the diameter of the sphere of the 
pendulum to be a third of an inch. But another leaden sphere was fixed to the string near 
the surface of the mercury of such a size that the motion of the pendulum could continue 
for some time. Then a vessel, that could hold almost three pounds of quicksilver, I filled 
alternately with quicksilver and ordinary water, so that with a pendulum oscillating 
successively in each fluid, I was able to find the proportion of the resistances : and the 
resistance of quicksilver to water was produced as around 13 or 14 to 1 : that is, as the 
density of quicksilver to the density of water. When I used an iron sphere a little larger, 
for example with a diameter that should be around 1 2

3 3or  of an inch, the resistance of the 
quick silver was produced in that ratio to the resistance of water, that the number 12 or 10 
has to 1 roughly. But the first experiment is more trustworthy, because that vessel in these 
final experiments was exceedingly narrow for the size of the sphere immersed. With the 
sphere enlarged, the vessel also is required to be enlarged. I set up certain experiments of 
this kind in larger vessels and with liquids both of melted metals as well as with certain 
others to be repeated with hot as well as with cold liquids: but there was not time to prove 
everything, and now from the description it may be clear enough how the resistance of 
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bodies moving rapidly may be approximately proportional to the density of the fluids in 
which they are moving. I do not say accurately. For more tenacious fluids, on a par with 
the density, without doubt are more resistant than the more liquid, such as cold oil rather 
than hot oil, cold rather than hot rainwater, water rather than spirit of wine [i.e. brandy]. 
Truly with liquids, which are fluid enough to the senses, as with air, water either sweet or 
salty, with spirits , spirits of wine, of turpentine and salts, with oil freed from its dregs by 
distillation and by heating, and with oil of vitriol and with mercury, and with liquefied 
metals, and others which there may be, which are both fluid so that they may conserve a 
long time impressed motion of agitation, and on being poured and running away freely 
may be resolved into drops, I have no reason to doubt that the rule already laid down may 
prevail accurately enough : especially if experiments with larger pendulous bodies with 
faster motions may be put in place.  
 Finally since it shall be the opinion of some, of a certain must subtle ethereal medium 
extending afar, that may permeate all the pores of all bodies freely; moreover the 
resistance must originate from such a medium flowing through the pores of bodies : So 
that I can test the resistance that we experience from the motions of bodies, whether the 
whole shall be on the external surface of these, or the resistance may be perceived also 
from the various internal parts near the surfaces, I have thought out a test for such. With a 
string eleven feet long firmly attached by a steel hook, I hung up a round wooden box by 
means of a steel ring, towards constructing a pendulum of the aforestated length. The 
upper concave edge of the hook was sharpened, so that the ring resting on its upper arc 
could move freely on the sharp edge. Moreover the string was attached to the lower arc. 
The pendulum thus constituted I drew away from the vertical to a distance of around six 
feet, and that along a plane perpendicular to the plane of the sharpened hook, lest the ring, 
with the pendulum oscillating, might slip beyond the side of the sharpened edge of the 
hook. For the point of the suspension, in which the ring touches the hook, must remain 
motionless. Therefore I marked the place accurately, to which I drew the pendulum aside, 
then with the pendulum sent off I noted the three other places to which it returned at the 
end of the first, second, and third oscillation. I repeated this more often, so that I could 
find these places most accurately. Then I filled the box with lead and with metal weights 
which were at hand. But first I weighed the empty box, together with the part of the string 
that was tied around the box and with half of the remaining part which was being 
stretched between the hook and the pendulum box. For the extended string always acts 
with half its weight on the pendulum when drawn aside from the perpendicular. To this 
weight I added the weight of the air that the box contained. And the whole weight was  as 
if a 78th part of the weight full of the metal. Then because with the box filled with metal, 
with the weight itself by stretching the string, the length of the pendulum must be 
increased, I shortened the string so that now the length of the pendulum oscillating should 
be the same as at first. Then with the pendulum drawn aside and released from the first 
marked place, I counted around 77 oscillations, then the box returned to the second 
marked place, and just as many one after the other until the box returned to the third 
marked place, and again with just as many until the box returned to reach its fourth 
marked place. From which I conclude that the whole resistance of the full box did not 
have a greater proportion to the resistance of the empty box than 78 to 77. For if the 
resistance of both should be equal, the full box on account of its inertial force , which was 
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78 times greater than the inertial force of the empty box, the motion of its oscillations 
must be maintained for such a longer time, and thus always with 78 oscillations 
completed to have returned to that marked place. But it returned to the same after 77 
complete oscillations. 
 Therefore A may designate the resistance of the box on the external surface, and B the 
resistance of the empty box from the inside parts; and if the resistances of the bodies of 
the same velocities in the inside parts shall be as the matter, or the number of small parts 
by which it is resisted : 78 B will be the resistance of the full box from the inside parts : 
and thus the whole resistance A B+  of the empty box will be to the total resistance of the 
full box 78A B+  as 77 to 78, and separately A B+  to 77B, as 77 to 1, and thence A B+  to 
B as 77 77×  to 1, and separately A to B as 5918 to 1. Therefore the resistance of the 
empty box from the interior parts is more than 5000 times less than the same resistance of 
this from the external surface. Thus truly we may question that hypothesis that the greater 
part of the resistance of the full box may arise from no other hidden cause than from the 
action alone of some subtle fluid enclosed in the metal. 
 This experiment I have recalled from memory. For the page, in which I have described 
that a little, has become lost. From which certain fractional parts of the numbers, which 
have disappeared from memory, I have been compelled to omit. 
 For there is not time to try everything anew. In the first place, since I was using an 
infirm hook, the full box was being slowed down more. On seeking the reason, to be 
found that a weak hook yielded to the weight of the box, and in the oscillations of this was 
being bent by all the parts giving way. Therefore I prepared a strong hook, so that the 
point of suspension might remain fixed, and then everything thus came about as we have 
described above.  
[It seems likely that the extra friction at the loaded knife edge gave the slightly different 
results.] 
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SECTIO VI. 

De motu & resistentia corporum funependulorum. 
 

PROPOSITIO XXIV. THEOREMA XIX. 
 Quantitates materiae in corporibus funependulis, quorum centra oscillationum a 
centro suspensionis aequaliter distant, sunt in ratione composita ex ratione ponderum & 
ratione duplicata temporum oscillationum in vacuo. 
 
 Nam velocitas, quam data vis in data materia, dato tempore generare potest, est ut vis 
& tempus directe, & materia inverse. Quo maior est vis vel maius tempus vel minor 
materia, eo maior generabitur velocitas. Id quod per motus legem secundam manifestum 
est. Iam vero si pendula eiusdem sint longitudinis, vires motrices in locis a perpendiculo 
aequaliter distantibus sunt ut pondera: ideoque si corpora duo oscillando describant arcus 
aequales, & arcus illi dividantur in partes aequales ; cum tempora quibus corpora 
describant singulas arcuum partes correspondentes sint ut tempora oscillationum 
totarum, erunt velocitates ad invicem in correspondentibus oscil1ationum partibus, ut 
vires motrices & tota oscillationum tempora directe & quantitates materiae reciproce : 
ideoque quantitates materia ut vires & oscillationum tempora directe & velocitates 
reciproce. Sed velocitates reciproce sunt ut tempora, atque ideo tempora directe & 
velocitates reciproce sunt ut quadrata temporum, & propterea quantitates materiae sunt ut 
vires motrices & quadrata temporum, id est, ut pondera & quadrata temporum. Q.E.D. 
 
