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SECTION VII. 

 
Concerning the motion of fluids & the resistance of projectiles. 

 
PROPOSITION XXXII. THEOREM XXVI. 

 If two similar systems of bodies may consist of an equal number of particles, and the 
corresponding particles shall be similar and proportional, with an individual in one 
system to an individual in the other, and situated similarly to each other, and in turn they 
may have a given ratio of density to each other, and they may begin to move similarly 
between each other in proportion to the time (these amongst themselves which are in one 
system and those amongst themselves which are in the other system),  and if those which 
are in the same system may not touch each other, except at instants of reflection, nor 
attract each other, nor repel each other, except by accelerative forces which shall be 
inversely as the corresponding diameters of the particles and directly as the squares of 
the velocities : I say that these particles of the systems may in proportional times go on 
moving similarly among themselves. 
 
[In this proposition, Newton sets out his mechanical view of the world, essentially 
following the geometrical lines of Euclidean geometry : the motions of particles proceed 
along straight lines in time; groups of particles or bodies may describe geometrical figures 
under the influence of action at a distance forces ; collisions between particles and bodies 
also are geometrical in form, in that they have outcomes known from calculation given 
the in-going boundary conditions ; thus, the whole motion of a system of particles and 
bodies proceeds like some giant piece of clockwork, for ever; thus, such a system could 
be traced back to some starting configuration in the past, as Laplace was to observe later. 
The formulas introduced here in the notes correspond to these in Ch. IV, B. & R.; these 
authors have changed the order of presenting Newton's work at this point.] 
 
 I say that similar bodies, situated similarly, move similarly amongst themselves in 
proportional times, the situations of which in turn at the end of these times shall be similar 
always: for example, the particles of one system may be compared with the corresponding 
particles of the other system. From which the times shall be proportional, in which the 
parts of similar and proportional figures will be described by corresponding particles [in 
the given system]. Therefore if there shall be two systems of this kind, on account of the 
similitude of the starting motions, they will proceed to move similarly, until finally they 
may meet each other. For if they are not disturbed by forces, they may be progressing 
uniformly on right lines by the first law of motion. If they may be mutually disturbed by 
some forces, and these forces shall be inversely as the diameters of the corresponding 
particles and directly as the velocity squared, because the situations of the particles are 
similar and the forces proportional, the whole forces by which the corresponding particles 
are agitated, composed from individual agitating forces (by the corollary of the second 
law), will have similar determinations, and likewise as if the forces may be considered 
acting between the centres of similarly situated particles ; and those total forces in turn 
will be as the individual composing forces, that is, inversely as the diameters of the 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 608 

corresponding particles and as square of the velocities directly: and therefore the forces 
act so that the particles go on to describe corresponding figures. Thus these themselves 
may be had  (by Corol.1 & 8, Prop. IV. Book. I.) only if the centres may be at rest. But if 
the centres may be moving, because on account of the similitude of the translations, the 
particles of the systems remain in their places ; similar changes may be produced in the 
figures which the particles describe. Therefore the motions of the corresponding particles 
are similar until their first meeting, and therefore there are similar meetings  and 
reflections, and from that (by that shown) the motions among themselves again are similar 
until they next meet, and thus henceforth indefinitely. Q.E.D. 
 
Corol.1. Hence if any two [large] bodies, which shall be similar and similarly put in place 
corresponding to the particles of the systems, similarly may begin to move between 
themselves in proportional times, and the magnitudes of these bodies shall be as the 
densities and in turn as the magnitudes and densities of the corresponding particles: these 
bodies may likewise proceed in proportional times and to be moving similarly. For the 
ratio of each of the greater parts of the system and of the particles is the same.  
 
Corol. 2. And if all similar and similarly placed parts of systems are at rest relative to 
each other: and two parts of these, which shall be larger than the rest, and may correspond 
between each other mutually in each system, may begin to move with some motion along 
similar lines similarly situated : these may excite similar motions in the remaining parts of 
the systems, and may go on to move similarly between themselves in proportional times ; 
and thus to describe distances proportional to their own diameters. 
 

PROPOSITION XXXIII. THEOREM XXVII. 
 With the same in place, I say that the greater parts of the system are resisted in the 
ratio composed from the square of their velocities and the square ratio of the diameters 
and in the ratio of the densities of the parts of the system. 
 
 For the resistance arises partially from the centripetal or centrifugal forces by which 
the particles of the systems mutually disturb each other, partially from the coming 
together and reflections of the particles,  and of the greater parts [present in the systems].  
Moreover, the resistances of the first kind in turn shall be as the whole motive forces from 
which they arise, that is, the accelerations and quantities of matter in the corresponding 
parts ; that is (by hypothesis) as the squares of the velocities directly and inversely as the 
distances of the corresponding particles, and directly as the quantities of matter in the 
corresponding parts :  
[We may write these resistive forces algebraically, in an obvious notation, in the 
form:

2 3 2 2v
d d v d .ρ ρ× = × × ] 

and thus since the distances of one system of particles shall be to the corresponding 
distances of the other particles, as the diameter of the particle or of the parts in the first 
system to the diameter of the particles, or to the corresponding parts in the other, and the 
quantities of matter shall be as the densities of the parts and the cubes of the diameters;  
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the resistances shall be in turn as the squares of the velocities and the squares of the 
diameters of the parts of the systems. Q.E.D.  
 The resistances of the second kind are as the number of corresponding reflections and 
the forces taken together. But the number of reflections are in turn as the velocities of the 
corresponding parts directly, and inversely as the distances between the reflections of 
these. And the forces of the reflections are as the velocities and the magnitudes and 
densities of the corresponding parts jointly ; that is, as the velocities and the cubes of the 
diameters and the densities of the parts. And from all these ratios jointly, the resistance of 
the corresponding parts are in turn as the squares of the velocities and the squares of the 
diameters and the densities of the parts jointly. Q. E. D. 
 
[In the second case, the resistances can be written as the frequency of the collisions by the 
momentum change per collision. The frequency is given by v

d , where d is the particle 
separation and v the velocity; the momentum change per collision is proportional to 

3v dρ× × , giving same result 3 2 2v
d v d v dρ ρ× × = × × as above.] 

 
Corol. 1. Therefore if these systems shall be two elastic fluids after the manner of air, and 
the parts of these may be at rest within themselves : moreover two similar bodies may be 
projected along certain lines put in place in some manner, similarly put in place among 
these parts, as long as the magnitude and density shall be proportional, and moreover the 
accelerative forces, by which the particles of the fluid disturb each other, shall be 
inversely as the diameters of the projected bodies, and directly as the squares of the 
velocities: then these bodies will excite motions in the fluids proportional to the times, 
and describe similar distances with their diameters proportional to these. 
 
Corol. 2. Therefore in the same fluid a swift projectile suffers a resistance, which is in the 
square ratio of the velocity approximately. For if the forces, by which distant particles 
mutually agitate each other, may be increased in the square ratio of the velocity, the 
resistance will be in the same ratio squared accurately ; and thus in a medium, the parts of 
which in turn are disturbed by no forces with the distances, the resistance is accurately in 
the square ratio of the velocity. Therefore let there be three mediums A, B, C with similar 
and equal parts consistently set out regularly along equal distances. The parts of the 
mediums A and B may mutually repel each other by forces which shall be in turn as T and 
V, and these parts of the medium C shall be completely free from forces of this kind. And 
if four equal bodies D, E, F, G  may be moving in these mediums, the first two D and E in 
the first two mediums A and B, and the other two F and G in the third medium C.  

[i.e. D is in medium A, E is in medium B; F and G are in medium C.] 
The velocity of the body D to the velocity of the body E, and the velocity of the body F to 
the velocity of the body G shall be in the square root ratio of the forces T to the forces V  
[i.e. vel.of vel.of 

vel.of vel.of 
D F T
E G V= = ; recall that the resistances are as the square of the velocities 

and inversely as the diameters of the particles, which latter are equal in this case, and 
hence] 
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: the resistance of the body D will be to the resistance of the body E, and the resistance of 
the body F to the resistance of the body G, in the square ratio of the velocities, and 
therefore the resistance of the body D will be to the resistance of the body F as the 
resistance of the body E to the resistance of the body G.  
 
[ i.e. res.of res.of 

res.of res.of  and if vel.of vel.of  then vel.of vel.of D F T
E G V D F E G.= = = = ] 

 
Let the bodies  D & F have equal velocities, as with the bodies E & G; and on increasing 
the velocities of the bodies D and F in some ratio, and by reducing the forces of the 
particles of the medium  B in the same ratio, the medium B will approach to the form and 
condition of the medium C as it pleases, and on that account the resistances of the equal 
bodies and of the bodies moving equally E & G in these mediums, may always approach 
to equality, thus so that the difference may emerge finally less than any given amount. 
Hence since the resistances of the bodies D and F shall be in turn as the resistances of the 
bodies E and G, these similarly approach to the ratio of equality. Therefore the resistances 
of the bodies D and F are approximately equal, when they are moving fastest : and 
therefore since the resistance of the body F shall be in the square ratio of the velocity, the 
resistance of the body D will be approximately in the same ratio. 
[Thus, if a body is moving much faster than the particles of the medium, they can be 
considered at rest, and all the collisions occur with particles as if at rest, for which the v2 
formula holds accurately.] 
Corol. 3. The resistance of the fastest moving body in some elastic fluid is almost the 
same as if the parts of the fluid were without their centrifugal forces, and with these not 
mutually repelling each other : but only if the elastic force of the fluid may arise from the 
centrifugal forces of the particles, and the velocity shall be so great that the forces have 
not enough time to act. 
 
Corol. 4. Hence since the resistances of similar and equally swift bodies, in a medium of 
which the distant parts do not fly apart mutually, shall be as the squares of the diameters ; 
also the resistances of the fastest and equally speedy bodies in an elastic fluid are as the 
squares of the diameters approximately. 
 
Corol: 5. And since similar bodies, equal and equally swift, in mediums of the same 
densities, the particles of which do not mutually fly apart, these particles either shall be 
more plentiful and smaller, or fewer and larger, may impinge on equal quantities of matter 
in equal times, may impress an equal quantity of motion, and in turn (by the third law of 
motion) from the same they may experience an equal reaction, that is, they are resisted 
equally : it is evident also that the resistances of the same density of elastic fluids shall be 
approximately the same, when they are moving the quickest, whether that fluid shall 
consist of grosser particles, or be constituted from the most subtle of all. From the most 
subtle resistance the speed of the fastest projectiles is not much diminished. 
 
Corol. 6. All these thus may themselves come about in fluids, the elastic force of which 
has its origin in the centrifugal forces of the particles. But if that may arise otherwise, or 
as from the expansion of the particles in the manner of wool or the branches of trees, or 
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from any other cause whatever, by which the motions of the particles among themselves  
are rendered less free, on account of smaller fluidity of the medium, it will be greater than 
in the above corollaries. 
 
[We now need to consider the effect of the individual shapes of bodies on the resistance. 
It is necessary to assume that the density of the fluid particles is much rarer than of the 
solid body, and each fluid particle can deliver its blow independently without interference 
from other particles of fluid] 
 

PROPOSITION XXXIV. THEOREM XXVIII. 
 If a sphere and a cylinder be described with equal diameters moving with equal 
velocity, in a rarefied medium with equal particles, and with these being placed freely at 
equal distances along the direction of the axis of the cylinder : the resistance of the 
sphere will be half the resistance of the cylinder. 
 For because the action of the medium on the same body is the same (by corol.5 of the 
laws) whether the body may be moving in a medium at rest, or the particles of the 
medium may strike the body at rest with the same velocity : we may consider the body as 
being at rest, and we may consider by which impetus it 
may be urged by the moving medium. Therefore ABKI 
may designate the spherical body described with centre 
C and with radius CA, and medium particles may be 
incident on that spherical body with a given velocity, 
along right lines parallel to AC itself : and let FB be a 
right line of this kind. On that LB may be taken equal 
to the radius CB, and BD may be drawn a tangent to 
the sphere at B. The perpendiculars BE and LD may be 
sent to the lines  KC and BD, and the force by which a 
particle of the medium, by being incident obliquely along the right line FB, strikes the 
sphere at  B, will be to the force by which the particle may strike the same cylinder 
ONGQ at b, with the axis ACI described perpendicularly around the sphere, as LD to LB 
or as BE to BC 
 [i. e. as the cosine of the angle θ ; thus, the normal component of the force striking the 

body on a small planar area A at that point varies as 2 2Av cos θ× , where the average 
value of 2cos θ must be calculated. Since only the component of this force along the 

direction of motion is required, the resistance is as 2 3Av cos θ× . Thus for a spherical 

surface, the force on an annulus is proportional to 2 3 22 r sin cos v dπ θ θ θ× , which 
integrates to give 2 2

42 rv rπ × ; which is half the value for a great circle; below we show 
how S. & J. tackle this problem geometrically.]  
Again the effectiveness of this force to the movement of the sphere along  its direction FB 
or AC, is to the same effectiveness of the sphere moving along the direction of its 
determination, that is, along the direction BC by which the sphere may be urged directly 
as BE to BC. And with the ratios taken jointly, the effectiveness of a particle on the sphere 
along the oblique right line FB, to the same being moved along the direction of its 
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incidence, is to effectiveness of the same particle incident on the cylinder along the same 
right line perpendicularly, to that required circle to be moved in the same direction, as BE 
squared to BC squared. Whereby if on bE, which is perpendicular to the circular base of 
the cylinder NAO and equal to the radius AC, bH may be taken equal to .BEquad

CB  ;  bH will 
be to bE as the effectiveness of the force of the particle on the sphere to the effectiveness 
of the force of the particle on the cylinder. And therefore the solid that may be occupied 
by all the right lines bH will be to the solid which may be occupied by all the right lines 
bE, as the effect of all the particles on the sphere to the effect of all the particles on the 
cylinder. But the first solid is a paraboloid described with vertex C, axis CA and with the 
latus rectum CA , and the latter solid is the circumscribed cylinder to the paraboloid : and 
it is to be noted that the paraboloid shall be half of the circumscribed cylinder. Therefore 
the total force of the medium on the sphere is twice as small as the same total force on the 
cylinder. And therefore if the particles of the medium are at rest, and both the cylinder 
and the sphere may be moving with equal velocities, the resistance of the sphere will be 
less than the resistance of the cylinder by a factor of two. Q.E.D. 
 
[L. & S. notes : If on all the points of the right line 
NA perpendiculars may be erected as bH and bE, and 
let NHC be that curve the point H always touches, 
and the line KC the locus of all the points E; the 
solid that may be occupied by all the perpendiculars 
bH, drawn through the whole base of the cylinder, 
will be equal to a conoid or to the solid figure which 
may be generated by the rotation made of the plane 
figures NHCA about the axis CA, and the solid that 
may be formed from all the right lines bE will be the 
cylinder described by the rotation of the rectangle 
AK made about the same axis.  
    Since, by construction, there shall be 

2 2 2 2 and thus BE
CBbH bH CB BE BC CE= × = = − , and from the nature of the circle, 

BC CA KC= = , and thus ( )2 2 2 and  or ,BE KC CE bH CB, KC EH KC= − × − × or  
2 2 2KC KC EH KC CE ,− × = −  and thus 2;KC EH CE× = but if the point H may be 

drawn to CA, the perpendicular ordinate, this must be equal to  CE, and from CA there 
may be cut the part equal to EH. Whereby the rectangle under the given abscissa and the 
given line KC or CA, is equal to the square of the ordinate the perpendicular CA; thence 
the curve CHN, by Theorem I (de parabola ; Apollonius) is a parabola the vertex of which 
is C, the axis CA, and the latus rectum CA.  
  The paraboloid or solid generated from the rotation of the parabola CHN, about the 
axis CA is half of the circumscribed cylinder, which is produced from the rotation of the 
rectangle AK about the line CA. Through the moveable point P, the normal PM is erected 
to the axis CA, cutting the parabola in H, and the right line KN in M; and in the rotation of 
the whole figure about the axis CA, the lines PH and PM describe circles, which will be 
among themselves as the squares of the radii PH and IM, or, from the nature of the 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 613 

parabola and on account of PM AN= , as the abscissae CP and CA. Now the point P is 
drawn with the vertical PHM through the whole altitude CA, and the solid arising from 
the rotation of the figure CHN will be to the cylinder arising from the rotation of the 
rectangle CKNA, as the sum of all the circles which the moving line PH will describe by 
rotating, to the sum of all the circles which the right line PM will describe, that is, as the 
sum of all CP , to the sum of all CA. On the line AN there may be taken AR equal to AC, 
CR is joined cutting PH in L, and the perpendicular RQ is erected to AR, cutting PM in V; 
since there shall always be  and PL CP, PC CA,= =  the sum of all CP, or PL, by the 
whole altitude CA, is the isosceles triangle CRA, and the sum of all CA, or PV, by the 
same altitude CA, is the square CARQ; therefore since the triangle CRA, shall be half of 
the square CARQ, the paraboloid is also half of the circumscribed cylinder.] 
 

Scholium. 
 By the same method other figures may be compared between themselves as far as 
concerns resistance, and these found which are more suited to continue their motion in 
resisting mediums. So that if to the circular base CEBH, which will be described with 
centre O, with radius OC, and with the altitude OD, the 
conic frustum CBGF shall be constructed, which of all 
constructed with the same base and height and their axis 
following towards the direction of progression D shall be 
resisting the least: bisect the height OD in Q and produce 
OQ to S so that there shall be QS equal to QC, and S will 
be the vertex of the cone of which the frustum is sought. 
 
[Following B & R, if the left hand base of the cone has 
radius r, the right hand base has radius r h tanθ− , and 

the resistance of the curved surface will be proportional to ( )22 2sin r r h tanθ θ− − , while 

that of front circle will be proportional to ( )2r h tanθ− , on omitting other constant factors. 

The total resistance can be seen to be 2 2 22r rh sin h sinθ θ− + ; to find the turning point, 
differentiate w.r.t. h and we find 22h sin cos r r sinθ θ θ= − ; if x is the whole height of the 
cone, then this equation becomes : 

22

2 2 2 2
2 2 2

2 42  and xr h hr
r x r x

h r r x hx r x r
+ +

× = − × ∴ − = = + + , leading to the above 

construction.] 
 
 From which by the way, since the angle CSB 
shall always be acute, it follows that if the solid 
ADBE  made may be generated by the rotation 
of the elliptic or oval figure ADBE about the 
axis AB, and the generating figure may be 
touched by the three right lines FG, GH, HI at 
the points F, B and I, by that rule so that GH 
shall be perpendicular to the axis at the point of 
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contact B, and FG, HI may contain with the same GH the angles FGB and BHI of 1350 of 
the solid, that may be generated by rotation of the figure ADFGHIE about the same axis 
AB, resists less than the first solid; but only if each may be progressing along the direction 
of its axis AB, and each end B goes in front. Indeed which proposition I consider to be of 
use in the future construction of ships. 
 But if the figure DNFG shall be a curve of this kind, so that if the perpendicular NM 
may be sent from some point N of this curve to the axis AB, and from some given point G 
the right line GR may be drawn which shall be parallel to the tangent of the figure at N, 
and may cut the axis produced at R, MN will be to GR as GR3 to 24BR GB× ; the solid 
that is described by the revolution made of the figure about the axis AB, in the 
aforementioned rare medium by moving from A towards B, will be resisted less than some 
other encircled solid described with the same length and breadth. 

 
PROPOSITION XXXV. PROBLEM VII. 

 If a rare medium may consist of the smallest equal particles at rest and in turn to be 
placed at equal distances freely : to find the resistance of a sphere progressing uniformly 
in this medium. 
 
 Case 1. A cylinder described with the same diameter and altitude may be understood to 
be progressing with the same velocity along the length of its axis in the same medium. 
And we may consider that the particles of the medium, on which the sphere or cylinder is 
incident, may recoil with the greatest force of reflection. 
 
 [Thus, elastic collisions offer the greatest resistance to motion, and completely inelastic 
collisions the lest resistance, in this model. Thus, for a cylinder of length l, the time to 
describe half the axis will be  

221
2  and the acceleration giving a velocity in this time is l v

v lv ; hence the resistance is 

simply 22Av ρ , where A is the base area of the cylinder and ρ the velocity.]  
 
And since the resistance of the sphere (by the latest Proposition) shall be half as great as 
the resistance of the cylinder, and the [volume of the] sphere shall be to the [volume of 
the] cylinder as two to three, and the cylinder by being incident on the particles 
perpendicularly, and these by being maximally reflected, may impart twice their velocity : 
the cylinder progressing uniformly in that time will describe half the length of its axis, 
will communicate the motion to the particles, which shall be to the whole motion of the 
cylinder as the density of the medium to the density of the cylinder ; and the sphere, in 
which time the whole length of its diameter will be described in progressing uniformly, 
will share the same motion with the particles ; and in that time in which it will describe a 
motion two thirds part of its diameter, that it will communicate to the motion of the 
particles, which shall be to the whole motion of the sphere as the density of the medium to 
the density of the sphere. And therefore the sphere suffers a resistance, which shall be to 
the force by which the whole motion of this may be taken away or generated in which 
time the two thirds part of its diameter will be described by progressing uniformly, as the 
density of the medium to the density of the sphere. 
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 Case 2. We may consider that the particles of the medium incident on the sphere or 
cylinder are not reflected, and by being incident perpendicularly on the particles the 
cylinder will simple communicate its velocity, and thus the resistance experienced is half 
as great as in the previous case, and the resistance of the sphere will also be half as great 
as before. 
 Case 3. We may consider that the particles of the medium are reflected neither 
maximally nor not at all, but they may circle from the sphere in some manner in between, 
and the resistance of the sphere will be in the same mean ratio between the resistance in 
the first case and the resistance in the second case. Q.E.I. 
 Corol. 1. Hence if the sphere and the particles shall be indefinitely hard, and therefore 
destitute of all elasticity and all force of  reflection : the resistance of the sphere will be to 
the force by which the whole of that motion may be removed or generated, in the time 
that the sphere can describe four thirds parts of its diameter, as the density of the medium 
to the density of the sphere. 
 Corol. 2. The resistance of the sphere, with all else being equal, is in the square ratio of 
the velocity. 
 Corol. 3. The resistance of the sphere, with all else being equal, is in the square ratio of 
the diameter. 
 Corol. 4 The resistance of the sphere, with all else being equal, is as the density of the 
medium. 
 Corol. 5 The resistance of the sphere is in a ratio which is composed from the square 
ratio of the velocity and the square ratio of the diameter and in the ratio of the density of 
the medium.  
 Corol. 6. And the motion of the sphere with its resistance may be explained thus. Let 
AB be the time in which the sphere can lose all its motion by a uniformly continued 
resistance. The perpendiculars AD, BC may be erected to AB. And BC shall be that total 
motion, and through the point C a hyperbola CF may be described with the asymptotes  
AD and AB ; AB may be produced to some point E. 
The perpendicular EF may be erected crossing the 
hyperbola at F.  The parallelogram CBEG may be 
completed, and AF may be drawn crossing BC at H. 
And if the sphere in some time BE,  continued 
uniformly by its own initial motion BC, in a non-
resisting medium may describe the distance CBEG 
shown by the area of the parallelogram, likewise in 
the resisting medium  it describes the distance 
CBEF shown by the hyperbolic area, and the motion of this at the end of the time may be 
shown by the ordinate EF of the hyperbola, with the part of its motion EG  lost. And  the 
resistance of this at the end of any time may be expressed by the length BH, with the part 
CH lost to resistance. All these are apparent by Corol.1.& 3, Prop. V. Book II. 
 
[Thus, using customary integration, if a body is dropped from rest ,with the resistance 
proportional to the velocity squared given by 2

rF kmv= , and g' is the apparent 

acceleration of gravity, with u the terminal velocity given by 2g' ku=  , then at any instant, 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 616 
2

2 2
22 2 and 2g' g'dv dv

dx dxu u
v g' v v g'= − + =  ; this requires the integration factor 

2
2
g'

u
x

e , and 

hence 
2 2

2 22 2
g' g'

u u
x xd

dx v e g' e= , giving
2

22 2 1
g'

u
x

v u e
− ⎞⎛

= − ⎟⎜
⎝ ⎠

; 

again, ( ) 2 2
2 2 1 1 and 2dv dv

dt u v u vu v
k u v ukdt− +−

= − = + =  giving 2u v
u vln ukt C+
− = + ; from 

which in turn 
2

2
1
1

kut kut kut

kut kut kut
e e e
e e e

v u u u tanhkut
− −

− −
− −
+ +

= = = ; hence 

 

( ) ( )
( ) ( )

21 1 1

2 21 1 1

1

1 1 2 ]

kut kut

kut kut
dp kut kut kut kutdx e e

dt k p k ke e
kut kut

k k k

u x ln e e lne e

ut ln e C ut ln e ln .

−

−
− −−

+
− −

= = ∴ = + = +

= + + + = + + −
 

 
Corol. 7. Hence if the sphere may lose its whole motion M  in the time T by a resistance R 
continued uniformly: the same sphere in the time t in the resisting medium, by a 
resistance R decreasing as the square of the speed, may lose a part tM

t T+  of its motion M, 

with the part TM
t T+  remaining ; and it will describe a distance that shall be to the distance 

described by the uniform motion M in the same time t, as the logarithm of the number  
t T

t
+  multiplied by the number 2,30258092994 is to the number t

T , as that hyperbolic area   
BCFE is in this proportion to the rectangle BCGE . 
 
[It seems appropriate to give here the geometrical explanations of L. & J. for Cor. 7, 
which although they are rather longer than the modern calculus approach, may yield some 
clues as to Newton's manner of thinking at the time:  
And the resistance at the end of this time, etc. The 
resistance, at the beginning of the motion when the 
velocity is BC, may be shown by the same line BC, 
and because the resistances are as the squares of the 
velocities, and BC shall be to FE  as the velocity 
from the start of the motion to the velocity at the end 
of the time BE, to FE2, as BC to the line which may 
show the resistance at the end of the time BE, and 
thus this line is equal to 

2FE
BC  : that is 

2 2
0

2
t t

R BC BC FE
tR R BCFE

R= = ∴ = . Now, from the nature of the hyperbola, we have 

AB BC AE FE× = × , and in addition from the similar triangles, ABH & AEF, 
BC AE FE
FE AB HB= = , and hence 

2FE
BCHB = . Whereby the right line HB will show the resistance 

at the end of the time BE, and hence the part of the right line CH may show the part of the 
resistance that has been lost since the start of the motion, shown by the line BC.  
Thus proceeding, the part of the motion M remaining at the end of the time t  may be 
called m, and since  and hence T tT AB AE

t BE T AB
+= = , and besides CBM AE

m FE AB= = , there will 
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be T t M
T m
+ = , from which there may be had MT

T tm += , and thence the part of the motion M 

lost  is MtMT
T t T tM + +− =  as required.  

Proceeding further, the parts of the axis and ordinates of hyperbola may be called 
AB a,BC b,BE x,AE a x;= = = = + and from the nature of the hyperbola, as 

ab
a xFE y += = , the element of the area CFEB will be abdx

a x+ , and the area CFEB itself, is 

equal to dx
a xab +∫ , which integral (fluent) thus is to be summed so that it may vanish when 

0x = , but the integral dx
a x+∫  thus taken is the logarithm (called L. in this work, but which 

we shall call ln) of the number a x
a
+ , chosen from the logistic curve the subtangent of 

which is unity (see the additional material for Section 1 of Book 2 : essentially the 
definition of the exponential function, or antilogarithm curve in these days, being that 
curve, which on finding the gradient at the point x, y, gives a right angled triangle under 
the tangent, for which the tangent of the angle with the x axis is y/1 ; or dy/dx = y), or 
what amounts to the same thing, from the hyperbola of which the power is one; if indeed 
there may be put 0x = , the number a x

a
+  becomes equal to 1, and thus ( ) 0a x

aln .+ =  

Whereby the area BCFE ( )a x
xab ln += × ; truly the rectangle BCGE bx= . Therefore the 

hyperbolic area BCFE is to the rectangle ACGE as ( ):a x
xab ln bx+× , that is , as 

( ):a x x
x aln + . Indeed here we have  and a x T t x t

a T a T
+ += = ; whereby the hyperbolic area 

BCFE is to the rectangle BCGE , as ( ) to T t t
T Tln + . Therefore it remains to find the 

logarithm of the number T t
T
+ ; by the logarithmic curve of which the subtangent is one. 

Again the logarithms of different kinds of the same number are between themselves in a 
given ratio, and the number 2,302585092994 is the logarithm of the number ten in the 
species of logarithms the subtangent of which is unity (i.e. natural logarithms) and the 
logarithm of the number ten taken in tables is 1 0000000 1, = ; thus as the logarithm of the 
number  T t

T
+  taken in tables to the logarithm of the same number taken in logarithms the 

subtangent of which is unity, or in the hyperbola the power of which is 1; therefore the 
logarithm sought , if the logarithm of the number T t

T
+  taken from tables may be 

multiplied by the number 2,302585092994. ]  
 

Scholium. 
 In this proposition I have set out the resistance and retardation of spherical projectiles 
in non continuous mediums, and I have shown that this resistance shall be to the force by 
which the whole motion of the sphere shall be removed or generated in the time in which 
the sphere may describe two thirds parts of the diameter, with a uniformly continued 
velocity, as the density of the medium to the density of the sphere, but only if the sphere 
and the particles of the medium shall be completely elastic and they may be influenced by 
the maximum force of reflection: and that this force shall be half as great when the sphere 
and the particles of the medium are infinitely hard, and evidently without any force of 
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reflection. But in continuous mediums such as water, hot oil, and quicksilver, in which the 
sphere is not incident at once on all the fluid particles generating resistance, but presses 
only to the nearby particles and these press on other particles, and these in turn still 
others, the resistance is hence twice as small. Certainly a sphere in mediums of this kind 
of the most fluid, experience a resistance which is to the force by which the whole motion 
of this may either be removed or generated in the time, with that motion continued 
uniformly, eight third parts of its diameter will be described, as the density of the medium 
to the density of the sphere. That which we will try to show in the following medium. 
 

PROPOSITION XXXVI. PROBLEM VIII. 
To define the motion of water flowing from a hole made at the bottom of a cylindrical 
vessel. 
[An excellent introduction to the history of this complex problem can be found in : Die 
Werke von Daniel Bernoulli : Gesammelten Werke der Mathematiker und Physiker der 
Familie Bernoulli (Basel; Boston; Birkhauser, 1982-2002; ed. David Speiser.) Vol. I, 
page 200. Early studies on the outflow of water from vessels,  by G.K. Mikhailov (tr. from 
Russian into English by Rainer Radok.); this includes an independent modern view of 
Newton's contributions.] 
 
 Let ACDB be the cylindrical vessel, AB the upper opening of 
this, CD the base parallel to the horizontal, EF a circular hole in 
the middle of the base, G the centre of the hole, and GH the 
axis of the cylinder perpendicular to the horizontal. And 
imagine a cylinder of ice APQB to be of the same width as the 
cavity of the vessel, and to have the same axis, and to be 
descending with a constant uniform motion, and the parts of 
this that first touch the surface AB become liquid, and 
converted into water to flow by their own weight into the 
vessel, and the head of flowing water formed by falling 
ABNFEM  passes through the hole EF, and likewise to be filled 
equally.  
[One might wonder initially why Newton considered this rather odd way of obtaining a 
constant head of water; perhaps it was just a domestic problem that intrigued him..... In 
any case, there are fundamental defects in Newton's approach, which does not agree with 
experiment for the motion of the water within the vessel near the walls; thus the idea of a 
funnel or an ice funnel through which the water flowed was completely erroneous, if that 
is what Newton had in mind; however, he may well have realized that the original 
problem was too hard to solve, so that he decided to solve an easier problem, involving 
the ice funnel, for which he was able to calculate the shape, and thus have a far better idea 
of the flow of water through such a shape, as we show below in an L & S derivation. In 
addition, in the first edition, the initial contraction or waisting of the stream of water 
emerging – the vena contracta - had been ignored totally – to be fixed up in the second 
edition after complaints from the Bernoulli camp;  otherwise, Newton may have 
considered water to be far stickier or to have a much greater viscosity than it really does, 
as his approach might well describe the fall of a sticky liquid such as honey or oil through 
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the hole at the bottom of a vessel. For in truth all the particles of water in the vessel 
descent slowly with no horizontal motion until the level of the hole is reached, at which 
stage there is considerable horizontal motion of a complex nature. Did Newton not bother 
to observe what actually happens, or could not see because he used wooded vessels ? It 
certainly would be atypical of his methods in investigating natural phenomena, such as 
the decomposition of light into its spectrum, if this were the case. As it was, his 
investigations described here provided a foundation for further inquiries, which had 
actually started some time previously, as the above reference sets out; in particular, his 
lines drawn in the fluid are essentially the lines of force or flow lines along which the 
particles travel. The hydrodynamics text of Daniel Bernoulli a little later gave improved 
explanations of the phenomena involved, following his [Bernoulli's] Principle, which 
made use of Leibniz's vis viva idea : the missing half was to create havoc in understanding 
kinetic energy for at least 100 years! So the complete idea of laminar flow had to await 
the concept of energy conservation before it could be placed on a firmer footing. The 
question of the shape of the vessel and the nature of its surface more or less dictates 
whether or not turbulent flow will occur near the hole; thus, this is still a very difficult 
problem to solve, and Newton may have been content to give approximate answers only 
by solving another problem.] 
 
As indeed there shall be a constant velocity of the ice descending and with the adjoining 
water [formed] in that case describing the circle AB, so that the water by falling can 
acquire an altitude IH, and both IH and HG may be placed along the same direction, and 
through the point I the right line KL may be drawn parallel to the horizontal, and meeting 
the sides of the ice at K & L. And the velocity of the water flowing through the hole EF, 
will be as that the water, by falling from I, is able to acquire in its own case by describing 
the height IG . And thus by a theorem of Galileo, [really Torricelli] IG will be to IH in the 
square ratio of the velocity flowing from the orifice to the velocity of the water in the 
circle AB, that is, in the square ratio of the circle AB to the circle EF; for these circles are 
inversely as the velocities of the water which through themselves may adequately be 
passed in the same time and in an equal amount. [Thus, the continuity equation of fluid 
flow is called upon, and also the conversion of potential into kinetic energy, in modern 
terms, of any small particle of the fluid.] Here we are concerned with the velocity of the 
water that is disturbed horizontally : the motion parallel to the horizontal by which the 
parts of water falling may approach in turn will not be considered here, since it does not 
arise from gravity, nor may the motion arising from gravity perpendicular to the 
horizontal change.  Indeed we may suppose that the parts of the water adhere just a little, 
and by it cohesion in falling approach each other through a  motion parallel to the 
horizontal, so that they may form only a single stream downwards and may not be divided 
into several: but we shall not consider here the motion parallel to the horizontal arising 
from that cohesion. 
  Case 1. Consider now the whole cavity in the vessel, in the circulation of the falling 
water ABNFEM, to be filled with ice, so that the water may only pass through the ice as 
by a funnel. And if the water may hardly touch the ice, or what amounts to the same thing, 
if yet it may touch and on account of its great smoothness may slide freely and without 
any resistance, the water may run down through the opening EF with the same velocity as 
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at first, and the whole weight of the column of water ABNFEM may be pressing on the 
flow of this being produced as at first, and the bottom of the 
vessel will sustain the weight of the surrounding column of ice. 
 Now the ice in the vessel may liquefy; and the efflux of the 
water will remain the same as at first. It will not be less, 
because ice dissolved in water is trying to descend : nor 
greater, because ice dissolved in water cannot descend unless 
by impeding the descent of water descending equally to itself. 
The same force must generate the velocity of the flowing 
water. 
 But the aperture at the bottom of the vessel, on account of 
the oblique motion of the particles of water flowing out, must 
be a little greater than at first. For the particles of water do not 
all pass through the opening perpendicularly, but flow together from each side of the 
vessel and converge on the opening, and they pass through with oblique motions, and in 
the course of their downwards motion they conspire in the stream of water by bursting 
forth, which is a little smaller below the hole than at the hole itself, with the diameter of 
this present to the diameter of the hole as 5 to 6, or 1

25  to 1
26  as an approximation, but 

only if I have measured the diameters correctly. Certainly I had obtained a thin plane 
sheet pierced by a hole in the middle, with the diameter of the circular hole present of five 
eights of an inch. And so that the stream of water bursting forth might not be accelerated 
by falling and by the acceleration rendered narrower, thus I fastened this sheet not onto 
the base but onto the side of the vessel, so that that stream may emerge along a line 
parallel to the horizontal. Then when the vessel should be full of water,  I uncovered the 
hole so that the water could flow out; and the diameter of the stream produced of

th
 21
40  of 

an inch as accurately as could be measured, at a distance around half an inch from the 
opening. Therefore the diameter of the circle of this hole to the diameter of the stream was 
as 25 to 21 approximately. Therefore the water by passing through the hole, converges on 
all sides, and after it has flowed out from the vessel, is rendered narrower by converging, 
and it is accelerated by the attenuation on arriving at a distance of half an inch from the 
hole, and with that narrower at that distance it shall be faster than at the hole itself in the 
ratio 25 25 to 21 21× × or approximately as 17 to 12, that is around the ratio of the square 
root of 2 to 1.  
[Thus, from the continuity equation, 1 1 2 2A v A v× = × , and the ratio of the velocities 

2 1

1 2

625
441 1 42 2v A

v A . ...= = = , where A1 and A2 are the areas of cross-section.] 