Corol. I. Ideoque si tempora sunt aequalia, quantitates materiae in singulis corporibus 
erunt ut pondera. 
Corol. 2. Si pondera sunt aequalia, quantitates materiae erunt ut quadrata temporum. 
Corol. 3. Si quantitates materiae aequantur, pondera erunt reciproce ut quadrata 
temporum. 
Corol.4. Unde cum quadrata temporum, caeteris paribus, sint ut longitudines pendulorum, 
si & tempora & quantitates materiae aequalia sunt, pondera erunt ut longitudines 
pendulorum. 
Corol. 5. Et universaliter, quantitas materiae pendulae est ut pondus & quadratum 
temporis directe, & longitude penduli inverse. 
Corol. 6. Sed & in media non resistente quantitas materiae pendulae est ut pondus 
comparativum & quadratam temporis directe & longitudo penduli inverse. Nam pondus 
comparativum est vis motrix corporis in medio quovis gravi, ut supra explicui; ideoque 
idem praestat in tali medio non resistente atque pondus absolutum in vacuo. 
Corol. 7. Et hinc liquet ratio tum comparandi corpora inter se, quoad quantitatem materiae 
in singulis; tum comparandi pondera eiusdem corporis in diversis locis, ad cognoscendam 
variationem gravitatis. Factis autem experimentis quam accuratissimis inveni semper 
quantitatem materiae in corporibus singulis eorum ponderi proportionalem esse. 
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PROPOSITIO XXV. THEOREMA XX. 
 Corpora Funependula quibus, in medio quovis, resistitur in ratione momentorum 
temporis, &. corpora funependula quae in eiusdem gravitatis specificae  medio non 
resistente moventur, oscillationes in cycloide eodem tempore peragunt, & arcuum 
partes proportionales simul describunt. 
 
 Sit AB cycloidis arcus, quem corpus D tempore quovis in medio non resistente 
oscillando describit. Bisecetur idem in C, ita ut C sit infimum eius punctum; & erit vis 
acceleratrix qua corpus urgetur si in loco quovis D vel d vel E ut longitudo arcus CD vel 
Cd vel CE. Exponatur vis illa per eundem arcum , & cum resistentia sit ut momentum 
temporis, ideoque detur, exponatur eadem per datam arcus cycloidis partem CO, & 
sumatur arcus Od in ratione ad arcum CD quam habet arcus CB ad arcum CB: & vis qua 
corpus in d urgetur in media resistente, cum sit excessus vis Cd supra resistentiam CO, 
exponetur per arcum CD, ideoque erit ad vim, qua corpus est urgetur in media non 
resistente in loco D, ut arcus Od ad arcum CD; & propterea etiam in loco B ut arcus OB 
ad arcum CB. Proinde si corpora duo, D, d exeant de loco B, & his viribus urgeantur: cum 
vires sub initio sint ut arcus CB & OB, erunt velocitates primae & arcus primo descripti in 
eadem ratione. Sunto arcus illi BD & Bd, & arcus reliqui CD, Od erunt in eadem ratione. 
Proinde vires, ipsis CD, Od proportionales manebunt in 
eadem ratione ac sub initio, & propterea corpora pergent 
arcus in eadem ratione simul describere. Igitur vires & 
velocitates & arcus reliqui CD, Od semper erunt ut arcus 
toti CB, OB, & propterea arcus illi reliqui simul 
describentur. Quare corpora duo D, d simul pervenient ad 
loca C & O, alterum quidem in media non resistente ad 
locum C, & alterum in media resistente ad locum O. 
Cum autem velocitates in C & O sint ut arcus CB, OB; erunt arcus, quos corpora ulterius 
pergendo simul describunt, in eadem ratione. Sunto illi CE & Oe. Vis qua corpus D in 
media non resistente retardatur in E est ut CE, & vis qua corpus d in media resistente 
retardatur in e est ut summa vis Ce, & resistentiae CO, id est ut Oe; ideoque vires, quibus 
corpora retardantur, sunt ut arcus CE, Oe proportionales arcus CB, OB; proindeque 
velocitates, in data illa ratione retardatae, manent in eadem illa data ratione. 
Velocitates igitur & arcus iisdem descripti semper sunt ad invicem in data illa ratione 
arcuum CB & OB; & propterea si sumantur arcus toti AB, aB in eadem ratione, corpora D, 
d simul describent hos arcus, & in locis A & a motum omnem simul amittent. Isochronae 
sunt igitur oscillationes totae, & arcubus totis BA, Ba proportionales sunt arcuum partes 
quelibet BD, Bd vel BE, Be quae simul describuntur. Q.E.D. 
 
Corol. Igitur motus velocissimus in medio resistente non incidit in punctum infimum C. 
sed reperitur in puncto illo O, quo arcus totus descriptus aB bisecatur. Et corpus subinde 
pergendo ad a, iisdem gradibus retardatur quibus antea accelerabatur in descensu suo 
aB ad O.  
 

 
 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VI. 
Translated and Annotated by Ian Bruce.                                        Page 593 

 
PROPOSITIO XXVI. THEOREMA XXI. 

Corporum funependulorum, quibus resistitur in ratione velocitatatum, oscillationes in 
cycloide sunt Isochronae. 
 
 Nam si corpora duo, a centris suspensionum aequaliter distantia, oscillando describant 
arcus inaequales, & velocitates in arcuum partibus correspondentibus sint ad invicem ut 
arcus toti; resistentiae velocitatibus proportionales, erunt etiam ad invicem ut iidem arcus. 
Proinde si viribus motricibus a gravitate oriundis, quae sint ut iidem arcus, auferantur vel 
addantur hae resisteniae, erunt differentiae vel summe ad invicem in eadem arcuum 
ratione: cumque velocitotum incrementa vel decrementa sint ut hae differeniae vel 
summae, velocitates semper erunt ut arcus toti : Igitur velocitates, si sint in 
aliquo casu ut arcus toti, manebunt semper in eadem ratione. Sed in principio motus; ubi 
corpora incipiunt descendere & arcus illos describere, vires, cum sint arcubus 
proportionales, generabunt velocitates arcubus proportionales. Ergo velocitates semper 
erunt ut arcus toti describendi, & propterea arcus illi simul describentur. Q.E.D. 
 

PROPOSITIO XXVII. THEOREMA XXII. 
 Si corporibus funependulis resistitur in duplicata ratione velocitatum, differentiae inter 
tempora oscillationum in medio resistente ac tempora oscillationum in eiusdem gravitatis 
specificae medio non resistente, erunt arcubus oscillando descriptis proportionales quam 
proxime. 
 
 Nam pendulis aequalibus  in medio resistente describantur arcus inaequales A, B;  & 
resistentia corporis in arcu A, erit ad resistentiam corporis in parte correspondente arcus B, 
in duplicata ratione, velocitatum, id est, ut AA ad BB, quam proxime. Si resistentia 
in arci B esset ad resistentiam in arcu A ut AB ad AA ; tempora in arcubus A & B forent 
aequalia, per propositionem superiorem. Ideoque resistentia AA in arcu A, vel AB in arcu 
B, efficit excessum temporis in arcu A supra tempus in medio non resistente, & resistentia 
BB efficit excessum temporis in arcu B supra tempus in medio non resistente. Sunt autem 
excessus illi ut vires efficientes AB & BB quam proxime, id est, ut arcus A & B. Q.E.D. 
 