Indeed it is agreed by experiment that the quantity of water, which flows out in a given 
time through the circular hole made in the bottom of the vessel, shall be with the predicted 
velocity, not only through that hole, but it must flow also in the same time through the 
circular hole, the diameter of which is to the diameter of this hole as 21 to 25. And thus 
that water flowing has a velocity downwards at this [actual] hole describing 
approximately by the falling of a weight through half the height of the water at rest in the 
vessel.  [Translator's italics and underlining here and below.] But after it has escaped from 
the vessel, it may be accelerated by converging until it arrives at a distance from the 
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opening nearly equal to the diameter of the hole, and it will have acquired a velocity 
greater nearly in the ratio of the square root of two, than certainly in this case it can 
acquire a velocity described approximately by a weight falling the whole height of the 
water at rest in the vessel. 
 Therefore in the following the diameter of the stream may be designated by that 
smaller hole that we have called  EF. And another superior plane VW  is understood to be 
drawn parallel to the plane of the opening EF at a distance approximately equal to the 
diameter and with a greater hole ST bored through, through which certainly the stream 
falls, which completely fills the lower hole EF, and thus the diameter of this shall be to 
the diameter of the lower opening approximately as  25 to 21. For thus the stream will be 
able to cross over perpendicularly from the lower opening ; and the quantity of water 
flowing out, for the size of this hole, will be as the solution of the problem postulated 
approximately. Indeed the distance, that is enclosed by the two planes and by the stream 
falling, can be considered as the bottom of the vessel. But so that the solution of the 
problem shall be simpler and more mathematical, it may be agreed to take only the lower 
plane for the base of the vessel, and to imagine that the water either flowing through the 
ice or through the funnel, and escaping from the vessel at the opening made in the lower 
plane EF , perpetually maintains its motion, and the ice remains at rest. In the following 
therefore let ST be the diameter of the circular opening Z described through which the 
stream flowed from the vessel when all the water in the vessel is fluid. And EF shall be 
the diameter of the opening through which by falling the stream may adequately pass 
through, either the water may exit from the vessel through that upper opening ST, or it 
may fall through the middle of the ice in the vessel as if it were through a funnel. And let 
the diameter of the upper opening ST be to the diameter of the lower EF as around 25 to 
21, and the distance of the perpendicular between the planes of the openings shall be 
equal to the diameter of the smaller opening EF. And the velocity of the water escaping 
from the vessel by the opening ST there will be in the opening itself as the velocity that a 
body can acquire by falling from a height of half IZ : but the velocity of each stream by 
falling in the opening EF there will be as a body would acquire in falling from the whole 
height IG.  
[Thus we have 2 2 2v u gs= + , which essentially is an energy conservation equation where 
unit mass is falling ; Newton considers that the motion of the water through EF is not 
vertically downwards, and the average velocity downwards corresponds to the water 
falling a height equal to half the height of the column; however, the column narrows, 
really by surface tension forces, so that the area of cross-section diminishes by 2 , and at 
this point the water is considered to be flowing downwards only, and a drop can be 
considered to have fallen the whole height of the column, approximately; the extra 
distance being ignored. It is convenient here to consider the actual shape of the ice funnel 
proposed by Newton: as developed by L. & J. in Note 272 :  
 With these items in place, the geometrical figure of the cataract is readily defined. Let 
MN cut the axis IG at P; and because the altitude IP is in the square ratio of the velocity at 
P, truly this velocity is inversely as the circle MN, and thence the circle MN is in the 
square ratio of the radius MP, and thus IP or the abscissa is in the inverse fourth power of 
the radius or of the ordinate MP, or 4

1
MP

IP ∝ , and  4MP IP×  a given quantity. (Thus, 
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the Galilean proportionality 2h v∝  is combined with the continuity equation 

2 4
21 1 1 to give v A r

A h v∝ ∝ ∝ ∝ ) 

Therefore the curve EMA is a hyperbola 
of the fourth order, having the asymptotes 
IG, IK, to which convexity it turns 
towards. The arc EMA and the asymptotes 
IK may be produced indefinitely towards 
the parts X, and the figure EAXXIG 
describes the cataract, rotated around the 
asymptote or the axis IG, produced 
indefinitely to the parts X, x ; truly the figure EMAHG will be generated, that part of the 
cataract which is contained within the vessel ABDC.] 
 
 Case 2. If the opening EF shall not be in the middle of the base of the vessel, but the 
base may be perforated in some manner : the water may flow out with the same velocity 
as before, but only if the hole shall have the same size. For indeed a weight descends in a 
longer time through the same depth along an oblique line than along the perpendicular 
line, but in falling it acquires the same velocity in each case, as Galileo has shown. 
 Case 3. The velocity of water is the same flowing out from a hole in the side of the 
vessel. For if the opening shall be small, so that the interval between the surfaces AB and 
KL may be considered to vanish, and the jet of water springing forth horizontally will 
form the a parabolic figure: from the latus rectum of this parabola it may be deduced, 
what that velocity of the water flowing out from the water at rest in the vessel shall be, as 
a body may be able to acquire by falling with a height HG or IG. Certainly with that 
experiment done I found that, if the height of the water at rest above the opening should 
be twenty inches and the height of the opening above a plane parallel to the horizontal 
should also be twenty inches, the stream of water streaming out would fall on that plane at 
a distance of around 37 inches from the perpendicular that may be taken in that plane 
from the opening. For without resistance, the jet would have been incident in that plane at 
a distance of 40 inches, with the latus rectum of the parabolic jet arising of 80 inches.  
 
[Note from L & S :  A drop of water from the location D, may gush out along some 
horizontal direction DT with that velocity which it can acquire by falling through the (half 
the height of the vessel) BD, and being borne by 
the resistance of the medium, may describe the 
parabola DNZ, the vertex of which D, the tangent 
DT, and diameter DH or with the vertical line BD 
produced, the abscissa DH may be taken equal to 
the height BD, and the ordinate HZ may be drawn, 
which will be parallel to the tangent DT; and in that 
time taken for the drop of water to fall through the 
height BD or DH  under gravity, it will describe the 
length HZ of BD or DH squared. The latus rectum 
DNZ of the parabola pertaining to the diameter DH 
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is 
2HZ

DH , and thus since there shall be 2 2HZ DH BD,= = the latus rectum is 4BD:( i.e. 
2 4y ax= ). Therefore the height BD that the water must 

describe by falling as the velocity it may acquire with 
that bursting out from the place D, is the fourth part of 
the latus rectum pertaining to the diameter DH of the 
parabola DNZ.] 
 
 Case 4. Truly the water flowing out, also if it were 
carried upwards, emerges with the same velocity. For 
the small jet of water streaming out rises in a 
perpendicular motion to the height GH or GI of the 
water at rest in the vessel, except in as far as its ascent 
may be impeded a little by air resistance ; and hence that flows out with the velocity that 
it may be able to acquire by falling from that height. Each particle of the water at rest is 
pressed equally on all sides (by Prop. XIX,  Book. 2.) and by conceding to the pressure to 
all the parts there is imparted an equal impetus, either it may fall through a hole in the 
bottom of the vessel, or may flow out horizontally through a hole in the side of this, or it 
may go out along a pipe and thence ascent through a small hole made in the upper part of 
the pipe. An the velocity by which the water flows is that, as we have assigned in this 
proposition, not only is it deduced from reasoning, but also it is shown by the well known 
experiments now described.  
 Case 5. The velocity of the water emerging is the same whether the shape of the 
opening D shall be circular or square or triangular or some other equal to the circular 
shape. For the velocity of the water emerging does not depend on the figure of the 
opening but arises from the height of this below the plane KL. 
 Case 6. If the lower part of the vessel ABDC may be immersed in still water, and the 
height of the still water above the bottom of the vessel shall be GR: the velocity with 
which the water in the vessel may flow out through the hole EF into the still water, will be 
as that which the water can acquire describing by falling in that case the height IR. For the 
weight of all the water in the vessel which is below the surface of the still water, will be 
sustained in equilibrium by the weight of the still water, and thus the motion of the water 
descending in the vessel will be accelerated less. In this case it will also be apparent by 
experiments, evidently by measuring the time in which the water flowed out. 
 
 Corol. 1. Hence if the height of the water CA may be produced to K, so that there shall 
be AK to CK in the square ratio of the area of the opening made in some part of the 
bottom, to the area of the circle AB : the velocity of the water flowing out will be equal to 
the velocity that the water is able to acquire by falling and by describing the height KC in 
that case.  
[Thus, we apply the continuity equation to a circle of water at AB, and to the water at the 
opening EF: The speed acquired by the water falling twice the height AK may be called 
vA , and the speed at EF may be called vE, then 

2 2 4 4 and A Ev AB v EF AK AB GI EF× = × × = × .] 
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 Corol. 2. And the force, by which the whole motion of the water streaming forth can be 
generated, is equal to the weight of the cylindrical column of water, the base of which is 
the opening EF, and the height 2GI or 2CK. For the 
water rushing out is able to acquire its emergence 
velocity, to which in time that column may be equated, 
by its own weight falling from a height of GI.  
[Thus, the force is taken to be this weight of water in 
modern terms 2 2EF g GIπ ρ× × × . The actual 
mechanism for the acceleration of the water in the 
opening to form the jet emerging is not explained, but 
we are to accept the final speed of emergence in modern 
terms, correcting for the vena contracta, as being 

2g GI× .] 
 Corol. 3. The weight of all the water in the vessel ABDC is to the part of the weight, 
which is used in the out flowing of the water, as the sum of the circles AB and EF to the 
double of the circle EF. For if IO is the mean proportional between IH and IG; and the 
water emerging through the opening EF, in the time that a drop falling from I may be able 
to describe the height IG, will be equal to a cylinder the base of which is the circle EF and 
the height is 2IG, that is, to a cylinder whose base is the circle AB and height is 2IO, for 
the circle  EF is to the circle  AB in the square root ratio of the height IH to the height IG, 
that is, in the simple ratio of the mean proportional IO to the height IG: and in which time 
the drop by falling from I can describe the height IH, the water passing out will be equal 
to the cylinder of which the base is the circle AB and the height is  2IH : in which time the 
drop by falling from I through H to G will describe the difference of the heights HG, the 
water emerging, that is, all the water in the figure ABNFEM will be equal to the difference 
of the cylinders, that is, to a cylinder of which the base is AB and the height 2HO. And 
therefore the total water in the vessel ABDC is to the total water fallen in the figure 
ABNFEM as HG to 2HO, that is, as HO OG+ to 2HO, or IH IO+ to 2IH. But the weight 
of all the water in the figure ABNFEM is expended in the out flowing of the water: and 
hence the weight of all the water in the vessel is to the part of the weight which is 
implemented in the out flowing of the water, as IH IO+  to 2IH, and thus as the sum of 
the circles EF and AB to twice the circle EF. 
 
[Enlarged note from L. & J. : Thus, the same velocity of 
the efflux arises from the whole circle AB and the 
height 2IO as from the circle EF and the height 2IG, or 
what amounts to the same, cylinders which have these 
equal volumes. Again, the same amount of water passes 
through the circles AF and EF in the same time, and the 
amount of water passing through AB will be in the time 
that a drop falls through the height IH, equal to the 
volume of a cylinder of water of which the base is the 
circle AB and the height 2IH. We may add to this, inverted,  that E

A

vArea AB IG
Area EF v IH

= = . 
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Now, if  or  IG IO
IO IHIO IG IH= × =  then E

A

vArea AB IG IG IO
Area EF v IO IHIH

= = = = . Thus, in the 

time a drop falls the distance IH, the jet emits a volume of water equal to 
2the area AB IH× , due to the waist narrowing; then by simple proportion, in the time a 

drop falling from I to G via H describes the difference of the heights GH, that is the whole 
volume of water in the ice funnel ABNFEM, the jet will emit a volume equal to the 
difference of the (whole) cylinders, that is, a cylinder with base AB and height 2HO.  
Hence, the total amount of water in the vessel is to the water escaped through the ice 
funnel, as HG to 2HO. The volume of water contained in the vessel ABDC is equal to the 
capacity of the vessel or cylinder the base of which is the circle AB, and the height HG; 
and therefore the total water in the vessel ABCE, is to the total water falling in the solid 
ABNFEM, as HG to 2HO, that is, as 2

HO OG
HO
+ , and because by hypothesis:  

2 2

22 2 2 2 2

,

 there is = = .] 

Area EF IO IO IH HOIH
Area AB IO IG IG IO OG

Area AB Area EFHG HO OG IH IO AB EF
HO HO IH Area EF EF

−
−

++ + +
× ×

= = = =

= =
 

 
 Corol. 4. And hence the weight of all the water in the vessel ABDC is to the part of the 
weight that the base of the vessel sustains, as the sum of the circles AB and EF to the 
difference of the same circles. 
[The weight of all the water in the vessel ABCD shall be P, the part of that weight which 
is involved in the efflux of the water shall be p, and hence the part P p−  of the whole 
weight or clearly equal to the difference of the circles CD and EF which is sustained by 
the bottom of vessel and is not involved in the efflux. And, by Cor. 3, there will be 

2 2 2 2

2 2 22
 and hence .P AB EF P AB EF

p P pEF AB EF
+ +

− −
= = ] 

 Corol. 5. And the part of the weight that the base of the vessel sustains, is to the other 
part of the weight, which is implemented in the out flowing of the water, as the difference 
of the circles AB and EF to twice the smaller circle EF, 
or as the area of the base to twice the aperture. 
 [ Since

2 2 2 2

2 22 2
, also .P pP AB EF AB EF

p pEF EF
−+ −= =  ] 

 
 Corol. 6. But the part of the weight, by which the 
base only may be acted on, is to the whole weight of 
the water, which will press perpendicularly on the 
base, as the circle AB to the sum of the circles AB and 
EF, or as the circle AB to the excess of twice the circle 
AB above the base. For the part of the weight, by 
which the base may be acted on alone, is to the weight 
of the whole water in the vessel, as the difference of 
the circles AB and EF to the sum of the same circles by Cor. 4 :  
[As above, 

2 2 2 2 2

2 2 2 2
2

2 2
 and hence P p pP AB EF AB EF EF

p p PEF EF AB EF
−+ − ×

× +
= × = × , giving 

2 2

2 2
P p AB EF

P AB EF
− −

+
=  and 

2 2 2
2

2 2 2 2 or  
pPP AB EF AB

P p P pAB EF AB EF
−+

− −− −
= =  and

2
2 2

2 2

p pP PP p AB
P p P P AB EF
− −−
− +

× = =  ]  
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and the weight of all the water in the vessel is to the weight of all the water which presses 
normally on the base, as the circle AB to the difference of the circles AB and EF. And thus 
from the rearranged equation, the part of the weight, by which the base alone is acted on, 
is to the weight of all the water, which presses normally on the base, as the circle AB to 
the sum of the circles AB and EF, or the excess of twice the circle AB above the base. 
 Corol. 7. If a small circle PQ may be located in the middle of the hole EF described 
with centre G and parallel to the horizontal : the weight of water which that circle shall 
sustain, is greater than the weight of a third part of the cylinder of water the base of which 
that circle and the height is GH. For let ABNFEM be the cataract or column of water 
falling having the axis GH as above, and as it is understood all the water in the vessel has 
become frozen, as long as the most immediate and fastest may not be required in the  
circulation of the cataract above the circle. And let PHQ be the column of water frozen 
above the circle, having the vertex H and the height GH. And consider the cataract both to 
fall by its own total weight, and not in the least to encumber or press upon PHQ, but to 
slide past freely and without friction, except perhaps at the vertex of the ice itself from 
which the cataract itself may begin to fall in the cavity. And in whatever manner the 
frozen water in the circuit of the cataract  AMEC, BNFD is convex on the internal surface 
AME, BNF falling towards the cataract, thus also this column PHQ will be convex 
towards the stream, and therefore greater than for a cone the base of which is that circle 
PQ and with the height GH, that is, greater than a third part of the cylinder with the same 
base and with the height described. But the circle may sustain the weight of that column, 
that is, the weight which is greater than the weight of the cone or a third part of the 
cylinder.  
[Thus, the weight of water sustained by the small circle is greater than the weight of the 
cone, given by 1

3 Ch. gρ  in an obvious notation with C the area of the small circle, while 
in the following, the weight is again less than the weight of a semi-spheroid, given 
by 2

3 Ch. gρ . If the circle is very small, then the weight supported can be taken as he 

arithmetic mean, that is 1
2 Ch. gρ  (Cor. 8 & 9 following.) ; this leads on in the following 

to an examination of the frictional force on a horizontal circle in a stream.] 
 Corol. 8. The weight of water that a very small circle PQ can sustain, may be seen to 
be less than two thirds of the cylinder of water the base of which is that circle and the 
altitude is HG. For with everything now remaining in place, it may be understood to have 
described half of a spheroid, the base of which is that circle and the semi axis or height is  
HG. And this figure will be equal to two third parts of that cylinder and it may be 
understood that the circle may sustain the weight of this frozen column of water PHQ. For 
as the motion of the water shall be mainly straight [down], the surface of that column may 
meet externally with the base PQ in some acute angle, therefore as with the water falling 
it always will be accelerated, and on account of the acceleration it shall become narrower, 
and since that angle shall be less than a right angle, this column will be laid within the 
half spheroid in the lower parts of this. Truly the same upwards will be acute or pointed, 
lest the horizontal motion of the water at the vertex of the spheroid shall be infinitely 
faster than the motion of this towards the horizontal. And so that the smaller the circle PQ 
becomes the more acute the vertex of the column becomes to that ; and with the tiny circle 
diminished indefinitely, the angle PHQ will be diminished indefinitely, and therefore that 
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column will be placed within the half spheroid. Therefore that column is less than the half 
spheroid, or than two thirds parts of the cylinder of which the base is that small circle, and 
with the altitude GH. But the small circle sustains the force equal to the weight of the 
water of this column, since the weight of the water around is employed in the outflow of 
this water. 
 Corol 9. The weight of water that a very small circle PQ may sustain, is equal to the 
weight of the cylinder of water the base of which is that circle and the height is 1

2 GH  
approximately. For this weight is the arithmetical mean between the weights of the cone 
and of the aforementioned hemisphere. But if that circle shall not be very small, but may 
be increased until it may equal the opening EF ; here it will be the weight of all the water 
itself overhanging perpendicularly, that is, the weight of the cylinder of water of which 
the base is that circle and the height is GH. 
 Corol. 10. And (as far as I know) the weight that the little circle sustains is always to 
the weight of the cylinder of water, the base of which is that little circle and of which the 
height is 1

2 GH ,  as  EF2 to 1
2

2 2EF PQ− , or as the area of the circle EF to the excess of 
this circle above half the area of this circle of this circle PQ, as an approximation.  
 
[L & S note : For this supposition satisfies the above requirements : For if p shall be the 
weight of water sustained by the small circle, and P the weight of the cylinder of water 
sustained by the small circle and with the height GH; and if there is put 

21
21 1

2 2 2 21
2

2 2 2: :  then P EF
EF PQ

p P EF EF PQ p .×
−

= − = But the quantity  
2

2 22
P EF

EF PQ
×
−

 is always 

greater than 1
3 P , as it may satisfy Cor. 7, and likewise it can be shown always to be less 

than 2
3 P .  

 B. & R. proceed here as follows: the weight of the water on the little circle is  
1
2P Ch. gρ= , from the above average, if the area of the circle is very small; however, it is 

comparable to the cross-sectional area B of the pipe EF, we may assume this weight takes 
the form 1 C

B
P Ch gβ

α ρ−= , then when C is very small with respect to B, this reverts to the 

above result, so that 1
2β = , and when C B= , the weight supported is that of a cylinder 

with base C and height h, so that also 1
2α = ; hence, while C is less than 2

B , the 
expression 1

21
2

B
B CP Ch gρ−= × makes the weight lie between the given limits above.  