Corol 1. Hinc ex oscillationum temporibus, in media resistente, 
in arcubus inaequalibus factarum, cognosci possunt tempora oscillationum in eiusdem 
gravitatis specifice medio non resistente. Nam differentia temporum erit ad excessum 
temporis in arcu minore supra tempus in media non resistente, ut differentia arcuum ad 
arcum minorem. 
 
Corol. 2. Oscillationes breviores sunt magis isochronae, & brevissimae iisdem temporibus 
peraguntur ac in medio non resistente, quam proxime. Earum vero quae in maioribus 
arcubus fiunt, tempora tum paulo maiora, propterea quod resistentia in descensu corporis 
qua tempus producitur, maior sit pro ratione longitudinis in descensu descriptae, quam 
resistentia in ascensu subsequente qua tempus contrahitur. Sed & tempus oscillationum 
tam brevium quam longarum nonnihil produci videtur per motum medii. Nam corporibus 
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tardescentibus paulo minus resistitur, pro ratione velocitatis, & corporibus acceleratis 
paulo magis quam iis quae uniformiter progrediuntur : idque quia medium, eo quem a 
corporibus accepit motu, in eandem plagam pergendo, in priore casu magis 
agitatur, in posteriore minus; ac proinde magis vel minus cum corporibus motis conspirat, 
Pendulis igitur in descensu magis resistit, in ascensu minus quam pro ratione velocitatis, 
& ex utraque causa tempus producitur. 
 

PROPOSITIO XXVIII. THEOREMA XXIII. 
 Si corpori funependulo in cycloide oscillanti resistitur in ratione momentotam 
temporis, erit eius resistentia ad vim gravitatis ut excessus arcus descensu toto descripti 
supra arcum ascensu subsequente descriptum, ad penduli longitudinem duplicatam. 
 
 Designet BC arcum descensu descriptum, Ca arcum ascensu descriptum, &  Aa 
differentiam arcuum: & stantibus quae in propositione xxv. constructa & demonstrata 
sunt, erit vis, qua corpus oscillans urgetur in loco quovis D, ad vim resistentiae ut arcus 
CD ad arcum CO, qui semissis est differentiae illius Aa. Ideoque vis, qua corpus oscillans 
urgetur in cycloidis principio seu puncto altissimo, id est, vis gravitatis, erit ad 
resistentiam ut arcus cycloidis inter punctum illud supremum & punctum infimum C ad 
arcum CO; id est (si arcus duplicentur): ut cycloidis totius arcus, seu dupla penduli 
longitude, ad arcum Aa. Q. E. D. 
 

PROPOSITIO XXIX. PROBLEMA VI. 
 Posito quod corpori in cycloide oscillanti resistitur in duplicata ratione velocitatis : 
invenire resistentiam in locis singulis. 
 
 Sit Ba arcus oscillatione integra descriptus, sitque C infimum cycloidis punctum, & CZ 
semissis arcus cycloidis totius, longitudini 
penduli aequalis; & quaeratur resistentia 
corporis in loco quovis D. Secetur recta 
infinita OQ in punctis O, S, P, Q, ea lege, 
ut (si erigantur perpendicula OK, ST, PI, 
QE  centroque O & asymptotis 
OK, OQ describatur hyperbola TIGE 
secans perpendicula ST, PI, QE in T, I & 
E, & per punctum I agatur KF parallela asymptoto OQ occurrens asymptoto OK in K, & 
perpendiculis ST & QE in L & F), fuerit area hyperbolica PIEQ ad aream hyperbolicam 
PITS ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area 
IEF ad aream ILT ut OQ ad OS. Dein perpendiculo MN abscindatur area hyperbolica 
PINM quae sit ad aream hyperbolicam PIEQ ut arcus CZ ad arcum BC descensu 
descriprum. Et si perpendiculo RG abscindatur area hyperbolica PIGR, quae sit ad aream 
PIEQ ut arcus quilibet CD ad arcum BC descensu toto descriptum, erit resistentia in loco 
D ad vim gravitatis, ut area OR

OQ IEF IGH× − ad aream PINM. 
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 Nam cum vires a gravitate oriundae quibus corpus in locis Z,B,D,a urgetur, sint ut 
arcus CZ, CB, CD, Ca, & arcus illi sint ut areae PINM, PIEQ, PIGR, PITS; exponantur 
tum arcus tum vires per has areas respective.  Sit insuper Dd spatium quam minimum a   
corpore descendente descriptum, & exponatur idem per aream quam minimam RGgr 
parallelis RG, rg comprehensam , & producatur rg ad h, ut sint GHhg, & RGgr 
contemporanea arearum IGH, PIGR decrementa. Et areae OR

OQ IEF IGH× −  

incrementum   seu Rr Rr
OQ OQGHhg IEF , Rr HG IEF− × − , erit ad areae PIGR decrementum 

RGgr, seu  ad  seu Rr
OQOR HG IEF OR GR OP PI× − × × ,  hoc est (ob 

aequalia      OR HG, OR HR OR GR, ORHK OPIK , PIHR & PIGR IGH× × − × − + ), ut 
 ad OR

OQPIGR IGH IEF OPIK+ − . Igitur si area OR
OQ IEF IGH− dicatur Y, atque areae 

PIGR decrementum RGgr detur, erit incrementum areae Y ut PIGR–Y. 
 Quod si V designet vim a gravitate oriundam, arcui describendo CD proportionalem, 
qua corpus urgetur in V, & R pro resistentia ponatur; erit V R− vis tota qua corpus urgetur 
in D. Est itaque incrementum velocitatis ut V R−   & particula illa temporis in qua factum 
est coniunctim: Sed & velocitas ipsa est ut incrementum contemporaneum spatii descripti 
directe & particula eadem temporis inverse. Unde, cum resistentia per hypothesin sit ut 
quadratum velocitatis, incrementum resistentiae (per lem.II.) erit ut velocitas & 
incrementum velocitatis coniundim, id est, ut momentum spatii & V R−  coniunctim ; 
atque ideo, si momentum spatii detur, ut V R− ; id est, si pro vi V scribatur eius exponens 
PIGR, & resistentia R exponatur per aliam aliquam aream Z, ut PIGR Z− . 
 Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, 
crescunt area Y in ratione PIGR Y− , & area Z in ratione PIGR Z− . Et propterea si areae 
Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium 
momentorum pergent esse aequales, & aequalibus itidem momentis subinde 
decrescentes simul evanescent. Et vicissim, si simul incipiunt & simul evanescunt, 
aequalia habebunt momenta & semper erunt aequales: id adeo quia si resistentia Z 
augeatur, velocitas una cum arcu illo Ca, qui in ascensu corporis describitur, diminuetur, 
& puncto in quo motus omnis una cum resistentia cessat propius accedente ad punctum C, 
resistentia citius evanescet quam area Y. Et contrarium eveniet ubi resistentia diminuitur. 
 Iam vero area Z incipit definitque ubi resistentia nulla est, hoc est, in principio motus 
ubi arcus CD arcui CB aequatur & recta RG incidit in rectam QE, & in fine motus ubi 
arcus CD arcui Ca aequatur & RG incidit in rectam ST. Et area Y seu OR

OQ IEF IGH× −  

incipit definitque ubi nulla est, ideoque ubi OR
OQ IEF IGH× − aequalia sunt: hoc est (per 

constructionem) ubi recta RG incidit successive in rectas QE & ST. Proindeque areae 
ille simul incipiunt & simul evanescunt, & propterea semper sunt aequales. Igitur area 
OR
OQ IEF IGH× −  aequalis est areae Z, per quam resistentia exponitur, & propterea est ad 

aream PINM per quam gravitas exponitur, ut resistentia ad gravitatem. Q.E.D. 
 