There is an analogy between the force due to water running out through a hole, and the 
resistance experienced by a body travelling at a constant rate through a medium. The  
resistance Newton has in mind here is of the dynamic kind, due to the particles of the 
medium rebounding from the moving surface, rather than due to the adhering nature of 
the medium. If u is the velocity at the surface, v that at the orifice, A the area of the cross-
section of the base, B and C that of the orifice and the little circle PQ, and h the height of 
the cylinder. Then ( )2 2 2  and v u gh v B C uA= + − = ; the former we may now think of as 
an energy conservation equation, while the latter is a continuity equation. Now if A is 
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much greater than B, then 2 2v gh=  and the weight acting on the small circle is 
1
2P Ch gα ρ= × , where 1 when 0C

Bα → → , in any manner. 2
4

CvP α ρ∴ = × × .  
Now let the opening of the pipe EFST be closed, and let the small circle ascend with such 
a  velocity that the relative motion of the circle and fluid compelled to flow past it is the 
same as before; hence the weight or force acting on the small circle will be the same as 
before; now the velocity of the fluid will be Cv

B C−  and that of the plane moving through it 
Bv

B C− . If we imagine that B is infinitely greater than C, then the resistance of a plane 

moving in still water with a velocity v will be 2
4

CvP ρ∴ = × . The resistance depends only 
on the area of the great circle, and according to this, a sphere. a spheroid, and a cylinder 
will offer the same resistance. As many commentators have already indicated, there are 
many flaws in these arguments; the principal one being that water does not flow out of a 
hole in a vessel as Newton had envisaged! Nevertheless, the arguments are intriguing, and 
there may be situations where a fluid obeys these rules. In any case, Newton went about 
this analysis in order that he could examine the resistance to the motions of projectiles, 
falling bodies, and pendulums, in resisting mediums, that follow.] 
 
 

LEMMA IV. 
 The resistance of a cylinder, which is progressing along its own length uniformly, does 
not change if the length of this may be increased or diminished ; and thus it is the same as 
the resistance of a circle described with the same diameter, and with the same velocity of 
progression along a right line perpendicular to its plane. 
 
 For the sides of the cylinder by the motion of this are minimally opposed : and the 
cylinder, with the length of this diminished indefinitely, is turned into a circle. 
 
[Thus Newton solves the simpler problem where the resistance is purely dynamic, and 
ignores viscous effects in mediums, where the length would be important.] 
 

PROPOSITION XXXVII. THEOREM XXIX. 
 The resistance of a cylinder which arises from the magnitude of the transverse section, 
which is progressing uniformly along its length in a fluid compressed infinitely and non-
elastic, is to the force by which the whole motion of this, while meanwhile it describes 
four times its length may be either removed or generated,  as the density of the medium to 
the density of the cylinder approximately. 
 
 For if the vessel ABDC may touch the surface of the still water with its base CD, and 
water may flow from this vessel by the cylindrical pipe EFTS perpendicular to the 
horizontal into still water, and moreover the small circle PQ may be located parallel to the 
horizontal somewhere in the middle of the pipe, and CA may be produced to K, so that AK 
shall be to CK in the squared ratio that the excess of the opening of the pipe EF over the  
circle PQ has to the circle AB: it is evident (by Cases 5 and 6, & Cor. 1. Prop XXXVI) 
that the velocity of the water passing through the annular space between the small circle 
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and the side of the vessel, that will be as that velocity the water can acquire by falling, and 
in that case by describing the height KC or IG.  
 And (by Corol. X, Prop. XXXVI.) if the width of the vessel is infinite, so that the small 
line HI may become vanishing and the altitudes IG and HG are equal: the force of the 
water flowing down on the circle will be to the weight of the 
cylinder whose base is that small circle and the height is 1

2 IG , as 

EF2 to 1
2

2 2EF PQ− approximately. For the force of the water, 
by flowing with a uniform velocity through the whole pipe, will 
be the same at the location of the circle PQ as in any part of the 
pipe. 
 Now the openings of the pipe EF and  ST may be closed, and 
the small circle may ascend in the fluid compressed on all sides 
and by itself ascending it may force the water above to fall 
through the annular space between the small circle and the side 
of the pipe : and the velocity of the ascending small circle will be to the velocity of the 
water descending as the difference of the circles EF and PQ to the circle PQ, and the 
velocity of the ascending little circle to the sum of the velocities, that is, to the relative 
velocity of the water descending which flows past the ascending circle, as the difference 
of the circles EF and PQ to the circle EF, or as 2 2 2  to  EF PQ EF− . 

[For : ( )2 2 2
asc. desc.v PQ v EF PQ× = × − and 

2 2 2 2 2 2 22

2 2 2 2 2,  andasc . desc . asc . rel . desc . asc . asc .

desc . desc . desc . rel . desc . rel .

v v v v v v vEF PQ EF PQ PQ EF PQEF
v v v v v vPQ PQ PQ EF EF

+− − −= = = × = = × = ]  

 
Let that relative velocity be equal to the velocity, which has been shown above to pass 
through the same annular space while the small circle meanwhile may remain at rest, that 
is, to the velocity that the water can acquire by falling and in that case by describing the 
altitude 1G : and the force of the water in the ascending small circle will be the same as 
before (by the rule of Corol. V.) that is, the resistance of the ascending circle will be to the 
weight of the cylinder of water whose base is that small circle and the height is 1

2 IG , as 
2EF to 1

2
2 2EF PQ− approximately. But the velocity of the small circle will be to the 

velocity that the water acquires by falling and in that case be describing the altitude IG, 
as 2 2 2  to   EF PQ EF− . 
 The size of the pipe may be increased indefinitely : and these ratios between  

2 2 2 and  EF PQ EF− , and between 1
2

2 2 2 and  EF EF PQ− finally will approach to ratios 
of equality [, as EF >>PQ]. And therefore the velocity of the small circle will now be that 
as can be acquired by the water descending in that case from the altitude described IG, 
and truly the resistance of this will emerge equal to the weight of the cylinder whose base 
is that small circle and the altitude is half of the altitude IG, from which the cylinder must 
fall as the velocity of the ascending small circle may acquire ; and the cylinder with this 
velocity, in the time of falling, will describe four times its own length. [As the force is 
proportional to the velocity squared, then the cylinder must fall a distance 
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( )1
22 4IG IG× = × × .] But the resistance of the cylinder progressing along its length with 

this velocity, is the same as the resistance of the small circle (by Lemma IV.) and thus is 
equal to the force by which the motion of this, as long as the quadruple of its length shall 
be described, is able to be generated approximately. 
 If the length of the cylinder may be increased or diminished : so that the motion of this  
and the time in which it will describe four times its length, will 
be increased or diminished in the same ratio; and thus that force 
will not be changed, by which the increased or diminished 
motion, equally increased or decreased in the time, may be able 
to be generated or taken away, and thus even now is equal to the 
resistance of the cylinder, and since that too remains unchanged 
by Lemma IV. 
 If the density of the cylinder may be increased or diminished : 
so that the motion of this, and the force by which the motion can 
be generated or removed in the same time, will be increased or 
diminished in the same ratio. And thus the resistance of the 
cylinder of any kind will be to the force by which the whole of its motion, as the fourfold 
of its length meanwhile will be described, may be generated or removed, as the density of 
the medium to the density of the cylinder approximately. Q.E.D. 
 But a fluid must be pressed together so that it shall be continuous, truly it must be 
continuous  and not elastic so that all the pressure, which arises from the compression of 
this, may be propagated in an instant, and in the motion all the parts of the body acted on 
equally may not change the resistance. Certainly the pressure, which arises from the 
motion of the body, is impeded in the motion of the parts of the fluid being generated and 
may create the resistance. But the pressure which arises from the compression of the fluid, 
however strong it may be, if it may be propagated instantaneously, shall generate no 
motion in the parts of the fluid, and in general it will lead to no change of the motion ; and 
thus the resistance shall neither be increased or diminished. Certainly the reaction of the 
fluid, which arises from the compression of this, cannot be stronger in the rear parts of the 
of the moving body than in the front parts, and thus the resistance described in this 
proposition cannot be diminished : and cannot be stronger in the front parts than in the 
latter parts, but only if the propagation of this may be infinitely faster than the motion of 
the compressed body. But it will only be infinitely faster and propagate instantaneously if 
the fluid shall be continuous and not elastic. 
 Corol. 1. The resistances of cylinders, which are progressing uniformly along their 
lengths in  infinitely continuous mediums, are in a ratio composed from the square of the 
ratio of the velocities and in the square ratio of the diameters and in the ratio of the 
densities of the mediums. 
 Corol. 2. If the width of the pipe may not be increased indefinitely, but the cylinder 
may be progressing along its length in an enclosed medium at rest, and meanwhile its axis 
may coincide with the axis of the pipe : the resistance of this will be to the force by which 
the whole motion of this, in the time it will describe the quadruple of its length, either  
generated or removed, in a ratio which is composed from 1

2
2 2 2 to  EF EF PQ−  once 

[this factor as explained above, see Cor. 10, expressed the force on the small circle 
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compared to the force on the cylinder with the same small circular base and height 1
2 IG  

as equal to the ratio 1
2

2 2 2 to   EF EF PQ− , and to the ratio 2 2 2 and  EF EF PQ−  squared 
[i.e. the velocity squared], and in the ratio of density of the medium to the density of the 
cylinder.] 
 Corol. 3. With the same in place, and since the length  L shall be to the quadruple of 
the length of the cylinder in a ratio which is composed from the ratio 1

2
2 2EF PQ− to  EF2 

once, and in the ratio 2 2 EF PQ−  to  EF2 squared : the resistance of the cylinder will be 
to the force, either to be taken away or generated, by which the whole motion of this, 
while the length L meanwhile will be described, as the density of the medium to the 
density of the cylinder.  

 
Scholium. 

 In this proposition we have investigated the resistance which arises from the magnitude 
of the transverse section of the cylinder only, with the part of the resistance ignored which 
may arise from the obliquity of the motions. For just as in the first case of Proposition 
XXXVI,  the obliquity of the motions by which the parts of the water in the vessel 
certainly converged on the hole EF, impeding the efflux of this water through the hole : 
thus in this proposition, obliquity of the motion, in which the parts of the water 
compressed by the front part of the cylinder concede to the compression and diverge on 
every side, retards the transition of these from the places at its anterior end by circulating 
to the posterior parts of the cylinder, and effects that the fluid will be moved together at a 
greater distance and will increase the resistance, and that almost in the ratio by which the 
efflux of the water from the vessel may be diminished, that is, in around the ratio 25 to 21. 
squared. And in the same manner, as in the first 
case of that proposition, we effected that the parts 
of the water be transferred perpendicularly and 
with maximum abundance through the hole EF, by 
putting all that water in a vessel in which the 
circulation of the stream was frozen, and the 
oblique motion of this was not used and remained in place without motion : thus in this 
proposition, so that the obliquity of the motion may be removed, and the parts of the 
water may allow the passage proceeding most easily by the cylinder in the shortest time 
with the motion directed mainly forwards, and only the resistance may remain, which 
arises from the magnitude of the transverse section, and which cannot be diminished 
except by diminishing the diameter of the cylinder. It is considered that the parts of the 
fluid, the motions of which are both useless and create resistance, may remain at rest 
among themselves at each end of the cylinder, and may stick together and be joined to the 
cylinder. Let ABCD be a rectangle, and both AE and BE shall be two parabolic arcs 
described with the axis AB, moreover with the latus rectum which shall be to the distance 
HG, with a cylinder being described by falling while it acquired its velocity, as HG to 
1
2 AB . Also CF and DF shall be two other parabolic arcs, with the axis CD and with the 
latus rectum which shall be four times the first latus rectum described ; and by the rotation 
of the figure around the axes EF a solid may be generated the middle part of which shall 
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be the cylinder ABDC on which we are acting, and the end parts ABE and CDF may 
contain parts of the fluid at rest amongst themselves and acting on the body as two rigid 
solid parts, which adhere to the cylinder at each ends as head and tail. And the resistance 
of the solid EACFDB, following the length of its axis FE progressing in the direction of 
E, will be as nearly as we have described in this proposition, that is, which has that ratio 
to the force which the whole motion of the cylinder, while the whole length 4AC 
meanwhile may be described by that motion continued uniformly, that may be taken away 
or generated, that the density of the fluid has to the density of the cylinder approximately. 
And the resistance of this force cannot be less than in the ratio 2 to 3, by Corol. 7, Prop. 
XXXVI. 
 

LEMMA V. 
 If a cylinder, a sphere, and a spheroid, the widths of which are equal, thus may be 
placed successively in the middle of a cylindrical pipe so that their axes may coincide 
with the axis of the pipe: these bodies may equally impede the flow of the water through 
the pipe. 
 
 For the spaces through which the water passes between the pipe and the cylinder, the 
sphere, and the spheroid are equal: and the water passes through equal spaces equally. 
 Thus these themselves are had by hypothesis, because all the water above the cylinder, 
sphere, or spheroid may be frozen, of which the fluidity is not required for the swiftest 
passage of the water, as I have explained in Corol. VII, Prop. XXXVl.  
 

LEMMA VI. 
 With the same in place, the aforementioned bodies may be acted on equally by the 
water flowing in the pipe. 
 
 It is apparent by Lemma V and the third law of motion. Certainly the water and the 
bodies act on each equally and mutually. 
 

LEMMA  VII. 
 If the water may be at rest in the pipe, and these bodies may be carried in opposite 
directions with equal velocities, then the resistances of these are equal to each other. 
 
 This is agreed upon from the above lemma, for the relative motions remain between 
each other. 
 

Scholium. 
 The ratio is the same of all convex and rounded bodies, the axes of which coincide 
with the axis of the pipe. Any differences can arise from the greater or lesser resistance, 
but in these lemmas we suppose the bodies to be very smooth, and the stickiness and 
friction of the medium to be zero, and because the parts of the fluid, which by their 
oblique motions and superfluous flow of water through the pipe, are able to disturb,  
impede, and to retard, are at rest among themselves as if they were restricted by ice, and 
may be attached to the front and rear parts of bodies, just as I have shown in the scholium 
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of the  preceding proposition. For in the following the smallest resistance of all that round 
bodies can have is acting, with the greatest transverse cross section described. 
 Bodies swimming on fluids, where they may be moving in a straight direction, effect 
that the fluid may ascend at the front parts and subside at the back parts, especially if the 
figures shall be obtuse , and therefore they may feel the resistance a little greater than if 
they were with sharp heads and tails. And bodies moving in elastic fluids, if they shall be 
obtuse before and aft, they may compress the fluid a little more at the front part and be a 
more relaxed at the rear part ; and therefore they experience a little more resistance than if 
they were sharp at the head and tail. But we do not work with elastic fluids in these 
lemmas and propositions, but with non elastic ones ; not with sitting on the fluid, but with 
deeply immersed in it. And when the resistance of bodies in non elastic fluids becomes 
known, this resistance will be increased by a small amount in elastic fluids, such as air, as 
on the surfaces of fluids at rest, such as seas and marshes. 
 

PROPOSITION XXXVIII. THEOREM XXX. 
 The resistance of a sphere progressing in an infinitely compressed and non elastic fluid 
is approximately to the force by which the whole motion, in which time a three eights part 
of its diameter will be described, either taken away or generated, as the density of the 
fluid to the density of the sphere. 
 
 For the sphere is to the circumscribed cylinder as two is to three ; and therefore that 
force, which may be able to remove all the motion, while the cylinder meanwhile may 
describe a length of four diameters,  all the motion of the sphere meanwhile may be taken 
away while the sphere describes two third parts of this length, that is, eight third parts of 
its own diameter. But the resistance of the cylinder is to this force approximately as the 
density of the fluid to the density of the cylinder or sphere by Prop. XXXVII, and the 
resistance of the sphere is equal to the resistance of the cylinder by Lem. V, VI, VII. 
Q.E.D. 
Corol. I. The resistances of spheres, in infinitely compressed mediums, are in a ratio that 
is composed from the square ratio of the velocities, and in the square ratios of the 
diameters, and in the ratio of the densities of the mediums. 
Corol. 2. The maximum velocity by which a sphere, by a force to be compared with its 
own weight, is able to descend in a resisting fluid, is that which the sphere likewise can 
acquire, by the same weight, by falling without resistance and in that case by describing a 
distance which shall be to four thirds parts of its diameter as the density of the sphere to 
the density of the fluid. For the sphere in the time of its own case, with the velocity of 
falling acquired, describes a distance which will be as eight thirds of its diameter, as the 
density of the sphere to the density of the fluid ; and the force of this weight generating 
this motion, will be to the force which may generate the same motion, in that time the 
sphere will describe eight thirds of its diameter with the same velocity, as the density of 
the fluid to the density of the sphere : and thus by this proposition, the force of the weight 
will be equal to the force of the resistance, and therefore the sphere cannot accelerate. 
Corol. 3. With both the density of the sphere and its velocity at the beginning of the 
motion given, and as with the density of the compressed fluid at rest in which the sphere 
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is moving; both the velocity of the sphere and the resistance of this sphere may be given 
at any time, as well as the distance described by that, by Corol. VII. Prop. XXXV. 
Corol. 4. A sphere in a compressed fluid at rest with the same density by moving, the half 
part of its motion will be lost as it describes a length of two of its diameters, by the same  
Corol. VII. 

 
PROPOSITION XXXIX. THEOREM XXXI. 

 The resistance of a sphere, progressing uniformly through the compressed  fluid in a 
closed pipe, is to the force, by which the whole of this motion, while it will describe 
meanwhile the eight third parts of its diameter,  either may be generated or removed, in a 
ratio which is composed from the ratio of the openings of the pipe to the excess of the 
opening over half the great circle of the sphere, and in the ratio doubled of the opening to 
the excess of this ratio over the great circle of the sphere, and with the density of the fluid 
to the density of the sphere approximately. 
 
 This is apparent by Corol. 2. Prop. XXXVII, and indeed the demonstration proceeds as 
in the preceding proposition.  

 
Scholium. 

 In the two most recent demonstrations (in the same manner as in Lem. V.) I suppose 
that all the water which precedes the sphere may be turned to ice, and its fluidity increases 
the resistance of the sphere. If all that water may become liquid, the resistance will be 
increased a small amount. But that increase will be small in these propositions and can be 
ignored, provided that the whole convex surface of the sphere almost serves to be made of 
ice. 
 

PROPOSITION XL. PROBLEM IX. 
To find the resistance by phenomena, of a sphere progressing in a most compressed fluid 

medium. 
 