Corol. I. Est igitur resistentia in loco infimo C ad vim gravitatis, ut area OR

OQ IEF ad aream 

PINM. 
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Corol: 2. Fit autem maxima, ubi area PIHR  est ad aream IEF ut OR ad OQ. Eo enim in 
casu momentum eius (nimirum PIGR Y− evadit nullum.  
Corol. 3. Hinc etiam innotescit velocitas in locis singulis quippe quae est in subduplicata 
ratione resistentiae, & ipso motus initio aequatur velocitati corporis in eadem cycloide 
sine omni resistentia oscillantis. 
 Caeterum ob difficilem calculum quo resistentia & velocitas per hanc propositionem 
inveniendae sunt, visum est propositionem sequentem subiungere. 
 

PROPOSITIO XXX. THEOREMA XXIV. 
 Si recta aB aequalis sit cycloidis arcui quem corpus oscillando describit, & ad singula 
eius puncta D erigantur perpendicula DK, quae sint ad longitudinem penduli ut 
resistentia corporis in arcus punctis correspondentibus ad vim gravitatis: dico quod 
differentia inter arcum descensu toto descriptum &  arcem ascensu toto subsequente 
descriptum ducta in arcuum eorundem semisummam, aequalis erit areae BKa a 
perpendiculis omnibus DK occupatae. 
 
 Exponatur enim tum cycloidis arcus, oscillatione integra descriptus, per rectam illam 
sibi aequalem aB, tum arcus qui 
describeretur in vacuo per longitudinem 
AB. Bisecetur AB in C, & punctum C 
representabit infimum cycloidis 
punctum, & erit CD ut vis a gravitate 
oriunda, qua corpus in D secundum 
tangentem cycloidis urgetur, eamque 
habebit rationem ad longitudinem 
penduli quam habet vis in D ad vim 
gravitatis. Exponatur igitur vis illa per longitudinem CD, & vis gravitatis per 
longitudinem penduli. & si in DE capiatur DK in ea ratione ad longitudinem penduli quam 
habet resistentia ad gravitatem, erit DK exponens resistentiae. Centro C & intervallo CA 
vel CB construatur semicirculus BEeA. Describat autem corpus tempore quam minimo 
spatium Dd, & erectis perpendiculis  DE, de circumferentiae occurrentibus in E & e, erunt 
haec ut velocitates quas corpus in vacuo, descendendo a puncto B, acquireret in locis D & 
d. Patet hoc (per Prop. LII. Lib. I.) Exponantur itaque hae velocitates per perpendicula illa 
DE, de; sitque DF velocitas quam acquirit in D cadendo de B in media resistente. Et si 
centro C & intervallo CF describatur circulus FfM occurrens rectis de & AB in f & M, 
erit M locus ad quem deinceps sine ulteriore resistentia ascenderet, 
& df velocitas quam acquireret in d. Unde etiam si Fg designet velocitatis momentum 
quod corpus D, describendo spatium quam minimum Dd, ex resistentia medii amittit; & 
sumatur CN aequalis Cg: erit N locus ad quem corpus deinceps sine ulteriore resistentia 
ascenderet, & MN erit decrementum ascensus ex velocitatis illius amissione oriundum. Ad 
df demittatur perpendiculum Fm, & velocitatis  DF decrementum Fg a resistentia DK 
genitum, erit ad velocitatis eiusdem incrementum fm a vi CD genitum, ut vis generans  
DK ad vim generantem CD. Sed & ob similia triangula Fmf, Fhg, FDC, est fm ad Fm seu  
Dd ut CD ad DF; & ex aequo Fg ad Dd ut DK ad DF . Item Fh ad Fg ut  DF ad CF; & ex 
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aequo perturbate, Fh seu MN ad Dd ut DK ad CF seu CM; ideoque summa omnium 
MN CM×  aequalis erit summae omnium Dd DK× . Ad punctum mobile M erigi semper 
intelligatur ordinata rectangula aequalis indeterminate CM, quae motu continuo ducatur in 
totam longitudinem Aa; & trapezium ex illo motu descriptum sive huic aequale 
rectangulum 1

2Aa aB× aequabitur summae omnium MN CM× , ideoque summae 
omnium Dd DK× , id est, areae BKVTa. Q.E.D. 
 
Corol. Hinc ex lege resistentiae & arcuum Ca, CB differentia Aa colligi potest proportio 
resistentiae ad gravitatem quam proxime.  
 Nam si uniformis sit resistentia DK, figura BKTa rectangulum erit sub Ba & DK; & 
inde rectangulum sub 1

2 Ba  & Aa erit aequale rectangulo sub Ba & DK, & DK aequalis 

erit 1
2 Aa . Quare cum DK sit exponens resistentias, & longitudo penduli exponens 

gravitatis, erit resistentia ad gravitatem ut 1
2 Aa  ad longitudinem penduli; omnino ut in 

Prop. XXVIII. demonstratum est. 
 Si resistentia sit ut velocitas, figura BKTa  ellipsis erit quam proxime. Nam si corpus, 
in medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco 
quovis D foret ut circuli diametro AB descripti ordinatim applicata DE. Proinde 
cum Ba in medio resistente, & BA in medio non resistente, aequalibus circiter temporibus 
describantur ; ideoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad 
velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA; erit velocitas 
in puncto  D in medio resistente ut circuli vel  ellipseos super diametro Ba descripti 
ordinatim applicata; ideoque figura BKVTa  ellipsis erit quam proxime. Cum resistentia 
velocitati proportionalis supponatur, sit OV exponens resistentiae in puncto medio O, 
&  ellipsis BRVSa, centro O, semiaxibus OB, OV descripta, figuram BKVTa, eique 
aequate rectangulum Aa BO× , aequabit quamproxime. Est igitur Aa BO× ad OV BO× ut 
area  ellipseos huius ad OV BO× : id est, Aa ad OV ut area semicirculi ad quadratum 
radii, sive ut 11 ad 7 circiter: Et propterea 7

11 Aa  ad longitudinem penduli ut corporis 
oscillantis resistentia in O ad eiusdem gravitatem. 
 Quod si resistentia  DK sit in duplicata ratione velocitatis, figura BKVTa fere parabola 
erit verticem habens V & axem OV, ideoque aequalis erit rectangulo sub 2

3 Ba  & OV 

quam proxime. Est igitur rectangulum sub 1
2 Ba  & Aa aequale rectangulo sub 2

3 Ba  & 

OV, ideoque OV aequalis 1
4 Aa : & propterea corporis oscillantis resistentia in O ad ipsius 

gravitatem ut 3
4 Aa  ad longitudinem penduli. Atque has conclusiones in rebus practicis 

abunde satis accuratas esse censeo. Nam cum  ellipsis vel parabola BRVSa congruat cum 
figura BKVTa in puncto medio V, haec si ad partem alterutram BRV vel VSa excedit 
figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam 
proxime. 
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PROPOSITIO XXXI. THEOREMA XXV. 

 Si corporis oscillantis resistentia in singulis arcuum descriptorum partibus 
proportionalibus augeatur vel minuatur in data ratione ; differentia inter arcum descensu 
descriptum & arcum subsequente ascensu descriptum, augebitur vel diminuetur in 
eadem ratione. 
 