 Let A be the weight of the sphere in a vacuum, B its weight in a resisting medium,  D 
the diameter of the sphere, F the distance which shall be to 4

3 D  as the density of the 
sphere to the density of the medium, that is, as A to A B− , G the time by which the 
sphere with the weight B by falling without resistance will describe the distance F, and H 
the velocity that the sphere acquires in this case itself. And H will be the maximum 
velocity by which the sphere, by its weight B, can fall in the resisting medium, by Corol. 
2. Prop. XXXVIII, and the resistance that the sphere is allowed falling with that velocity, 
will be equal to the weight B of this: truly the resistance that is experienced with any 
velocity, will be to the weight B in the square ratio of the velocity of this to that maximum 
velocity H, by Corol, I. Prop. XXXVIII. 
 This is the resistance that arose from the inertia of the matter of the fluid. Indeed that 
which arises from the elasticity, the tenacity, and from the friction of the parts of this, thus 
will be investigated. 
 A sphere may be sent off so that it may descend in the fluid by its own weight B ; and 
P shall be the descent time, and that may be had in seconds, if the time G may be given in 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 635 

seconds.  The absolute number N may be found which agrees with the logarithm 
20 4342944819 P
G, , and let L be the logarithm of the number 1N

N
+ ; and the velocity 

acquired by falling will be 1
1

N
N H−
+ , but the height described will be 

2 1 3862943611 4 605170186PF
G , F , LF− + . If the fluid may be of sufficient depth, the term 

4 605170186, LF can be ignored; and 2 1 3862943611PF
G , F− will describe the height 

approximately. These are shown by ninth proposition of the second book and its corollary, 
from the hypothesis that the sphere experiences no other resistance except for that which 
arises from the inertia of the matter. For if another resistance may be experienced above, 
the descent will be slower, and from the retardation the amount of this resistance may 
become known. 
 In order that the velocities of a body falling in a medium may become known more 
easily, I have composed the following table, the first column of which may denote the 
times of the descent, the second shows the velocities acquired by falling with the 
maximum velocity present 100000000, the third shows the distances described by falling 
in these times, with the distance 2F that the body will describe in the time G with the 
maximum velocity, and the fourth shows the distances in the same times described with 
the maximum velocity.  The numbers in the fourth column are 2P

G , and by subtracting the 
number 1 3862944 4 6051702 , , L− , the numbers in the third column are found, and these 
numbers are multiplied by the distance F so that the distances described by falling may be 
obtained. To these above a fifth column is added, which contains the distances described 
in the same times by a body falling in a vacuum, to be compared with the force of its own 
weight B. 
.  
Times 

P. 
Velocities 

falling in fluid. 
Distances 

described falling in 
fluid. 

Distances 
described at the 

maximum velocity. 

Distances 
described falling 

in a vacuum. 
0,001G 29

3099999  0 000001, F  0,002F 0,000001F 
0,01G 999967 0,0001F 0,02F 0,0001F 
0,1G 9966799 0,0099834F 0,2F 0,01F 
0,2G 19737532 0,0397361F 0,4F 0,04F 
0,3G 29131261 0,0886815F 0,6F 0,09F 
0,4G 37994896 0,1559070F 0,8F 0,16F 
0,5G 46211716 0,2402290F 1,0F 0,25F 
0,6G 53704957 0,3402706F 1,2F 0,36F 
0,7G 60436778 0,4545405F 1,4F 0,49F 
0,8G 66403677 0,5815071F 1,6F 0,64 F 
0,9G 71629787 0,7196609F 1,8F 0,81F 
1G 7615 9416 0,8675617F 2F 1F 
2G 96402758 2,65 00055F 4F 4F 
3G 99505475 4,6186570F 6F 9F 
4G 99932930 6,6143765F 8F 16F 
5G 99990920 8,6137964F 10F 25F 
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6G 99998771 10,6137179F 12F 36F 
7G 99999834 12,6137073F 14F 49F 
8G 99999980 14,6137059F 16F 64F 
9G 99999997 16,6137057F 18F 81F 
10G 99999999 3

5  18,6137056F 20F 100F 
 

[Note 284. L. & J. p. 699. 
So that the demonstration of these things which Newton has presented may be understood 
easily, some of the matters which he demonstrated in 
Propositions VIII & IX in Section 2 are to be recalled. 
Let CH and AB be perpendicular right lines to a given 
right line AC, indeed with CH infinite, and with 

1
4BA AC= . With centre C and with the asymptotes 

CH, CA, a hyperbola BNS may be described through 
the point B taking AC, AP, AK in continued proportion, 
and the right line KN is drawn parallel to AB. And if a 
heavy body may fall from rest in a medium that resists 
in the square ratio of the velocity, the area ABNK may 
represent the distance described by the body in falling; 
and the velocity of the body acquired in this case will 
be able to be represented by the line AP, and its maximum velocity by the given line AC 
(by Cor.1 & 2 Prop. VIII). Now BA may be produced to D so that AD AC= , DC may be 
joined, and with centre D, with the asymptote DC, and with the the principal vertex A, 
another hyperbola ATZ may be described, which the line DP produced may cut in T, and 
the line DQ becomes infinitely near to the line DP itself at V; and the vanishing sector 

PDQ AC
CKDTV ×= , and the sector ATD represents the time in which the falling body 

describes the distance ABNK, and by which it acquires the velocity AP (by Case 2, Prop. 
IX). Truly the distance that the body will describe falling in some time ATD, will be to the 
distance that the body can describe by progressing uniformly in the same time with the 
maximum velocity AC, as the area ABNK to the area ATD (by Cor.1. Prop. IX), and the 
time in which the body by falling in the resisting medium acquires the velocity AP, will 
be to the time in which the maximum velocity AC in non-resisting medium by the force of 
its weight by falling in comparison may acquire, as the sector ATD to the triangle ADC 
(by Cor.5. Prop. IX). 
Note 285. L. & J. With these presumed, there may be called 

1
4AC AD a,AB a,AP x,PQ dx.= = = = =  The hyperbola SNB with the origin at A, is given 

by 1
4
a

x ay . += ; while the hyperbola ZTA, with the origin at D, is given by 2 2 2y x a− = . 

Because AC AP
AP AK= , 

2 2 2x a x
a aAK ,CK −= = , the triangle 1

2PDQ adx= , and the sector 
3 2 21 1 1

2 4 4
2 2
a dx a dx a dxPDQ AC

CK a x a xa x
DTV ×

+ −−
= = = + ;  
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[Thus, in modern terms, from the equation ( )2 2
0

dv
dt k v v= − , where 0v represents the 

terminal velocity from 2
0g kv= , on separating the terms and integrating, we have using 

different variables, ( )0
2 2

0 0 00
0 0

; 2
v v vdv dv dv

v v v v v vv v
kdt kv t ln +

+ − −−
= = + =∫ .] ; hence, on taking the 

integral, the sector ATD representing the time is obtained 
1 1 1
4 4 4

2 2 2 a x
a xATD a L.a x a L.a x a L. +
−= + − − = , to which quantity nothing is required to be 

added or subtracted, because there shall be 0  and 0ATD , x= = , vanishing as required.  
 LO may be drawn parallel to KN and infinitely close to it; and since there shall be 

2x
aAK = , and (by Theorem IV by hypothesis) 

31
2
2 2

2 and aCA AB xdx
CK aa x

KL×
−

= = , the 

differential of the area ABNK will be  
21

2
2 2
a xdx

a x−
= , and with the integrations made, the area 

corresponding to the distance 1
4

2 2 2ABNK Q a L.a x= − −  ; indeed because the area ABNK 

vanishes when 0x = , the constant Q will become 1
4

2 2a L.a , and the final area 
2

1 1 1
4 4 4 2 2

2 2 2 2 2 2 a
a x

ABNK a L.a a L.a x a L.
−

= − − = × .   

[In this case, from the equation ( )2 2
0

dv
dsv k v v= − on taking the downwards direction as 

positive, this gives 
2
01

22 2 2 2
0 0 0 0

2 2  and k
vvdv dv dv

v v v v v v v v
k ds; s ln

− − + −
= − = =∫ ∫ ∫ ∫  , with an obvious 

change of variables, recalling that 2
0kv g= , where the terminal velocity is v0, so that k has 

the dimensions of time. Back to L. & J.] 
Again the time P in which the body, by falling in the resisting medium, acquires the 
velocity of the line AP, or the proportional x is to the time G in which the maximum 
velocity H  can be acquired by the force of its weight, by the weight B falling in 
comparison without resistance, as the sector ATD to the triangle ADC, that is, 

21
4 1

221
2

a x
a xa L. a xP

G a xa
L.

+
− +

−= = .  

[For without resistance, the weight B falls under gravity g alone, and in time T it will 
reach the terminal velocity v0, so that 02

0 0 and v
Tv gT kv g= = = ; hence 

( ) ( )0

0 0

2 1 1 1
2 2 or  ; v va a v

G ka kv v v ka a vka g G t ln P ln+ +
− −= = = = → = ; hence 2 a v a xP

G a v a xL. L.+ +
− −= = . ] 

Whereby there will be 2 a xP
G a xL. +

−= , with this logarithm taken with the logistic of which 

the subtangent is one.  On account of which if the logarithm of the numbers a x
a x
+
−  may be 

taken from tables, it is done by multiplying by the number 2,302585093 [ 10ln= ], as in 
Cor. 7 Prop. XXXV, and there will be had 2 2 302585093 a xP

G a x, L. +
−= , and thus on  dividing 

1. by 2,3025..... the number 20 4342944819 P
G, ×  is the logarithm of the number a x

a x
+
−  [to 

base 10]. And thus if the absolute number N is sought from tables which agree with the 
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logarithm 20 4342944819 P
G, × , there will be a x

a xN +
−=  , and thus ( )1

1
a N

Nx .−
+=  But AC to AP 

or a to x, shall be as the maximum velocity H to the velocity acquired  by falling. 
Whereby this velocity will be 1

1
xH N
a N H−

+= × , just as Newton found. The distance the 
sphere will describe in the time P, progressing uniformly with the maximum velocity H, 
is to the distance 2F that it can traverse with the same velocity H in the time G, as the 
time P to the time G (5. Lib. I), and therefore that distance is 2PF

G . The height S that the 

sphere will describe in the time P by falling in a resisting medium, is to the distance 2PF
G , 

as the area ABNK to the sector ATD, that is, as 
2 2 2

1 1
4 42 2 2

2 2 to  or  to a a x a x a x
a x a xa x a

a L. a L. L. L.+ − +
− −−

× × , but from above, a x
a xN +
−= , and 

( )1
1

a N
Nx −
+= , and hence ( ) ( )2 2

2

2 2 2
1 1

4 4
N N Na

Na x N
+ × +

−
= = , and if logarithms are taken in the 

logistic of which the subtangent is one (i.e. natural logs) 
12 2 4a x NP

G a x N L. L.N L. L.+ +
−= = + − ; and hence  

2

2 2

1

1

2 4 1 2
2

: 2 4:

1 :1 1 4:1 :
N
N

a a x N
a x Na x

L. L. G N G PF
L.N P N P G

L. L. L.N L. L. L.N

L. L. S .
+

+ +
−−

− +

= + −

= + = + − =
 

 
Whereby the altitude 12 4 2 NPF

G NS FL. FL. += − +  
But if we wish to use log. tables, these are multiplied by the number 2,302585092994 or 
2,302585093. Here the number may be called M, the logarithm of the number 4 taken 
from the tables Q, and the logarithm of the number  1N

N
+ shall be L; and there will be 

2 2PF
GS MQF MLF= − + . But there is 2 4 605170186M , ,= and Q in common tables of 

logarithms is 0,60206; or more accurately 0,602059991333, and thus 
1 3862943611MQ ,=  approximately. Whereby the height S, that the sphere describes in 

the time P by falling in the resisting medium, is 2 1 3862943911 4 605170186PF
G , F , LF− + , 

as Newton defined. 
 If the distance S that the sphere may fall were so great, that the term 
4 605170186, LF could be ignored; then L shall be the logarithm of the number 1N

N
+ , 

where N shall be a number so large, or where the number 1N
N
+  may be almost equal to 

one, the logarithm L vanishes approximately. But, if the maximum velocity may be called 
H, and the velocity V of the sphere is acquired in that time P , there is 

 and thus a H V a xH
V x H V a x N+ +

− −= = = , and when the distance S is large enough, there becomes 

V H= approximately, and hence or H V
H V N+
− a number large enough, as is evident from the 

above table; hence the proposition is shown. ] 
 

Scholium. 
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 In order that I might investigate the resistance of fluids by experiments, I prepared a 
square wooden vessel, with length and width of nine inches inside of English feet,  with a 
depth of nine and a half feet, the same I filled with rainwater; and with spheres formed 
from wax with lead enclosed, I noted the times of descent of the spheres, with the descent 
in the height being 112 inches. A volume of an English cubic foot contains 76 pounds 
Avoirdupois of rainwater, and of this a cubic inch contains 19

36  ounces of weight or 1
3253  

grains ; and a sphere of water of diameter one inch contains 132,645 grains in the medium 
of air, or 132,8 grains Avoirdupois in a vacuum ; and any other sphere is as the excess of 
this weight in a vacuum over its weight in water. 
 Expt. 1. A sphere, the weight of which was 1

4156  grains in air and 77 grains in water, 
described the whole height of 112 digits in a time of 4 seconds. And with the experiment 
repeated, the sphere again fell in the same time of  4  seconds. 
 The weight of the sphere in a vacuum is 13

38156  grains and the excess of this over the 
weight of the sphere in water is 13

3879  grains. From which the diameter of the sphere 
produced is 0,84224 parts of an inch. But as that excess is to the weight of the sphere in a 
vacuum, hence the density of the water to the density of the sphere, and thus 8/3 parts of 
the diameter of the sphere (viz. 2,24597 inches) to the distance 2F, that hence will be 
4,4156 inches. The sphere by falling in a vacuum in the time of one second with its whole 
weight of 13

38156  grains, will describe 1
3193  inches; and with a weight of 77 grains, in the 

same time, by falling without resistance in water will describe 95,219 inches; and in the 
time G, which shall be to one second in the square root ratio of the distance F, or 2,2128 
inches to 95,219 inches, it will describe 2,2128 inches,  and it will be able to acquire that 
maximum velocity H to descend in water. Therefore the time G is 0,15244 seconds. And 
in this time G, with that maximum velocity H, the sphere will describe a distance 2F of 
4,4256 inches; and thus in the time of four seconds it will describe a distance of 1l6,1245 
inches. The distance 1,3862944F or  3,0676 inches may be taken away, and there will 
remain a distance of 113,0569 inches that the sphere by falling in water, in the widest 
vessel, will describe in a time of four seconds. This distance, on account of the 
aforementioned narrow wooden vessel, ought to be lessened in a ratio that is composed 
from the square root ratio of the opening of the vessel to the excess of this opening over 
the greatest semicircle of the sphere, and from the simple of the same opening to the 
excess of this over the great circle of the sphere, that is, in the ratio 1 to 0,9914. With 
which done, it will give a distance of 112,08 inches, which the sphere by falling in water 
in this wooden vessel in a time of four seconds must describe approximately. Indeed by 
experiment it has described 112 inches. 
 Expt. 2. Three equal spheres,  of which the weights themselves were 1

376  grains in air 
and 1

165  grains in water, were released successively ; and each one fell in a time of 15 
seconds, in each case by describing a height of 112 inches. 
 By entering into the computation they produced a weight of the sphere in a vacuum of  

5
1276 grains, the excess of the weight of 17

4871  grains over the weight in water,  of a sphere 

of diameter 0,81296 inches, 8
3 parts of this diameter 2,16789 inches; the distance 2F 

2,3217 inches; the distance that the sphere with a weight of 1
165  grains in a time of 1 

second may describe by falling 11,808 inches without resistance, and the time G 0,301056 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 640 

seconds. Therefore the sphere, with that maximum velocity it can describe in water by the 
weight of the force 1

165  grains, in the time 0,301056 seconds will describe the distance 
2,3217 inches and in the time 15 a distance of 115,678 inches. The distance 1,3862944F 
or 1,609 inches may be subtracted and the distance114,069 inches will remain which the 
sphere must be able to describe by falling in the same time in the widest vessel. Therefore 
the narrowness of our vessel must take away a distance of around 0,895 inches. And thus 
there will remain a distance of 113,174 inches which the sphere by falling in this vessel, 
ought to describe in 15 seconds by the theorem approximately. Truly it describes 112 
inches by experiment. The difference is insignificant. 
 Expt. 3. Three equal spheres, whose weights were separately 121 grains in air and 1 
grain in water, were successively dropped ; and they were falling in water describing 
heights of 112 inches in the times 46, 47, and 50 seconds. 
 By the theorem these spheres should fall in a time around 40 seconds. Because 
they have fallen slower, whether for a smaller part of the resistance arising from the force 
of inertia in slowing the motions, or it is required to attribute a resistance that arises to 
other causes ; perhaps to some bubbles adhering to the sphere,  or to the evaporation of 
the wax either by the heat or warmth of the season or by dropping the sphere by hand, or 
even by unknown errors in weighing the spheres in water,  I am unsure. And thus the 
weight of the sphere in water must be of several grains, so that the experiment may be 
rendered certain and trustworthy. 
 Expt. 4. The experiments described so far I had began so that I could investigate the 
resistance of fluids, before the theory in the nearby preceding propositions set out by me 
was known. Afterwards, so that I could examine the theory found, I prepares a wooden 
vessel with an internal width of 2

38 inches, with a depth of 1
315 feet. Then I made four 

spheres from wax with lead inside, the individual ones weighing 1
4139  grains in air and 

1
87 grains in water. And these I released so that I could measure the falling times in water 

by a pendulum, oscillating in half seconds. The spheres, when they were being weighed 
and afterwards were cold,  and they remained cold for some time ; because heat 
evaporated the wax, and by the evaporation diminished the weight of the sphere in water, 
and the evaporated wax is not at once restored to the former density by cold. Before they 
fell, they were thoroughly immersed in water; lest with the weight from some parts 
standing clear from the water might accelerate the descent from the start. And when 
immersed they become completely still, they were being dropped most cautiously, lest 
they might accept some impulse from the hand on being dropped. Moreover they fell in 
the successive times of oscillation 1 1

2 247  48, , 50 and 51, describing a height of 15 feet 
and 2 inches. But the weather was now a little colder than when the spheres were 
weighed, and thus I repeated the experiment on another day, and the spheres were falling 
in the times of 49, 1

249 , 50 and 53 oscillations, and on a third attempt with the times of 
1
249 , 50, 51 and 53 oscillations. And with the experiment taken more often, the spheres 

fell mainly from the times of the oscillations 1
249  and 50. When falling slower, I suspect 

to be retarded by striking with the sides of the vessel. 
 Now the computation by the theorem being entered into, they produce the weight of 
the sphere in a vacuum of 2

5139  grains. An excess of this weight over the weight of the 
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sphere in water of 11
40132  grains. The diameter of the sphere is 0,99868 inches. The 8

3  
parts of the diameter 2,66315 inches. The interval 2F becomes 2,8066 inches. The 
distance which a sphere with a weight of 1

87  grains describes in a time of one second by 
falling without resistance 9,88164 inches. And the time  G 0, 376843 seconds. Therefore 
the sphere, with the maximum velocity by which it can descent in water by a force of a 
weight of 1

87 , in a time  0,376843 seconds will describe a distance 2,8066 inches, and in a 
time of 1 second, a distance of 7,44766 inches, and in the time of 25 seconds or of 50 
oscillations a distance of 186,1915 inches [in these days an oscillation was the motion of a 
pendulum from one side to the other, or half the modern period]. The distance  
1,386294F, or 1,9454 inches may be taken away, and there will remain 184,2461 inches 
which the sphere in the same time in the widest vessel.  On account of the narrowness of 
our vessel, this distance may be diminished in a ratio which is composed from the square 
root ratio of the opening of the vessel and the excess of this opening over the great 
semicircle of the sphere, and to the simple ratio of this same orifice to its excess over a 
great circle of the sphere ; and the distance 181,86 inches will be had, which the sphere 
ought to describe in this vessel in the time of 50 approximately by the theorem. In truth it 
may describe a distance of 182 inches in a time of 1

249  or 50 oscillations by experiment. 
 Expt. 5. Four spheres with a weight of 1

8154  grains in air and 1
221  grains in water are 

dropped often, falling in a time of 1 1
2 228  29  29, ,  and 30 oscillations, and occasionally of 

31, 32  and 33 oscillations, describing heights of 15 feet and 2 inches. 
By the theorem they ought to fall in a time of 29 approximately. 
 Expt. 6. Five spheres with a weight of 3

8212  grains in air and 1
279  grains in water were 

dropped a number of times, they were falling in the times of 1
215 , 16, 17  and 18 

oscillations, describing heights of 15 feet and 2 inches. 
 By the theorem they ought to fall in a time of approximately15 oscillations. 
 Expt.7. Four spheres weigh 3

8293  grains in air and 7
835  grains in water were dropped a 

number of times, they were falling in the times 1 1
2 229  30  30, , , 31, 32 and 33 oscillations, 

describing heights of 15 feet and 2 inches. 
 By the theorem they ought to fall in a time of approximately 28 oscillations. 
 The cause requiring to be investigated why of spheres of the same weight and 
magnitude, some may fall faster or slower, I fell upon this ; because the spheres, when 
they were being first released and they were beginning to fall, were turning about the 
centres, with the side that was perhaps the heavier to be the first to descend, and by 
generating a motion of oscillation. For by its oscillations the sphere could communicate 
more motion to the water, than if it were descending without oscillations ; and by 
communicating, it lost a part of its proper motion by which it ought to descend: and by a 
greater or smaller oscillation, it may be retarded more or less. Truly indeed the sphere 
always departed from its side that descended by the oscillation, and by receding 
approached the sides of vessel and occasionally struck the sides. And this oscillation was 
stronger in heavier spheres, and with the larger disturbed more water. On which account, 
so that the oscillation of the spheres could be made less, I constructed nine spheres from 
wax and lead, I put in place the lead on some side of the sphere close to the surface of this 
; and the sphere thus dropped, so that the heavier side, as long as that could be done, 
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should be the lowest from the beginning of the descent. Thus the oscillations were made 
much less than at first, and the spheres fell in less unequal times, as in the following 
experiments. 
 Expt. 8. Four spheres, with a weight of 139 grains in air and 1

26  in water, were dropped 
a number of times, they fell in times of not more than 52 oscillations, not many less than  
50, and the most from a time of around 51 oscillations, describing a height of 182 inches. 
By the theorem they ought to fall in a time of approximately 52 oscillations. 
 Expt. 9. Four spheres, with a weight of 1

4273  in air and 1
4140  in water, were dropped a 

number of times, they fell in times of not fewer than 12 oscillations, not of much more 
than 13, describing a height of 182 inches. 
 By the theorem they ought to fall in a time of approximately 1

311 oscillations. 
 Expt. 10. Four spheres, with a weight of 384 in air and 1

2119  in water, were dropped a 
number of times, they fell in the times of 3 1

4 217 , 18  18 and 19, , , oscillations, describing a 
height of 1

2181 inches. And when they fell in the time of 19 oscillations, I heard only a few 
strike the side of the vessel before they arrived at the bottom. 
 By the theorem they ought to fall in a time of approximately 5

815  oscillations. 
Expt. 11. Three equal spheres, with weights of 48 grains in air and 29

303  grains in water, 
were dropped often, and they fell in times of 1 1

2 243 44 44, , , 45 and 46 oscillations, and for 
the greater part, from 44 and 45 , describing a height of 1

2182  approximately. 
 By the theorem they ought to fall in a time of approximately 5

946  oscillations. 
Expt. 12. Three equal spheres, with weights of 141 grains in air and 3

84  grains in water, 
were dropped a number of times, they dropped in times of 61, 62, 63, 64 and 65 
oscillations, describing a height of 182 inches. 
 By the theorem they ought to fall in a time of approximately 3

464  oscillations. 
 By these experiments it is clear that, when the spheres fell slowly, as in the second, 
fourth, fifth, eighth, eleventh and twelfth experiments, the falling times were correctly 
shown by theory; but when the spheres fell faster, as in the sixth,  ninth, and tenth 
experiments, the resistance stood out a little more than in the square of the velocity. For 
the spheres during falling oscillate a little, and this oscillation in the lighter and slower 
falling spheres quickly ceases, on account of the lightness of the motion ; but in the 
heavier and greater, on account of the strength the motion the oscillations may endure a 
long time, and cannot be confined until after several oscillations in the surrounding water. 
Truly the swifter spheres, there may be pressed on less by the fluid on their rear parts  ; 
and if the velocity may be constantly increased, they will leave finally a vacuum in the 
space behind, unless likewise the compression of the fluid may be increased. But the 
compression of the fluid must be increased in the square ratio of the velocity (by Prop. 
XXXII. & XXXIII.), so that the resistance shall be in the same square ratio. Because this 
may not be, the faster spheres are pressed a little less from behind, and from the 
deficiency of this pressure, the resistance of these shall be a little greater than in the 
square ratio of the velocities. 
 Therefore the theory agrees with the phenomena of bodies falling in water, it remains 
that we examine the phenomena of bodies falling in air. 
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 Expt.13. From the top of St. Paul's Church, in the town of London, in the month of 
June, 1710, two glass spheres were dropped simultaneously, the one full of mercury, and 
the other air ; and falling they described a height of 220 English feet. A wooden table was 
suspended at one end by an iron rod, at the other it rested on a wooden peg, and the two 
spheres set on this table were dropped at the same time, by removing the peg with the 
help of an iron wire sent as far as the ground so that the table supported only by the iron 
rod could rotate about the same, and at the same instant by pulling on that wire a 
pendulum could start oscillating in seconds. The diameters and weights of the spheres and 
the times of falling are shown in the following table. 
 

The spheres full of mercury. The spheres full of air. 
 

Weights in 
grains.  

Diameters in 
 inches 

Times of 
falling in 
seconds 

Weights in
grains. 

Diameters 
in 

 inches. 

Times of falling
 in seconds 

908  0,8.  4 510 5,1  8 1
2  

983 0,8 4 – 642 5,2 8 
866 0,8 4 599 5,1 8 
747 0,75 4+ 5I5 5,0 8 1

4  
808 0,75 4 483 5,0 8 1

2  
784 0,75 4+ 641 5,2 8 
 
 Besides the observed times must be corrected. For the mercury spheres (from Galilio's 
theory) describe  257 English feet in four seconds, and 220 feet in only 3" 41'" . [We will 
use Newton's notation henceforth; thus 41

60
3  41  means 3 seconds " '" ]. Certainly the 

wooden table, with the peg removed, was turning slower than suitable, and by its 
slowness in rotation impeded the descent of the spheres from the start. For the spheres 
were resting on the table near its middle, and indeed they were a little nearer to the axis of 
this than to the peg.  And hence the falling times were prolonged around 18'" , 
and now must be corrected by taking that small amount, especially with the larger spheres 
which were resting a little longer on the rotating table on account of the size of the 
diameters. With which done the times, in which the 6 larger spheres fell, became 8" 12'" , 
7" 42'"  , 7" 42'", 7" 57'", 8" 12'" , and 7" 42'". 
 Therefore the fifth of the spheres full of air, constructed with a diameter of five inches 
and with a weight of 483 grains, fell in a time of 8" 12'" , in describing a height of  220 
feet. The weight of water equal to this sphere is 16600 grains; and the weight of air equal 
to the same [volume] is 16600

800  grains or 3
1019  grains and thus the weight of the sphere in a 

vacuum is 3
10502  grains and this weight is to the weight of the air in the sphere, as  

3 3
10 10502  to 19 , and thus there shall be 2F to 8

3 parts of the diameter of the sphere, that is, 
to 1

313  inches. From which 2F produces 28 feet 11 inches. The sphere by falling in a 
vacuum, with its whole weight 3

10502  grains, will describe in a time of one second 1
3193  

inches as above, and with a weight of 483 grains it will describe 185,905 inches, and with 
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the same weight of 483 grains also in a vacuum it will describe a distance F or 14 feet 1
25  

inches in a time of 57" 58"" , and with that maximum velocity it can acquire by falling in 
air. With this velocity the sphere, in the time 8" 12'", describes the distance 245feet and 

1
35  inches. Take away 1,3863F or 20 feet 1

20  inches and 225 feet 5 inches shall remain. 
Therefore the sphere, in the time 8" 12'" must describe this distance by falling according 
to the theory. Truly the distance described will be 220 feet by experiment. The difference 
is negligible.  
  By similar computations applied also to the remaining spheres filled with air,  I have 
put together the following table. 
 

Weights of the 
spheres (grains). 

Diameters 
(inches). 

Time to fall 
220 feet. 

(sec.) 

Distance 
describe by 

theory. 

Excess. 

510  5,1  8" 12'" 226 ft. 11 in. 6 ft. 11 in. 
642 5,2 7   42 230          9 7         10 
599 5,1 7   42 227        10 7         10 
515 5 7   57 224          5 4           5 
483 5 8   12 225          5 5           5 
641 5,2 7   42 230          7 10         7 
 
Expt. 14. In the year 1719. in the month of July, Dr. Desaguliers took in hand 
experiments of this kind again, by forming pigs bladders into spherical shapes with the aid 
of a concave wooden sphere, which wetted were forced to be filled with air ; and these 
were then dried and removed. By dropping from a higher place in the same holy place 
from the arch of the copula, namely from a height of 272 feet; and at the same moment of 
time  by dropping also a leaden sphere, whose weight was around two pounds 
avoirdupois.  And meanwhile someone standing in the upper part of the dome, when the 
spheres were dropped, was noting the whole time of falling, and others standing on the 
ground were noting the difference of the times between the case of the leaden sphere and 
of the bladder. Moreover the times were measured by pendulums oscillating at the half 
second. And of these who were standing on the ground one had a clock which vibrated 
with a sound in a individual quarter seconds, another had a different machine skillfully 
constructed also with a pendulum that vibrated four times per second. And one of those 
present who were at the top of the church had a similar machine. And these instruments 
thus were formed, so that the motion of these could either be started or stopped as it 
pleased. Moreover the leaden sphere fell in a time of around 1

44  seconds. And by adding 
this time to the aforementioned difference of the times, the total time could be deduced in 
which the bladder fell. The times, in which the five bladders fell after the case of the first 
leaden sphere, were 3 3 5 3 3

4 4 8 4 414 12 14 17  and 16", ", ", ", " , and the following in turn 
31 1

2 4 414 12 14 19  and 16", ", ", ", " . There may be added 1
44 " , certainly the time in which the 

leaden sphere fell, and the total time, in which the five bladders fell, were in the first place 
7 1
8 819 17 18 22  and 21", ", ", ", " ; and in the second place, 3 1 1 1

4 2 4 418 18 18 23  and 21", ", ", ", " .  
Moreover the times noted from the top of the church , were in the first turn  

3 3 51 1
4 4 4 8 819 17 18 22  and 21", ", ", ", " ; and in the second turn 5 3 1

8 8 419 18 18 24  and 21", ", ", ", " .  
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The rest of the bladders did not always fall straight down, but sometimes were flying 
about, and hence thus they were moving to and fro while falling. And from these motions 
the times of falling were extended and sometimes increased by as much as half a second, 
sometimes by a whole second. But the second and fourth fell more straight in the first 
turn; and the first and third in the second turn. The fifth bladder was more wrinkled and 
by it wrinkles somewhat retarded. The diameters of the bladders I deduced from their 
circumferences measured twice by a fine thread passed around. And I have brought 
together the theory with the experiments in the following table, by assuming the density 
of air to be to the density of water as 1 to 860, and by computing the distances which the 
spheres must describe by falling by theory.  
 
The weights 
of the 
bladders 
(grains).  

Diameters 
(inches). 

Times required to 
fall from a height of 
272 feet. 

Distance described in 
the same times by 
theory. 

Difference 
between theory 
& expt. 

128  5, 28 19" 271ft.            11 in. – 0ft.      1in. 
156 5, 19 17 272                1

20   + 0        1
20  

1
2137  5,   3 1

218  272                 7 + 0         7 
1
297  5  26 22 277                  4 + 5         4 
1
899  5 1

821  282                  0 + 10       0 
 
Therefore the resistances of nearly all the spheres moving both in air and in water are 
shown correctly from our theory, and is proportional to the densities of the fluids, with 
equal velocities and magnitudes of the spheres. 
 In the scholium, which has been added to the sixth section, we have shown by 
experiments with pendulums that the resistances of the motions of equal and equal 
moving spheres in air, water, and in quicksilver are as the densities of the fluids. Here we 
have shown the same more accurately from experiments with bodies falling in air and in 
water. For the individual oscillations of pendulums always move the fluid in a direction 
opposite to the direction of the returning swing, and the resistance that arises from that 
motion, and as the resistance of the thread by which it was being suspended, the total 
resistance of the pendulum were rendered greater than the resistance produced by a body 
falling. And also by the experiments with pendulums set out there in the scholium, a 
sphere of the same density as water, by describing a length of half its diameter in air,  
ought to lose the 1

3342
th part of its motion.  But by the theory I have set out in this seventh 

section and I have confirmed from the experiments with falling bodies, the same sphere 
by describing the same length, ought to lose only the 1

4586  th part, supposing the density of 
water shall be put to the density of air as 860 to 1. Therefore greater resistances were 
produced by the experiments with pendulums (on account of the reasons now described) 
than by the experiments with falling spheres, and that approximately in the ratio of 4 to 3. 
Yet since the resistance of pendulums in air,  water, and in quicksilver may be likewise 
increased by like causes, the proportion of the resistance in these mediums, both by the 
experiments with pendulums, as well as by the experiments with falling spheres, 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 646 

may be demonstrated well enough. And thence it can be concluded that the resistances of 
the motions of  bodies in any of the most free of fluids, with all else being equal, are as 
the densities of the fluids. 
 Thus with these established, now it is permitted [to find] what part of its motion will be 
lost by any sphere, projected in some fluid, in some given time approximately.  D shall be 
the diameter of the sphere, and V its initial velocity, and T the time, in which the sphere 
with the velocity V in a vacuum may describe a distance, which shall be to the distance 
8
3 D as the density of the sphere to the density of the fluid : and the sphere projected into 
the fluid, at some other time t,  will lose the tV

T t+ part of its velocity, with the part TV
T t+  

remaining, and a distance described, which shall be to the distance described with the 
uniform speed V in the same time, as the logarithm of the number T t

T
+ multiplies by the 

number 2,302585093 is to the number t
T  by Corol. VII, Prop. XXXV. In the slower 

motions the resistance can be a little less, because that figure of the sphere shall be a little 
more suited to the motion than the figure of a cylinder described of the same diameter. In 
motions with greater velocities the resistance can be a little greater, because since the 
elasticity and the compression of the fluid may not be increased in the square ratio of the 
velocity. But I will not dwell on trifling details of this kind here.  
 And although air, water, quicksilver and like fluids, by the indefinite division of parts, 
may become more subtle and be made infinitely fluid mediums ; yet they may offer no 
less resistance to projected spheres. For the resistance, by which it was acted on in the 
preceding propositions, arises from the inertia of the matter, and the essential inertia of 
matter in bodies is always in proportion to the quantity of matter. By the division of the 
parts of the fluid, the resistance which arises from the tenacity and the friction of the parts 
can indeed be diminished : but the quantity of  matter through the divisions of the parts of 
this is not diminished; and with the quantity of matter remaining, the inertial force of this 
remains,  to which the resistance, by which this is acted on, is always proportional. In 
order that this resistance may be diminished, the quantity of matter must be diminished in 
the interval through which the body is moving. And because the celestial spaces, through 
which the spheres of the planets and comets to all parts freely and without any diminution 
of the motion may be considered to be moving perpetually, they are free of all corporal 
fluid, if perhaps rare vapours and the trajectories of light ray be excepted. 
 Certainly projectiles excite motions in fluids by passing through them, and this motion 
arises from the excess of the pressure of the fluid on the anterior parts of the projectile 
over the pressure on the posterior parts of this, and cannot be less in infinite fluid 
mediums than in air, water, and quicksilver for the density of the matter in each. But this 
excess pressure, from its amount, not only may excite motion in the fluid, but also act on 
the projectile and to retard its motion : and therefore the resistance in any fluid is to the 
motion excited in the fluid by a projectile, cannot be less in the most subtle aether than to 
the density of that aether, as it is in air, water, and quicksilver to the densities of these 
fluids. 
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SECTIO VII. 

 
De motu fluidorum & resistentia projectilium. 

 
PROPOSITIO XXXII. THEOREMA XXVI. 

 Si corporum systemata duo similia ex aequali particularum numero constent, & 
particulae correspondentes similes sint & proportionales, singule in uno systemate 
singalis in altero, & similiter sitae inter se, ac datam habeant rationem densitatis ad 
invicem, & inter se temporibus proportionalibus similiter moveri incipiant (eae inter se 
quae in uno sunt systemate & inter se quae sunt in altero) & si non tangant se mutuo quae 
in eodem sunt systemate, nisi in momentis reflexionum, neque attrahant, vel fugent se 
mutuo, nisi viribus acceleratricibus quae sint ut particularum correspondentium diametri 
inverse & quadrata velocitatum directae: dico quod systematum particulae illae pergent 
inter se temporibus proportionalibus similiter moveri. 
 
 Corpora similia & similiter sita temporibus proportionalibus inter se similiter moveri 
dico, quorum situs ad invicem in fine temporum illorum semper sunt similes: puta si 
particulae unius sysematis cum alterius particulis correspondentibus conferantur. Unde 
tempora erunt proportionalia, in quibus similes & proportionales figurarum similium 
partes a particulis correspondentibus describuntur. Igitur st duo sint eiusmodi systemata, 
particulae correspondentes, ob similitudinem incoeptorum motuum, pergent similiter 
moveri, usque donec sibi mutuo occurrant. Nam si nullis agitantur viribus, progredientur 
uniformiter in lineis rectis per motus leg. I. Si viribus aliquibus se mutuo agitant, & vires 
illae sint ut particularum correspondentium diametri inverse & quadrata velocitotum 
directe , quoniam particularum situs sunt similes & vires proportionales, vires totae 
quibus particulae correspondentes agitantur, ex viribus singulis agitantibus 
(per legum corollarium secundum) compositae, similes habebunt determinationes, perinde 
ac si centra inter particulas similiter sita respicerent; & erunt vires illae totae ad invicem 
ut vires singulae componentes, hoc est, ut correspondentium particularum diametri 
inverse, & quadrata velocitotum directe: & propterea efficient ut correspondentes 
particulae figuras similes describere pergant. Haec ita se habebunt (per corol.1 & 8, Prop. 
IV. Lib. I.) si modo centra illa quiescant. Sin moveantur, quoniam ob translationum 
similitudinem, similes manent eorum situs inter systematum particulas ; similes 
inducentur mutationes in figuris quas particulae describunt. Similes igitur erunt 
correspondentium & similium particularum motus usque ad occursus suos primos, & 
propterea similes occursus, & similes reflexiones, & subinde (per iam ostensa) similes 
motus inter se donec iterum in se mutuo inciderint, & sic deinceps in infinitum. 
Q.E.D. 
Corol.1. Hinc si corpora duo quaevis, quae similia sint & ad systematum particulas 
correspondentes similiter sita, inter ipsas temporibus proportionalibus similiter moveri 
incipiant, sintque eorum magnitudines ac densitates ad invicem ut magnitudines ac 
densitates correspondentium particularum: haec pergent temporibus proportionalibus 
similiter moveri. Est enim eadem ratio partium maiorum systematis utriusque atque 
particularum. 
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Corol. 2. Et si similes & similiter positae systematum partes omnes quiescant inter se: & 
earum duae, quae caeteris maiores sint, & sibi mutuo in utroque systemate 
correspondeant, secundum lineas similiter sitas simili cum motu utcunque moveri 
incipiant : hae similes in reliquis systematum partibus excitabunt motus, & pergent inter 
ipsas temporibus proportionalibus similiter moveri; atque ideo spatia diametris suis 
proportionalia describere. 
 