 Oritur enim differentia illa ex retardatione penduli per resistendam medii, ideoque est 
ut retardatio tota eique proportionalis resistentia retardans. In superiore propositione 
rectangulum sub recta 1

2 aB  & arcuum illorum CB, Ca differentia Aa equalis erat areae 
BKTa. et area illa, si maneat longitudo aB, augetur vel diminuitur ratione ordinatim 
applicatarum  DK; hoc est, in ratione resistentiae, ideoque est ut longitudo aB & 
resistentia coniunctim, Proindeque rectangulum sub Aa & 1

2 aB  est ut aB & resistentia 
coniunctim, & propterea Aa ut resistentia. Q.E.D. 
 
Corol. I. Unde si resistentia sit ut velocitas, differentia arcuum in eodem media erit ut 
arcus totus descriptus : & contra. 
Corol. 2. Si resistentia sit in  duplicata ratione velocitatis, differentia illa erit in duplicata 
ratione arcus totius : & contra. 
Corol. 3. Et universaliter, si resistentia sit in triplicata vel aliaquavis ratione velocitatis, 
differentia erit in eadem ratione arcus totius : & contra. 
Corol. 4. Et si resistentia sit partim in ratione simplici velocitatis, partim in eiusdem 
ratione duplicata, differentia erit partim in ratione arcus totius & partim in eius ratione 
duplicata: & contra. Eadem erit lex & ratio resistentiae pro velocitate, quae est 
differentiae illius pro longitudine arcus. 
Corol. 5. Ideoque si, pendulo inaequales arcus successive describente, inveniri potest ratio 
incrementi ac decrementi differeniae huius pro longitudine arcus descripti ac habebitur 
etiam ratio incrementi ac decrementi resistentiae pro velocitate maiore vel minore. 
 

Scholium Generale. 
 Ex his propositionibus, per oscillationes pendulorum in mediis quibuscunque, invenire 
licet resistentiam mediorum. Aeris vero resistentiam investigavi per experimenta 
sequentia. Globum ligneum  pondere unciarum Romarum 7

2257 , diametro digitorum 

Londinensium 7
86  fabricatum, filo tenui ab unco satis firmo suspendi, ita ut inter uncum 

& centrum oscillationis globi distantia esset pedum 1
210 . In filo punctum notavi pedibus 

decem & uncia una a centro suspensionis distans , & e regione puncti illius collocavi 
regulam in digitos distinctam, quorum ope notarem longitudines arcuum a pendulo 
descriptas. Deinde numeravi oscillationes quibus globus octavam motus sui partem 
amitteret. Si pendulum deducebatur a perpendiculo ad distantium duorum digitorum, & 
inde demittebatur, ita ut toto suo descensu describeret arcum duorum digitorum, 
totaque oscillatione prima, ex descensu & ascensu subsequente composita, arcum 
digitorum sere quatuor : idem oscillationibus 164 amisit octavam motus sui partem, sic ut 
ultimo suo ascensu describeret arcum digiti unius cum tribus partibus quartis digiti. Si 
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primo descensu descripsit arcum digitorum quatuor; amisit octavam motus partem 
oscillationibus 121, ita ut ascensu ultimo describeret arcum digitorum 1

23 . Si primo 
descensu descripsit arcum digitorum octo, sexdecim, triginta duorum vel sexaginta 
quatuor; amisit octavam motus partem oscillationibus 1 1 2

2 2 369 35 18 , 9, , ,  respective. 
Igitur differentia inter arcus descensu primo & ascensu ultimo descriptos, erat in casu 
primo, secundo, tertio, quarto, quinto, sexto, digitorum 1 1

4 2 1 2 4 8, , , , ,  respective. 
Dividantur eae differentiae per numerum oscillationum in casu unoquoque, & in 
oscillatione una mediocri, ne qua arcus digitorum 1 1

4 23 , 7 ,15 30 60 120, , ,  descriptus fuit, 
differentia arcuum descensu & subsequente ascensu descriptorum, erit 

81 1 1 4 24
656 242 69 71 37 29, , , , , partes digiti respective. Hae autem in maioribus oscillationibus sunt 
in duplicata ratione arcuum descriptorum quam proxime, in minoribus vero paulo maiores 
quam in ea ratione; & propterea (per Corol. 2. Prop. XXXI. libri huius) resistentia globi, 
ubi celerius movetur,  est in duplicata ratione velocitatis quam proxime; ubi tardius, paulo 
maior quam in ea ratione.  
 Designet iam V velocitatem maximam in oscillatione quavis, sintque A, B, C 
quantitates datae, & fingamus quod differentia arcuum  sit 

3
2 2AV BV CV+ + . Cum 

velocitates maximae sint in cycloide ut semisses arcuum oscillando descriptorum, in 
circulo vero ut semissium arcuum illorum chordae , ideoque paribus arcubus maiores sint 
in cycloide quam in circulo, in ratione semissium arcuum ad eorundem chordas; tempora 
autem in circulo sint maiora quam in cycloide in velocitatis ratione reciproca , patet 
arcuum differentias (quae sunt ut resistentia & quadratum temporis coniundim) easdem 
fore, quamproxime, in utraque curva : deberent enim differentiae illae in cycloide augeri, 
una cum resistentia, in duplicata circiter ratione arcus ad chordam, ob velocitatem in 
ratione illa simplici auctam; & diminui, una cum quadrato temporis, in eadem duplicate 
ratione. Itaque ut reductio fiat ad cycloidem, eodem sumendae sunt arcuum differentae 
quae fuerunt in circulo observatae, velocitates vero maximae ponendae sunt arcubus vel 
dimidiatis vel integris, hoc est, numeris 1

2 1  2  4  8 16, , , , ,  analogae. Scribamus ergo in casu 
secundo, quarto & sexto numeros I, 4 & 16 pro V; & prodibit arcuum 

differentia 
1
2

121 A B C= + + in casu secundo;  1
2

2
35 4 8 16A B C= + +  

in casu quarto; & 2
3

8
9 16  64 256 A B C= + +  in casu sexto. Et ex his aequationibus, per 

debitam collationem & reductionem analyticam, sit 
0 0000916  0 0010847   0 0029558A , , B , , & C ,= = = . Est igitur differentia arcuum ut 

3
2 20 0000916 0 0010847 0 0029558, V , V , V+ +  ; & propterea cum (per corollarium 

Propositionis XXX. applicatum ad hunc casum) resistentia globi in medio arcus 
oscillando descripti, ubi velocitas est V, sit ad ipsius pondus ut 

3
2 27 7 3

11 10 4AV BV CV+ +  & 
ad longitudinem penduli ; si pro A, B & C scribantur numeri inventi, fiet resistentia globi 
ad eius pondus, ut 

3
2 20 0000583 0 0007593  0 0022169, V , V , V+ + ad longitudinem penduli 

inter centrum suspensionis & regulam, id est, ad 121 digitos, Unde cum V in casu secundo 
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designet 1, in quarto 4, in sexto 16.: erit resistentia ad pondus globi in casu secundo ut 
0,0030345  ad 121, in quarto ut 0,041748 ad 121, in sexto ut 0,61705 ad 121. 
 Arcus quem punctum in filo nototum in casu sexto descripsit, erat 2

3

8 5
299120  seu 119−  

digitorum. Et propterea cum radius esset 121 digitorum, & longitudo penduli inter 
punctum suspensionis & centrum globi esset 126 digitorum, arcus quem centrum globi 
descripsit erat 3