PROPOSITIO XXXIII. THEOREMA XXVII. 
 Eidem positis, dico quod systematum partes maiores resistuntur in ratione composita 
ex duplicata ratione velocitatum suaram & duplicata ratione diametrorum & ratione 
densitatis partium systematum. 
 
 Nam resistentia oritur partim ex viribus centripetis vel centrifugis quibus particulae 
systematum se mutuo agitant, partim ex occursibus & reflexionibus particularum & 
partium maiorum. Prioris autem generis resistentiae sunt ad invicem ut vires totae 
motrices a quibus oriuntur, id est, ut vires totae acceleratrices & quantitates materiae in 
partibus correspondentibus; hoc est (per hypothesin) ut quadrata velocitatum directae & 
distantiae particularum correspondentium inverse & quantitates materiae in partibus 
correspondentibus directae : ideoque cum distantiae particularum systematis unius 
sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in 
systemate priore ad diametrum particulae vel partis correspondentis in altero, & 
quantitates materiae sint ut densitates partium & cubi diametrorum; resistentiae sunt ad 
invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium 
systematum. Q.E.D. Posterioris generis restitentiae sunt ut reflexionum correspondentium 
numeri & vires coniunctim. Numeri autem reflexionum sunt ad invicem ut velocitates 
partium correspondentium directe, & spatia inter earum reflexiones inverse. Et 
vires reflexionum sunt ut velocitates & magnitudines & densitates partium  
correspondentium coniunctim; id est, ut velocitates & diametrorum cubi & densitates 
partium. Et coniunctis his omnibus rationibus, resistentiae partium correspondentium sunt 
ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium 
coniunctim. Q. E. D. 
Corol. 1. Igitur si systemata illa sint fluida duo elastica ad modum aeris, & partes eorum 
quiescant inter se: corpora autem duo similia & partibus fluidorum quoad magnitudinem 
& densitatem proportionalia, & inter partes illas similiter posita, secundum lineas similiter 
positas utcunque proiiciantur, vires autem acceleratrices, quibus particulae fluidorum se 
mutuo agitant, sint ut corporum proiectorum diametri inverse, & quadrata velocitatum 
directe : corpora illa temporibus proportionalibus similes excitabunt motus in fluidis, 
& spatia similia ac diametris suis proportionalia describent. 
Corol. 2. Proinde in eodem fluido proiectile velox resistentiam patitur, quae est in 
duplicata ratione velocitatis quam proxime. Nam st vires, quibus particulae distantes se 
mutuo agitant, augetentur in duplicata ratione velocitatis, resistentia foret in eadem ratione 
duplicata accurate; ideoque in medio, cuius partes ab invicem distantes sese viribus nullis 
agitant, resistenaea est in duplicata ratio velocitatis accurate. Sunto igitur media tria A, B, 
C ex partibus similibus & aequalibus & secundum distantias aequales regulariter 
dispositis constantia. Partes mediorum A & B fugiant se mutuo viribus quae sint ad 
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invicem ut T & V, illae medii C eiusmodi viribus omnino destituantur. Et si corpora 
quatuor aequalia D, E, F, G in his mediis moveantur, priora duo D & E in prioribus 
duobus A & B, & altera duo F & G in tertio C; sitque velocitas corporis D ad velocitatem 
corporis E, & velocitas corporis F ad velocitatem corporis G in subduplicata ratione 
virium T ad vires V: resistentia corporis D erit ad resistentiam corporis E, & resistentia 
corporis F ad resistentiam corporis G, in velocitatum ratione duplicata, & propterea 
resistentia corporis D erit ad resistentiam corporis F ut resistentia corporis E ad 
resistentiam corporis G. Sunto corpora  D & F aequivelocia ut & corpora E & G; & 
augendo velocitates corporum  D & F in ratione quacunque, ac diminuendo vires 
particularum medii B in eadem ratione duplicate, accedet medium B ad formam & 
conditionem medii C pro libitu, & idcirco resistentiae corporum aequalium & 
aequivelocium E & G in his mediis, perpetuo accedent ad aequalitatem, ita ut earum 
differentia evadat tandem minor quam data quaevis. Proinde cum resistentiae corporum D 
& F sint ad invicem ut resistentiae corporum E & G, accedent etiam hae similiter ad 
rationem aequalitatis. Corporum igitur D & F, ubi velocissime moventur, resistentiae sunt 
aequales quam proxime: & propterea cum resistentia corporis F sit in duplicata ratione 
velocitatis, erit resistentia corporis D in eadem ratione quam proxime. 
Corol. 3. Corporis in fluido quovis elastico velocissime moti eadem fere est resistentia ac 
si partes fluidi viribus suis centrifugis destituerentur, seque mutuo non fugerent : si modo 
fluidi vis elastica ex particularum viribus centrifugis oriatur, & velocitas adeo magna sit 
ut vires non habeant satis temporis ad agendum. 
Corol. 4. Proinde cum resistentia similium & aequivelocium corporum, in medio cuius 
partes distantes se mutua non fugiunt, sint ut quadrats diametrorum; sunt etiam 
aequivelocium & celerrime motorum corporum resistentiae in fluido elastico ut quadrato 
diametrorum quam proxime. 
Corol: 5. Et cum corpora similia, aequalia & aequivelocia, in mediis eiusdem densitatis, 
quorum particulae se mutuo non fugiunt, sive particulae illae sint plures & minores, sive 
pauciores & maiores, in aaequalem materiae quantitatem temporibus aequalibus 
impingant, eique aaequalem motus quantitatem imprimant, & vicissim (per motus 
legem tertiam) aaequalem ab eadem reactionem patiantur, hoc est, aequaliter resistantur : 
manifestum est etiam quod in eiusdem densitatis fluidis elasticis, ubi velocissime 
moventur, aequales sint eorum resistentiae quam proxime , sive fluida illa ex particulis 
crassioribus constent, sive ex omnium subtilissimis constituantur. Ex medii subtilitate 
resistentia proiectilium celerrime motorum non multum diminuitur. 
Corol. 6. Haec omnia ita se habent in fluidis, quorum vis elastica ex particularum viribus 
centrifugis originem ducit. Quod si vis illa aliunde oriatur, vel uti ex particularum 
expansione ad instar lanae vel ramorum arborum, aut ex alia quavis causa, qua motus 
particularum inter se redduntur minus liberi: resistentia, ob minorem medii 
fluiditatem, erit maior quam in superioribus corollariis. 
 

PROPOSITIO XXXIV. THEOREMA XXVIII. 
 Si globus & cylindrus aequalibus diametris descripti, in media raro ex pariticulis 
aequalibus & ad aequales ab invicem distantias libere dispositis constante, secundum 
plagam axis cylindri, aequali cum velocitate moveantur: erit resistentia globi duplo minor 
quam resistentia cylindri. 
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 Nam quoniam actio medii in corpus eadem est (per legum corol.5) sive corpus in 
medio quiescente moveatur, sive medii particulae eadem cum velocitate impingant in 
corpus quiescens: consideremus corpus tanquam quiescens, & videamus quo impetu 
urgebitur a media movente. Designet igitur ABKI corpus sphaericum centro C 
semidiametro CA descriptum, & incidant particulae medii data cum velocitate in corpus 
illud sphaericum, secundum rectas ipsi AC parallelas: sitque FB eiusmodi recta. In ea 
capiatur LB semidiametro CB aequalis, & ducatur BD quae sphaeram tangat in B. In KC 
& BD demittantur perpendiculares BE, LD, & vis qua 
particula medii, secundum rectam FB oblique 
incidendo, globum ferit in B, erit ad vim qua particula 
eadem cylindrum ONGQ axe ACI circa globum 
descriptum perpendiculariter feriret in b, ut LD ad LB 
vel BE ad BC. Rursus efficacia huius vis ad movendum 
globum secundum incidentiae suae plagam FB vel AC, 
est ad eiusdem efficaciam ad movendum globum 
secundum plagam determinationis suae, id est, 
secundum plagam rectae BC qua globum directe urget ut BE ad BC. Et coniunctis 
rationibus, efficacia particulae in globum secundum rectam FB oblique incidentis, ad 
movendum eundem secundum plagam incidentiae suae, est ad efficaciam particulae 
eiusdem secundum eandem rectam in cylindrum perpendiculariter incidentis, ad ipsum 
movendum in plagam eandem, ut BE quadratum ad BC quadratum. Quare si in bE, quae 
perpendiculuris est ad cylindri basem circularem NAO & aequalis radio AC, sumatur bH 
aequalis .BEquad

CB  : erit bH ad bE ut effectus particulae in globum ad effectum particulae in 
cylindrum. Et propterea solidum quod a rectis omnibus bH occupatur erit ad solidum 
quod a rectis omnibus bE occupatur, ut effectus particularum omnium in globum ad 
effedum particularum omnium in cylindrum. Sed solidum prius est parabolois vertice C, 
axe CA & latere recto CA descriptum, & solidum posterius  est cylindrus paraboloidi 
circumscriptus: & notum est quod parabolois sit semissis cylindri circumscripti. Ergo vis 
tota medii in globum est duplo minor quam eiusdem vis tota in cylindrum. Et propterea si 
particulae medii quiescerent, & cylindrus ac globus aequali cum velocitate moverentur, 
foret resistentia globi duplo minor quam resistentia cylindri. Q.E.D. 
 

Scholium. 
Eadem methodo figurae aliae inter se quoad resistentiam comparari possint, aeque 
inveniri quae ad motus suos in mediis resistentibus 
continuandos aptiores sunt. Ut si base circulari CEBH, 
quae  centro O, radio OC describitur, & altitudine OD, 
construendum sit frustum coni CBGF, quod omnium 
eadem basi & altitudine constructorum & secundum 
plagam axis sui versus  D progredientium frustorum 
minime resistatur : biseca altitudinem 
OD in Q & produc OQ ad S ut sit QS aequalis QC, & 
erit S vertex coni cuius frustum queritur. 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 651 

 Unde obiter, cum angulus CSB semper sit acutus, consequens est, quod si solidum 
ADBE convolutione figurae  ellipticae vel ovalis 
ADBE circa axem AB facta generetur, & 
tangatur figura generans a rectis tribus FG, GH, 
HI in punctis F, B & I, ea lege ut GH sit 
perpendicularis ad axem in puncto contactus B, 
& FG, HI cum eadem GH contineant angulos 
FGB, BHI graduum 135, folidum, quod 
convolutione figurae ADFGHIE circa axem 
eundem AB generatur, minus resistitur quam 
solidum prius; si modo utrumque secundum plagam axis sui AB progrediatur, & utriusque 
terminus B praecedat. Quam quidem propositionem in construendis navibus non inutilem 
futuram esse censeo. 
 Quod si figura DNFG eiusmodi sit curva, ut, si ab eius puncto quovis N ad axem AB 
demittatur perpendiculum NM, & a puncto dato G ducatur rect GR quae parallela sit 
rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut 
GR cub. ad 4BR GBq× ; solidum quod figurae huius revolutione a circa axem AB facta 
describitur, in medio raro praedicto ab A verae 
versus B movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine 
descriptum solidum circulare. 
 

PROPOSITIO XXXV. PROBLEMA VII. 
 Si medium rarum ex particulis quam minimis quiescentibus aequalibus & ad aequales 
ab invicem distantias libere dispositis constet: invenire resistentiam globi in hoc medio 
uniformiter progredientis. 
 
 Cas: 1. Cylindrus eadem diametro & altitudine descriptus progredi intelligatur eadem 
velocitate secundum longitudinem axis sui in eodem medio. Et ponamus quod particulae 
medii, in quas globus vel cylindrus incidit, vi reflexionis quam maxima resiliant. Et cum 
resistentia globi (per propositionem novissimam) sit duplo minor quam resistentia 
cylindri, & globus sit ad cylindrum ut duo ad tria, & cylindrus incidendo perpendiculariter 
in particulas, ipsas que quam maxime reflectendo, duplam sui ipsius velocitatem ipsis 
communicet: cylindrus quo tempore dimidiam longitudinem axis sui uniformiter 
progrediendo describit, communicabit motum particulis, qui sit ad totum cylindri motum 
ut densitas medii ad densitatem cylindri ; & globus, quo tempore totam longitudinem 
diametri suae uniformiter pregrediendo describit, communicabit motum eundem 
particulis; & quo tempore duas tertias partes diametri suae describit, communicabit 
motum particulis, qui sit ad totum globi motum ut densitas medii ad densitarem globi. Et 
propterea globus resistentiam patitur, quae sit ad vim qua totus eius motus vel auferri 
possit vel generari quo tempore duas tertias partes diametri suae uniformiter progrediendo 
describit, ut densitas medii ad densitatem globi. 
 Cas. 2. Ponamus quod particulae medii in globum vel cylindrum incidentes non 
reflectantur, & cylindrus incidendo perpendiculariter in particulas simplicem suam 
velocitatem ipsis communicabit, ideoque resistentiam patitur duplo minorem quam in 
priore casu, &: resistentia globi erit etiam duplo minor quam prius. 
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 Cas. 3. Ponamus quod particula medii vi reflexionis neque maxima neque nulla, sed 
mediocri aliqua resiliant a globo , & resistentia globi erit in eadem ratione mediocri inter 
resistentiam in primo casu & resistemiam in secundo. Q.E.I. 
 Corol. 1. Hinc si globus & particulae sint infinite dura, & vi omni elastica & propterea 
etiam vi omni reflexionis destituta : resistentia globi erit ad vim qua totus eius motus vel 
auferri possit vel generari, quo tempore globus quatuor tertias partes diametri suae 
describit, ut densitas medii ad densitatem globi. 
 Corol. 2. Resistentia globi, caeteris paribus, est in duplicata ratione velocitatis. 
 Corol. 3. Resistentia globi, caeteris paribus,  est in duplicata ratione diametri. 
 Corol. 4 Resistentia globi, caeteris paribus,  est ut densitas medii. 
 Corol. 5 Resistentia globi est in ratione quae componitur ex duplicata ratione 
velocitatis & duplicata ratione diametri & ratione densitatis medii.  
 Corol. 6. Et motus globi cum eius resistentia sic exponi potest. Sit AB tempus quo 
globus per resistentiam suam uniformiter continuaram totum suum motum amittere potest, 
Ad AB erigantur perpendicula AD, BC. Sitque BC motus ille totus, & per punctum C 
asymptotis AD, AB describatur hyperbola CF. Producatur AB ad punctum quodvis E. 
Erigatur perpendiculum EF hyperbolae occurrens in F. Compleatur parallelogrammum 
CBEG, & agatur AF ipsi BC occurrens in H. Et si globus tempore quovis BE,  motu suo 
primo BC uniformiter continuato, in medio non resistente describat spatium 
CBEG per aream parallelogrammi expositum, idem in medio resistente describet spatium 
CBEF per aream hyperbole expositum, & motus eius in fine temporis illius exponetur per 
hyperbole ordinatam EF, amissa motus eius parte EG. Et resistentia eius in fine 
temporis eiusdem exponetur per longitudinem BH, amissa resistentia parte CH. Patent 
haec omnia per Corol.1.& 3. Prop. V. lib. II. 
Corol. 7. Hinc si globus tempore T per resistentiam R uniformiter continuatam amittat 
motum suum totum M: idem globus tempore t in media resistente, per resistentiam R in 
duplicate vclocitatis decrescentem, amittet motus sui M partem tM

t T+ , manente parte TM
t T+  ; 

& describet spatium quod sit ad spatium motu uniformi M eodem tempore t descriptum, ut 
logarithmus numeri t T

t
+  multiplicatus per numerum 2,30258092994 est ad numerum 

t
T   propterea quod area hyperbolica BCFE est ad rectangulum BCGE in hac proportione. 
 

Scholium. 
 In hac propositione exposui resistentiam & 
retardationem proiectilium sphaericorum in mediis 
non continuis, & ostendi quod haec resistentia sit 
ad vim qua totus globi motus vel tolli possit vel 
generari quo tempore globus duas tertias diametri 
suae partes velocitate 
uniformiter continuata describat, ut densitas medii ad densitatem globi, si modo globus & 
particulae medii sint summe elastica & vi maxima reflectendi polleant: quodque haec vis 
sit duplo minor ubi globus & particulae medii sunt infinite dura & vi reflectendi prorsus 
destituta. In mediis autem continuis qualia sunt aqua, oleum calidum, & argentum vivum, 
in quibus globus non incidit immediate in omnes fluidi particulas resistentiam generantes, 
sed premit tantum proximas particulas & hae premunt alias & hae alias, resistentia est 
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adhuc duplo minor. Globus utique in huiusmodi mediis fluidissimis resistentiam patitur 
quae est ad vim qua totus eius motus vel tolli possit vel generari quo tempore, motu illo 
uniformiter continuato, partes octo tertias diametri suae describat, ut densitas medii ad 
densitatem globi. Id quod in sequentibus conabimur ostendare. 
 

PROPOSITIO XXXVI. PROBLEMA VIII. 
Aquae de vase cylindrico per foramen in fundo factum effluentis definire motum. 
 