31124 digitorum. Quoniam corporis oscillantis velocitas maxima, ob 
resistentiam aeris, non incidit in punctum infimum arcus descripti, sed in medio fere loco 
arcus totius versatur: haec eadem erit circiter ac si globus descensu suo toto in medio non 
resistente describeret arcus illius partem dimidiam digitorum 3

6262 , idque in cycloide, ad 
quam motum penduli supra reduximus: & propterea velocitas illa aequalis erit velocitati 
quam globus, perpendiculariter cadendo & casu suo describendo altitudinem arcus illius 
finui verso aequalem, acquirere posset. Est autem sinus ille versus in cycloide ad arcum 
istum 3

6262  ut arcus idem ad penduli longitudinem duplam 252, & propterea aequalis 
digitis 15,278. Quare velocitas ea ipsa est quam corpus cadendo & casu suo spatium 
15,278 digitorum describendo acquirere posset, Tali igitur cum velocitate globus 
resistentiam patitur,  quae sit ad eius pondus ut 0,61705 ad 121, vel (si resistentiae pars 
illa sola spectetur quae est in velocitatis ratione duplicata) ut 0,56752 ad 121. 
 Experimento autem hydrostatico inveni quod pondus globi huius 
lignei esset ad pondus globi aquei magnitudinis eiusdem ut 55 ad 97: & propterea cum 
121 sit ad 213,4 in eadem ratione, erit resistentia globi aquei praefata cum velocitate 
progredientis ad ipsius ondus ut 0,56752 ad 213,4 id est, ut 1 ad 1

50376 . Unde cum 
pondus globi aquei, quo tempore globus cum velocitate uniformiter continuata describat 
longitudinem digitorum 30,556, velocitatem illam omnem in globo cadente generare 
posset , manifestum est quod vis resistentiae eodem tempore uniformiter continuata 
tollere posset velocitatem minorem in ratione 1 ad 1

50376 , hoc est, velocitatis totius 

partem 1
50

1
376  . Et propterea quo tempore globus, ea cum velocitate uniformiter continuata, 

longitudinem semidiametri suae, seu digitorum 1
163 describere posset, eodem amitteret 

motus sui partem 1
3542 . 

 Numerabam etiam oscillationes quibus pendulum quartam motus sui partem amisit. In 
sequente tabula numeri supremi denotant longitudinem arcus descensu primo descripti, in 
digitis & partibus digita exprectam : numeri medii significant longitudinem arcus ascensu 
ultimo descripti; & loco infimo stant numeri oscillationum. Experimentum descripsi 
tanquam magis accuratum quam cum motus pars tantum octava amitteretur. Calculum 
tentet qui volet. 
 

descensus primus 2 4 8 16 32 64 
Ascensus ultimus  1

21  3 6 12 24 48 
Numerus oscillat. 374 272 1

2162 1
283 2

341 2
322  
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 Postea globum plumbeum diametro digitorum 2, & pondere unciarum Romanarum 
1
426  suspendi filo eodem, sic ut inter centrum globi & punctum suspensionis intervallum 

esset pedum 1
210 , & numerabam oscillationes quibus data motus pars amitteretur. 

Tabularum subsequentium prior exhibet numerum oscillationum quibus pars octava motus 
totius cessavit; secunda numerum oscillationum quibus eiusdem pars quarta amissa fuit. 
  

descensus primus 1 2 4 8 16 32 64 
Ascensus ultimus  7

8  7
4  1

23  7 14 28 56 
Numerus oscillat. 226 228 193 140 1

290 53 30 
 

descensus primus 1 2 4 8 16 32 64 
Ascensus ultimus  3

4  1
21  3  6 12 24 48 

Numerus oscillat. 510 518 420 318 204 121 70 
 
 In tabula priore seligendo ex observationibus tertiam, quintam & septimam, & 
exponendo velocitates maximas in his observationibus particulatim per numeros 1, 4, 16 
respective, & generaliter per quantitatem V ut supra: emerget in observatione tertia 

1
2

193 A B C= + + , in quinta 1
2

2
90 4 8 16A B C= + + , in septima 8

30 16 64 256A B C= + + . Hae 

vero aequationes reductae dant 0 0014  0 000297  0 000879A , , B , , C ,= = = .  Et inde prodit 
resistentia globi cum velocitate V moti in ea ratione ad pondus suum unciarum 1

426 , 

quam habet 
3
2 20 0009 0 000208 0 000659, V , V , V+ +  ad penduli longitudinem 121 

digitorum. Et si spectemus eam solummodo resistentiae partem quae est in duplicata 
ratione velocitatis, haec erit ad pondus globi ut 20 000659, V  ad 121 digitos. Erat autem 
haec pars resistentiae in experimento primo ad pondus globi lignei unciarum 

27
2257 ut 0 002217  ad 121, V : & inde sit resistentia globi lignei ad resistentiam globi 

plumbei (paribus eorum velocitatibus) ut 7 1
22 457 in 0 002217 ad 26  in 0 000659, , , id est, ut  

1
37 ad 1. Diametri globorum duorum erant 7

86  & 2 digitorum, & harum quadrata sunt ad 

invicem ut 1
447  & 4 seu 15

1611   & 1 quamproxime. Ergo resisteniae globorum 
aequivelocium erant in minore ratione quam duplicata diametrorum. At nondum 
consideravimus resistentiam fili, quae certe per magna erat, ac de pendulorum inventa 
resistentia subduci debet. Hanc accurate definire non potui, sed maiorem tamen inveni 
quam partem tertiam resistentiae totius minoris penduli; & inde didici quod resistentiae 
globorum, dempta fili resistentia, sunt quam proxime in duplicata ratione diametrorum. 
Nam ratio 1 1 1

3 3 37  ad 1− − , seu 1
210  ad 1 non longe abest a diametrorum ratione 15

1611  
duplicata ad 1. 
 Cum resistentia fili in globis maioribus minoris sit momenti, tentavi etiam 
experimentum in globo cuius diameter erat 3

418  digitosum. Longitudo penduli inter 
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punctum suspensionis & centrum oscillationis erat digitorum 1
2122 , inter punctum 

suspensionis & nodum in filo 1
2109  dig. Arcus primo penduli descensu a nodo descriptus 

32 dig. Arcus ascensu ultimo post oscillationes quinque ab eodem nodo descriptus 28 dig. 
Summa arcuum seu arcus totus oscillatione mediocri descriptus 60 dig. Differentia 
arcuum 4 dig. ; Eius pars decima seu differentia inter descensum & ascensum in 
oscillatione mediocri 2

5  dig. Ut radius 1
2109  ad radium 1

2122   ita arcus totus 60 dig. 

oscillatione mediocri a nodo descriptus ad arcum totum 1
867  dig. oscillatione mediocri a 

centro globi descriptum , & ita differentia 2
5  ad differentiam novam 0,4475. Si longitudo 

penduli, manente Iongitudine arcus descripti, augeretur in ratione 126 ad 1
2122 ; tempus 

oscillationis augeretur & velocitas penduli diminueretur in ratione illa subduplicata, 
maneret vera arcuum descensu & subsequente ascensu descriptorum differentia 0,4475. 
Deinde si arcus descriptus augeretur in ratione 3 1

31 8124  ad 67 , differentia ista 0,4475 
augeretur in duplicata illa ratione, ideoque evaderet 1,5295. Haec ita se haberent, ex 
hypothesi quod resistentia penduli esset in duplicata ratione velocitatis. Ergo si pendulum 
describeret arcum totum 3

31124  digitorum, & longitudo eius inter punctum 
suspensionis & centrum oscillationis esset 126 digitorum, differentia arcuum descensu & 
subsequente ascensu descriptorum foret 1,5295 digitorum. Et haec differentia ducta in 
pondus globi penduli, quod erat unciarum 208, producit 318,136. Rursus ubi pendulum 
superius ex globe ligneo constructum centro oscillationis, quod a puncto suspensionis 
digitos 126 distabat, describebat arcum totum 3

31124  digitorum, differentia arcuum 

descensu & ascensu descriptum fuit 2
3

126 8
121 9in  , quae ducta in pondus globi, quod erat 

unciarum 7
2257 , producit 49,396. Duxi autem differentias hasce in pondera globorum, ut 

invenirem eorum resistentias. Nam differentiae oriuntur ex resistentiis, suntque ut 
resisteniae directe & pondera inverse. Sunt igitur resistentia ut numeri 318,136 & 49,396. 
Pars autem resistentiae globi minoris, quae est in duplicata ratione velocitatis, erat ad 
resistentiam totam ut 0,56752 ad 0,61675 id est, ut 45,453 ad 49,396 ; & pars resistentiae 
globi maioris propemodum aequatur ipsius resisteniae toti , ideoque partes illae sunt ut 
318,136 & 45,453 quamproxime, id est, ut 7 et 1. Sunt autem globorum diametri 

3 7
4 818  et 6  ; & harum quadrata 9 17

16 64351  et 47  sunt ut 7,438  et 1, id est, ut globorum 
resisteniae 7 & 1 quamproxime. Differentia rationum haud maior est, quam quae ex fili 
resistentia oriri potuit. Igitur resistentiarum partes illae quae sunt, paribus globis, ut 
quadrata velocitotum, sunt etiam, paribus velocitatibus, ut quadrata diametrorum 
globorum. 
 Caeterum globorum, quibus usus sum in his experimentis, maximus non erat perfecte 
sphaericus,& propterea in calculo hic allato minutias quasdam brevitatis gratia neglexi; de 
calculo accurato in experimento non satis accurato minime sollicitus, Optarim itaque, 
cum demonstratio vacui ex his dependeat, ut experimenta cum globis & pluribus & 
maioribus & magis accuratis tentarentur. Si globi sumantur in proportione geometrica, 
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puta quorum diametri sint digitorum 4, 8, 16, 32 ; ex progressione experimentorum 
colligetur quid in globis adhuc maioribus evenire debeat. 
 Iam vero conferendo resistentias diversorum fluidorum inter se, tentavi sequentia. 
Arcam ligneam paravi longitudine pedum quatuor, latitudine & altitudine pedis unius. 
Hanc operculo nudatam implevi aqua fontana, fecique ut immersa pendula in medio aquae 
oscillando moverentur. Globus autem plumbeus pondere 1

6166  unciarum, 

diametro 5
83  digitorum movebatur ut in tabula sequente descripsimus, existente videlicet 

longitudine penduli a puncto suspensionis ad punctum quoddam in fila nototum 126 
digitorum ad oscillationis autem centrum 3

8134  digitorum. 
 

Arcus descensu primo a puncto in filo  
notato descriptus, digitorum  

64 32 16 8 4 2 1 1
2  1

4  

Arcus ascensu ultimo descriptus, 
 dignitoru ultimus   

48 24 12 6 3 1
21  3

4  3
8  5

16  

Arcuum differentia motui amisso  
proportionalis, digitorumt.  

16 8 4 2 1 1
2  1

4  1
8  1

16  

Numerus oscillationum in aqua   29
60  1

31  3 7 1
411  2

312  1
313  

Numerus oscillationum in aere 1
285   287 535      

 
 
 In experimento columnae quartae, motus aequales oscillationibus 535 in aere, & 1

31  in 
aqua amissi sunt. Erant quidem oscillationes in aere paulo celeriores quam in aqua. At si 
oscillationes in aqua in ea ratione accelerarentur ut motus pendulorum in medio utroque 
fierent aequiveloces, maneret numerus idem oscillationum 1

31  in aqua, quibus motus idem 
ac prius amitteretur , ob resistentiam auctam & simul quadratum temporis diminutum in 
eadem ratione illa duplicata. Paribus igitur pendulorum velocitatibus motus aequales in 
aere oscillationibus 535 & in aqua oscillationibus 1

31  amissi sunt; ideoque resistentia 

penduli in aqua est ad eius resistentiam in aere ut 535 ad 1
31 . Haec est proportio 

resistentiarum totarum in casu columnae quartae. 
 Designet iam 2AV CV+ differentiam arcuum in descensu & subsequente 
ascensu descriptorum a globo in aere cum velocitate maxima V moto; & cum velocitas 
maxima in casu columnae quartae sit ad velocitatem maximam in casu columnae primae, 
ut 1 ad 8; & differentia illa arcuum in casu columnae quartae ad differentiam 
in casu columnae primae ut 1

2

162
535 85 ad  ad seu ut 1

285  ad 4280: scribamus 

in his casibus 1 & 8 pro velocitatibus, atque 1
285  & 4280 pro differentiis arcuum, & fiet 

1
285A C+ = ; et 8 64 4280A C+ =  seu 8 535A C+ =  ; indeque per reductionem 

aequationum proveniet 31 2
2 4 77 449   64  et  21C & C A= = =  : atque ideo resistentia cum 

sit ut 27 3
11 4AV  CV+ , erit ut 26 9

11 5613 48V  V+ . Quare in casu columnae quartae ubi 
velocitas erat 1, resistentia tota est ad partem suam quadrato velocitatis proportionalem, ut 
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6 9 912
11 56 17 5613 48  seu 61  ad 48 +  ; & idcirco resistentia penduli in aqua est ad resistentiae 

partem illam in aere, quae quadrato velocitatis proportionalis est, quaeque sola in motibus 
velocioribus consideranda venit, ut 912

17 5661  ad 48  & 535  ad 1
51 coniundim, id est, ut 571 

ad 1. Si penduli in aqua oscillantis filum totum fuisset immersum, resistentia eius fuisset 
adhuc maior; adeo ut penduli in aqua oscillantis resistentia illa, quae velocitatis quadrato 
proportionalis est, quaeque sola in corporibus velocioribus consideranda venit, sit ad 
resistentiam eiusdem penduli totius, eadem cum velocitate in aere oscillantis, ut 850 ad 1 
circiter, hoc est, ut densitas aquae ad densitatem aeris quamproxime. 
 In hoc calculo sumi quoque deberet pars illa resistentiae penduli in aqua, quae esset ut 
quadratum velocitatis, sed (quod mirum forte videatur) resistentia in aqua augebatur in 
ratione velocitatis plus quam duplicata. Eius rei causam investigando, in hanc incidi, quod 
area nimis angusta esset pro magnitudine globi penduli, & motum aquae cedentis prae 
angustia sua nimis impediebat. Nam si globus pendulus, cuius diameter erat digiti unius, 
immergeretur ; resistentia augebatur in duplicata ratione velocitatis quam proxime. Id 
tentabam construendo pendulum ex globis duobus, quorum inferior & minor oscillaretur 
in aqua, superior & maior proxime supra aquam filo affixus esset, et in aere oscillando, 
adiuvaret motum penduli eumque diuturniorem redderet. Experimenta autem hoc modo 
instituta se habebant ut in tabula sequente describitur. 
 

Arcus descensu primo descritus  16 8 4 2 1 1
2  1

4  
Arcus ascensu ultimo descriptus   12 6 3 1

21  3
4  3

8  5
16  

Arcuum diff. motui amisso proport.  4 2 1 1
2  1

4  1
8  1

16  
Numerus oscillationum  3

83 1
26 1

1212  1
521  34 53 1

562  
 
 
 Conferendo resistentias mediorum inter se, effeci etiam ut pendula ferrea oscillarentur 
in argento vivo. Longitude fili ferrei erat pedum quasi trium, & diameter globi penduli 
quasi tertia pars digiti, Ad filum autem proxime supra mercurium affixus erat globus 
alius plumbeus satis magnus ad motum penduli diutius continuandum. Tum vasculum, 
quod capiebat quart libras tres argenti vivi, implebam vicibus alternis argento vivo & aqua 
communi, ut pendulo in fluido utroque successive oscillante, invenirem proportionem 
resistentiarum: & prodiit resistentia argenti vivi ad resistentiam aquae ut 13 vel 14 ad 1 
circiter: id est, ut densitas argenti vivi ad densitatem aquae. Ubi globum pendulum paulo 
maiorem adhibebam, puta cuius diameter esset quasi 1 2

3 3vel  partes digiti, prodibat 
resistentia argenti vivi in ea ratione ad resistentiam aquae, quam habet numerus 12 vel 10 
ad 1 circiter. Sed experimento priori magis fidendum est, propterea quod in his ultimis vas 
nimis angustum fuit pro magnitudine globi immersi. Ampliato globo, deberet etiam vas 
ampliari. Constitueram quidem huiusmodi experimenta in valis maioribus & in liquoribus 
tum metallorum fusorum, tum aliis quibusdam tam calidis quam frigidis repetere: sed 
omnia experiti non vacat, & ex iam descriptis satis liquet resistentiam corporum celeriter 
motorum densitati fluidorum in quibus moventur proportionalem esse quam proxime. Non 
dico accurate. Nam fluida tenaciora, pari densitate, proculdubio magis resistunt quam 
liquidiora, ut oleum frigidum quam calidum, calidum quam aqua pluvialis, aqua quam 
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spiritus vini. Verum in liquoribus, qui ad sensum satis fluidi sunt, ut in aere, in aqua seu 
dulci seu salsa, in spiritibus vini, terebinthi & salium, in oleo a faecibus per destillationem 
liberato & calefacto, oleoque vitrioli & mercurio, ac metallis liquefactis, & si qui sint alii, 
qui tam fluidi sunt ut in vasis agitati motum impressum diutius conservent, effusique 
liberrime in guttas decurrendo resolvantur, nullus dubito quin regula allata satis accurate 
obtineat : praesertim si experimenta in corporibus pendulis & maioribus & velocius motis 
instituantur. 
 Denique cum nonnullorum opinio sit, medium quoddam aethereum et longe 
subtilissimum extare, quod omnes omnium corporum poros & meatus liberrime permeet; 
a tali autem medio per corporum poros fluente resistentia oriri debeat : ut tentarem an 
resistentia, quamin motis corporibus experimur, tota sit in eorum externa superficie, an 
vero partes etiam internae in superficiebus propriis resistentiam notabilem sentiant, 
excogitavi experimentum tale. Filo pedum undecim longitudinis ab unco chalybeo satis 
firmo, mediante annulo chalybeo, suspendebam pyxidem abiegnam rotundam, ad 
constituendum pendulum longitudinis praedictae. Uncus sursum preacutus erat acie 
concave, ut annulus arcu suo superiore aciei innixus liberrime moveretur. Arcui autem 
inferiori annectebatur filum. Pendulum ita constitutum deducebam a perpendiculo ad 
distantiam quasi pedum sex, idque secundum planum aciei unci perpendiculare, ne 
annulus, oscillante pendulo, supra aciem unci ultro citroque laberetur. Nam 
punctum suspensionis, in quo annulus uncum tangit, immotum manere debet. Locum 
igitur accurate notabam, ad quem deduxeram pendulum, dein pendulo demisso notabam 
alia tria loca ad que redibat in fine oscillationis primae, secundae ac tertiae. Hoc 
repetebam sepius, ut loca illa quam potui accuratissime invenirem. Tum pyxidem plumbo 
& gravioribus, quae ad manus erant, metallis implebam. Sed prius ponderabam pyxidem 
vacuam, una cum parte fili quae circum pyxidem volvebatur ac dimidio partis reliquae 
quae inter uncum & pyxidem pendulam tendebatur. Nam filum tensum dimidio ponderis 
sui pendulum a perpendiculo digressum semper urget. Huic ponderi addebam pondus 
aeris quem pyxis capiebat. Et pondus totum erat quasi pars septuagesima octava pyxidis 
metallorum plene. Tum quoniam pyxis metallorum plenae, pondere suo tendendo filum, 
augebat longitudinem penduli, contrahebam filum ut penduli iam oscillantis eadem esset 
longitudo ac prius. Dein pendulo ad locum primo notarum retracto ac dimisso, 
numerabam oscillationes quasi septuaginta & septem, donec pyxis ad locum secundo 
nototum rediret, totidemque subinde donec pyxis ad locum tertio nototum rediret, atque 
rursus totidem donec pyxis reditu suo attingeret locum quartum. Unde concludo quod 
resistentia tota pyxidis plenae non maiorem habebat proportionem ad resistentiam pyxidis 
vacuae quam 78 ad 77. Nam si aequales essent ambarum resisteniae, pyxis plena ob vim 
suam insitam septuagies & octies maiorem vi insita pyxidis vacue, motum suum 
oscillarorium tanto diutius conservare deberet, atque ideo completis semper 
oscillationibus 78 ad loca illa notata redire. Rediit autem ad eadem completis 
oscillationibus 77. 
 Designet igitur A resistentiam pyxidis in ipsius superficie externa, & B resistentiam 
pyxidis vacua in partibus internis; & si resistentiae corporum aequivelocium in partibus 
internis sint ut materia, seu numerus particularum quibus resistitur: erit 78 B resistentia 
pyxidis plenae in ipsius partibus internis: ideoque pyxidis vacue resistentia 
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tota A B+  erit ad pyxidis plenae resistentiam totam 78A B+ ut 77 ad 78, & divisim A B+  
ad 77B, ut 77 ad 1, indeque A B+  ad B ut 77 77×  ad 1, & divisim A ad B ut 5918 ad1. 
Est igitur resistentia pyxidis vacue in partibus internis quinquies millies minor 
quam eiusdem resistentia in externa superficie, & amplius. Sic vero disputamus ex 
hypothesi quod maior illa resistentia pyxidis plenae, non ab alia aliqua causa latente 
oriatur, sed ab actione sola fluidi alicuius subtilis in metallum inclusum. 
 Hoc experimentum recitavi memoriter. Nam charta, in qua illud aliquando 
descripseram, intercidit. Unde fractas quasdam numerorum partes, quae memoria 
exciderunt, omittere compulsus sum. 
 Nam omnia denuo tentare non vacat. Prima vice, cum unco infirmo usus essem, pyxis 
plena citius retardabatur. Causam querendo, reperi quod uncus infirmus cedebat ponderi 
pyxidis, & eius oscillationibus obsequendo in partes omnes flectebatur. Parabam 
igitur uncum firmum, ut punctum suspensionis immotum maneret, & tunc omnia ita 
evenerunt uti supra descripsimus. 
 