 Sit ACDB vas cylindricum, AB eius orificium superius, CD fundum horizonti 
parallelum, EF foramen circulare in medio fundi, G centrum 
foraminis, & GH axis cylindri horizonti perpendicularis. Et 
finge cylindrum glaciei APQB eiusdem esse longitudinis cum 
cavitate vasis, & axem eundem habere, & uniformi cum motu 
perpetuo descendere, & partes eius quam primum attingunt 
superficiem, AB liquescere, & in aquam conversas gravitate 
sua defluere in vas, & cataractam vel columnam aquae 
ABNFEM cadendo formare, & per foramen EF transire, 
idemque adaequate implere. Ea vero sit uniformis velocitas 
glaciei descendentis ut & aquae contiguae in circulo AB, 
quam aqua cadendo & casu suo describendo altitudinem IH 
acquirere potest , & iaceant IH & HG in directum, & per 
punctum I ducatur recta KL horizonti parallela. Et lateribus glaciei occurrens in K & L. Et 
velocitas aquae effluentis per foramen EF ea erit quam aqua cadendo ab I & casu suo 
describendo altitudinem IG acquirere potest. Ideoque per theoremata Galilaei erit IG ad 
IH in duplicata ratione velocitatis aquae per foramen effluentis ad velocitatem aquae in 
circulo AB, hoc est, in duplicata ratione circuli AB ad circulum EF; nam hi circuli sunt 
reciproce ut velocitates aquarum quae per ipsos, eodem tempore & aequali quantitate, 
adequate transeunt. De velocitate aquae horizontem versus hic agitur. Et motus horizonti 
parallelus quo partes aquae cadentis ad invicem accedunt, cum non oriatur a gravitate, nec 
motum horizonti perpendicularem a gravitate oriundum mutet, hic non consideratur. 
Supponimus quidem quod partes aquae aliquantulum coherent, & per cohaessonem suam 
inter cadendum accedant ad invicem per motus horizonti parallelos, ut unicam tantum 
efforment cataractam & non in plures cataractas dividantur: sed motum horizonti 
parallelum, a cohaesione illa oriundum, hic non consideramus. 
  Cas 1. Concipe iam cavitatem totam in vase, in circuitu aquae cadentis ABNFEM, 
glacie plenam esse, ut aqua per glaciem tanquam per infundibulum transeat. Et si aqua 
glaciem tantum non tangat, vel, quod perinde est, si tangat & per glaciem propter 
summam eius polituram quam liberrime & sine omni resistentia labatur, haec defluet per 
foramen EF eadem velocitate ac prius, & pondus totum columna aquae ABNFEM 
impendetur in defluxum eius generandum uti prius, & fundum valis sustinebit pondus 
glaciei columnam ambientis. 
 Liquescat iam glacies in vase; & effuxus aquae, quoad velocitatem, idem manebit ac 
prius. Non minor erit, quia glacies in aquam resoluta conabitur descendere: non maior, 
quia glacies in aquam resoluta non potest descendere nisi impediendo descensum 
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aquae alterius descensui suo aaequalem. Eadem vis eandem aquae effiuentis velocitatem 
generare debet. 
 Sed foramen in fundo vasis, propter obliquos motus particularum aquae effluentis, 
paulo maius esse debet quam prius. Nam particulae aquae iam non transeunt omnes per 
foramen perpendiculatiter; sed a lateribus vasis undique confluentes & in foramen 
convergentes, obliquis transeunt motibus, & cursum suum deorsum flectentes in venam 
aquae exilientis conspirant, quae exilior est paulo infra foramen quam in ipso foramine, 
existente eius diametro ad diametrum foraminis ut 5 ad 6, vel 1

25  ad 1
26  quam proxime, si 

modo diametros recte dimensus sum. Parabam utique laminam planam pertenuem in 
media perforatam, existente circularis foraminis diametro partium quinque octavarum 
digiti. Et ne vena aqua exilientis cadendo acceleraretur & acceleratione redderetur 
angustior, hanc laminam non fundo sed lateri vasis affixi 
sic, ut vena illa egrederetur 
secundum lineam horizonti parallelam. Dein ubi vas 
aqua plenum esset, aperui foramen ut aqua efflueret; & 
venae diameter, ad distantiam quasi dimidii digiti a 
foramine quam accuritissime mensurata, prodiit partium 
viginti & unius quadragesimarum digiti. 
Erat igitur diameter foraminis huius circularis ad 
diametrum venae ut 25 ad 21 quamproxime. Aqua igitur 
transeundo per foramen, convergit undique, & postquam 
effuxit ex vase, tenuior redditur convergendo, & per 
attenuationem acceleratur donec ad distantiam semissis digiti a foramine pervenerit, & ad 
distantiam illam tenuior & celerior sit quam in ipso foramine in ratione 
25 25 ad 21 21× × seu 17 ad 12 quamproxime, id est in subduplicata ratione binarii ad 
unitatem circiter. Per experimenta vero constat quod quantitas aquae, quae per foramen 
circulare in fundo valis factum, dato tempore effluit, ea sit quae cum velocitate praedicta, 
non per foramen illud, sed per foramen circulare, cuius diameter est ad diametrum 
foraminis illius ut 21 ad 25, eodem tempore effluere debet. Ideoque aqua illa effluens 
velocitatem habet deorsum in ipso foramine quam grave cadendo & casu suo describendo 
dimidiam altitudinem aquae in vase stagnantis acquirere potest quamproxime. Sed 
postquam exivit ex vase, acceleratur convergendo donec ad distantiam a foramine 
diametro foraminis prope aaequalem pervenerit, & velocitatem 
acquisiverit maiorem in ratione subduplicata binarii ad unitatem circiter, quam utique 
grave cadendo, & casu suo describendo totam altitudinem aquae in vase stagnantis, 
acquirere potest quamproxime. 
 In sequentibus igitur diameter venae designetur per foramen illud minus quod 
vocavimus EF. Et plano foraminis EF parallelum duci intelligatur planum aliud superius 
VW ad distantiam diametro foraminis aequalem circiter & foramine maiore ST pertusum, 
per quod utique vena cadat, que adaequate impleat foramen inferius EF, atque ideo cuius 
diameter sit ad diametrum foraminis inferioris ut 25  ad 21 circiter. Sic enim vena per 
foramen inferius perpendiculariter transibit ; & quantitas aquae effluentis, pro 
magnitudine foraminis huius, ea erit quam solutio problematis postulat quamproxime. 
Spatium vera, quod planis duobus & vena cadente clauditur, pro fundo vasis haberi potest. 
Sed ut solutio problematis simplicior sit & magis mathematica, praestat adhibere planum 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 655 

solum inferius pro fundo vasis, & fingere quod aqua quae per glaciem ceu per 
infundibulum defluebat, & e vase per foramen EF  in plano inferiore factum egrediebatur, 
motum suum perpetuo servet, & glacies quietem suam. In sequentibus igitur sit ST 
diameter foraminis circularis centro Z descripti per quod cataracta effluit ex vase 
ubi aqua tota in vase fluida est. Et sit EF diameter foraminis per quod cataracta cadendo 
adequate transit, sive aqua exeat ex vase per foramen illud superius ST, sive cadat per 
medium glaciei in vase tanquam per infundibulum. Et sit diameter foraminis superioris ST 
ad diametrum inferioris EF ut 25  ad 21 circiter, & distantia perpendicularis inter 
planae foraminum aequalis sit diametro foraminis minoris EF. Et velocitas aquae vase per 
foramen ST exeuntis ea erit in ipso foramine deorsum quam corpus cadendo a dimidio 
altitudinis IZ acquirere potest velocitas autem cataractae utriusque cadentis ea erit in 
foramine EF, quam corpus cadendo ab altitudine tota IG acquiret, 
 Cas. 2. Si foramen EF non sit in medio fundi vasis, sed fundum alibi perforetur : aqua 
effluet eadem cum velocitate ac prius, si modo eadem sit foraminis magnitudo. Nam 
grave maiori quidem tempore descendit ad eandem profunditatem per lineam obliquam 
quam per lineam perpendicularem, sed descendendo eandem velocitatem 
acquirit in utroque casu, ut Galileus demonstravit. 
 Cas. 3. Eadem est aquae velocitas effluentis per foramenin latere vasis. Nam si 
foramen parvum sit, ut intervallum inter superficies AB & KL quoad sensum evanescat, & 
vena aquae horizontaliter exilientis figuram parabolicam efformet: ex latere recto huius 
parabolae colligetur, quod velocitas aquae effluentis ea sit quam corpus ab aquae in vase 
stagnantis altitudine HG vel IG cadendo acquirere potuisset. Facto utique experimento 
inveni quod, si altitudo aquae stagnantis supra foramen esset viginti digitorum & altitudo 
foraminis supra planum horizonti parallelum esset quoque viginti digitorum, vena aquae 
prosilientis incideret in planum illud ad distantiam digitorum 37 circiter a perpendiculo 
quod in planum illud a foramine demittebatur captam. Nam sine resistentia, vena 
incidere debuisset in planum illud ad distantiam digitorum 40, existente venae parabolicae 
latere recto digitorum 80. 
 Cas. 4. Quinetiam aqua effluens, si sursum feratur, eadem egreditur cum velocitate. 
Ascendit enim aquae exilientis vena parva motu perpendiculari ad aquae in vase 
stagnantis altitudinem GH vel GI, nisi quatenus ascensus eius ab aeris resistentia 
aliquantulum impediatur ; ac proinde ea effluit cum velocitate quam ab altitudine 
illa cadendo acquirere potuisset. Aquae stagnantis particula unaquaeque undique premitur 
aequaliter (per Prop. XIX. Lib. 2.) & pressioni cedendo aequali impetu in omnes partes 
fertur, sive descendat per foramen in fundo vasis, sive horizontaliter effluat per 
foramen in eius latere, sive egrediatur in canalem & inde ascendat per foramen parvum in 
superiore canalis parte factum. Et velocitatem qua aqua effluit eam esse, quam in hac 
propositione assignavimus, non solum ratione colligitur, sed etiam per experimenta 
notissima iam descripta manifestum est. 
 Cas. 5 Eadem est aquae effluentis velocitas sive figura foraminis D sit circularis sive 
quadrata vel triangularis aut alia quaecunque circulari aequalis. Nam velocitas aquae 
effluentis non pendet a figura foraminis sed oritur ab eius altitudine infra planum KL. 
 Cas. 6. Si vasis ABDC pars inferior in aquam stagnantem immergatur, & altitudo aquae 
stagnantis supra fundum vasis sit GR: velocitas quacum aqua quae in vase est, effluet per 
foramen EF in aquam stagnantem, ea erit quam aqua eadendo & casu suo describendo 
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altitudinem IR acquirere potest, Nam pondus aquae omnis in vase quae inferior est 
superficie aquae stagnantis, sustinebitur in aequilibrio per pondus aquae stagnantis, 
ideoque motum aquae descendentis in vase minime accelerabit. Patebit etiam & hic casus 
per experimenta, mensurando scilicet tempora quibus aqua effluit. 
 Corol. 1. Hinc si aquae altitudo CA producatur ad K, ut sit AK ad CK in duplicata 
ratione areae foraminis in quavis fundi parte facti, ad aream circuli AB : velocitas aquae 
effluentis aequalis erit velocitati quam aqua cadendo & casu suo describendo altitudinem 
KC aequirere potest, 
 Corol. 2. Et vis, qua totus aquae exilientis motus generari potest, aequalis est ponderi 
cylindricae columnae aquae, cuius basis est foramen EF, & altitudo 2GI vel  2CK. Nam 
aqua exiliens, quo tempore hanc columnam aequat, pondere suo ab altitudine GI cadendo 
velocitatem suam, qua exilit, acquirere potest, 
 Corol. 3. Pondus aquae totius in vase ABDC est ad ponderis partem, quae in defluxum 
aquae impenditur, ut summa circulorum AB & EF ad duplum circulum EF. 
Sit enim IO media proportionalis inter IH & IG; & aqua per foramen EF egrediens, quo 
tempore gutta cadendo ab I describere posset altitudinem IG, aequalis erit cylindro cuius 
basis est circulus EF & altitudo est 2IG, id est, cylindro cuius basis est circulus AB & 
altitudo est 2IO, nam circulus EF est ad circulum AB in subduplicata ratione altitudinis IH 
ad altitudinem IG, hoc est, in simplici ratione mediae proportionalis IO ad altitudinem IG: 
& quo tempore gutta cadendo ab I describere potest altitudinem IH, aqua egrediens 
aequalis erit cylindro cuius basis est circulus AB & altitudo est 2IH : & quo tempore gutta 
cadendo ab I per H ad G describit altitudinum differentiam HG, aqua egrediens, id est, 
aqua tota in solido ABNFEM aequalis erit differentiae cylindrorum, id est, cylindro cuius 
basis est AB & altitudo 2HO. Et propterea aqua tota in vase ABDC est ad aquam 
totam cadentem in solido ABNFEM ut HG ad 2HO, id est, ut HO OG+ ad 2HO, seu 
IH IO+ ad 2IH. Sed pondus aquae totius in solido ABNFEM  in aquae defluxum 
impenditur: ac proinde pondus aquae totius in vase est ad ponderis partem quae in 
defluxum aquae impenditur, ut IH IO+  ad 2IH, atque ideo ut summa circulorum 
EF & AB ad duplum circulum EF. 
 Corol. 4. Et hinc pondus aquae totius in vare ABDC est ad ponderis partem alteram 
quam fundum vasis sustinet, ut summa circulorum AB & EF ad differentiam eorundem 
circulorum. 
 Corol. 5. Et ponderis pars, quam fundum vasis sustinet, est ad ponderis partem alteram, 
quae in defluxum aquae impenditur, ut differentia circulorum AB & EF ad duplum 
circulum minorem EF, sive ut area fundi ad duplum foramen. 
 Corol. 6. Ponderis autem pars, qua sola fundum urgetur, est ad pondus aquae totius, 
quae fundo perpendiculariter incumbit, ut circulus AB ad summam circulorum AB & EF, 
sive ut circulus AB ad excessum dupli circuli AB supra fundum. Nam ponderis pars, 
qua sola fundum urgetur, est ad pondus aquae totius in vase, ut differentia circulorum AB 
& EF ad summam eorundem circulorum per Cor. 4 : & pondus aquae totius in vase est ad 
pondus aquae totius quae fundo perpendiculariter incumbit, ut circulus AB ad 
differentiam circulorum AB & EF. Itaquae ex aequo perturbate, ponderis pars, qua sola 
fundum urgetur, est ad pondus aquae totius, quae fundo perpendiculariter incumbit, ut 
circulus AB ad summam circulorum AB & EF vel excessum dupli circuli AB supra 
fundum. 
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 Corol. 7. Si in medio foraminis EF locetur circellus PQ centro G descriptus & 
horizonti parallelus : pondus aquae quam circellus ille sustinet, maius est pondere tertiae 
partis cylindri aquae cuius basis est circellus ille & 
altitude est GH. Sit enim ABNFEM cataracta vel columna 
aquae cadentis axem habens GH ut supra, & congelari 
intelligatur aqua omnis in vase, tam in circuitu cataractae 
quam supra circellum, cuius fluiditas ad promptissimum 
& celerrimum aquae descensum non requiritur. Et sit 
PHQ columna aquae supra circellum congelata, verticem 
habens H & altitudinem GH. Et finge cataractam hancce 
pondere suo toto cadere, & non incumbere in PHQ nec 
eandem premere, sed libere & sine frictione praeterlabi, 
nisi forte in ipso glaciei vertice quo cataracta ipso 
cadendi initio incipiat esse cava. Et quemadmodum aqua 
in circuitu cataractae congelata AMEC, BNFD convexa  
est in superficie interna AME, BNF versus cataractam cadentem, sic etiam haec columna 
PHQ convexa erit versus cataractam, & propterea maior cono cuius basis est circellus ille 
PQ & altitudo GH, id  est, maior tertia parte cylindri eadem base & altitudine descripti. 
Sustinet autem circellus ille pondus huius 
columnae, id est, pondus quod pondere coni seu teriae partis cylindri illius maius est. 
 Corol. 8. Pondus aquae quam circellus valde parvus PQ sustinet, minor esse videtur 
pondere duarum tertiarum partium cylindri aquae cuius basis est circellus ille & altitude 
est HG. Nam stantibus iam positis, describi intelligatur dimidium sphaeroidis cuius basis 
est circellus ille & semiaxis sive altitude est HG. Et haec figura aequalis erit duabus tertiis 
partibus cylindri illius & comprehendet columnam aquae congelatae PHQ cuius pondus 
circellus ille sustinet. Nam ut motus aquae sit maxime directus, columnae illius 
superficies externa concurret cum basi PQ in angulo nonnihil acuto, propterea quod aqua 
cadendo perpetuo acceleratur & propter accelerationem sit tenuior, & cum angulus ille sit 
recto minor, haec columna ad inferiores eius partes iacebit intra dimidium sphaeroidis. 
Eadem vera sursum acuta erit seu cuspidata, ne horizontalis motus aquae ad verticem 
sphaeroidis sit infinite velocior quam eius motus horizontem versus, Et quo minor est 
circellus PQ eo acutior erit vertex columnae; & circello in infinitum diminuto, 
angulus PHQ in infinitum diminuetur, & propterea columna iacebit intra dimidium 
sphaeroidis. Est igitur columna illa minor dimidio spheroidis, seu duabus tertiis partibus 
cylindri cuius basis est circellus ille & altitudo GH. Sustinet autem circellus vim aquae 
ponderi huius columae aequalem, cum pondus aquae ambientis in defluxum eius 
impendatur. 
 Corol 9. Pondus aquae quam circellus valde  parvus PQ sustinet, aequale est ponderi 
cylindri aquaes cuius basis est circellus ille & altitudo est 1

2 GH quamproxime. Nam 
pondus hocce est medium arithmeticum inter pondera coni & hemispheroidis praedicta. 
At si circellus ille non sit valde parvus, sed augeatur donec aequet foramen EF ; hic 
sustinebit pondus aquae totius sibi perpendiculariter imminentis, id est, pondus cylindri 
aquae, cuius basis  est circellus ille & altitudo est GH. 
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 Corol. 10. Et (quantum sentio) pondus quod circellus sustinet, est semper ad pondus 
cylindri aquae, cuius basis est circellus ille & altitudo est 1

2 GH ,  ut EFq ad 1
2EFq PQq− , 

sive ut circulus EF ad excessum circuli huius supra semissem circelli PQ quamproxime. 
 

LEMMA IV. 
 Cylindri, qui secundum longitudinem suam uniformiter progreditur, resistentia ex 
aucta vel diminuta eius longitudine non mutatur; ideoque eadem est cum resistentia 
circuli eadem diametro descripti & eadem velocitate secundum lineam rectam plano 
ipsius perpendicularem progredientis. 
 
 Nam latera cylindri motui eius minime opponuntur: & cylindrus, longitudine eius 
infinitum diminuta, in circulum vertitur. 
 

PROPOSITIO XXXVII. THEOREMA XXIX. 
 Cylindri, qui in fluido compresso infinito & non elastico secundum longitudinem suam 
uniformiter progreditur, resistentia, quae oritur a magnitudine sectionis tranversae, est 
ad vim qua totus eius motus, interea dum quadruplum longitudinis suae describit, vel 
tollit possit vel generari, ut densitas medii ad densitatem cylindi quamproxime. 
 
 Nam si vas ABDC fundo suo CD superficiem aquae stagnantis tangat, & aqua ex hoc 
vase per canalem cylindricum EFTS horizonti perpendicularem in aquam stagnantem 
effluat, locetur autem circellus PQ horizoni parallelus ubivis in medo canalis, & 
producatur CA ad K, ut sit AK ad CK in duplicata ratione quam habet excessus orificii 
canalis EF supra circellum PQ ad circulum AB: manifestum est (per Cas. 5. Cas.6. & Cor. 
I. Prop XXXVI) quod, velocitas aquae transeuntis per spatium annulare inter circellum & 
latera vasis, ea erit quam aqua cadendo & casu suo describendo altitudinem KC vel IG 
acquirere potest.  
 Et (per Corol. X, Prop. XXXVI.) si vasis latitude sit infinita, ut lineola HI evanescat & 
altitudines IG, HG aequentur: vis aquae defluentis in circellum erit ad pondus cylindri 
cuius basis est circellus ille & altitudo est 1

2 IG , ut EFq ad 1
2EFq PQq− quam proxime. 

Nam vis aquae, uniformi motu defluentis per totum canalem, eadem erit in circellum PQ 
in quacunque canalis parte locatum, 
 Claudantur iam canalis orificia EF, ST, & ascendat circellus in fluido undique 
compresso & ascensu suo cogat aquam superiorem 
descendere per spatium annulare inter circellum & latera 
canalis: & velocitas circelli ascendentis erit ad velocitatem 
aquae descendentis ut differentia circulorum EF & PQ ad 
circulum PQ , & velocitas circelli  ascendentis ad summam 
velocitatum, hoc est, ad velocitatem relativam aquae 
descendentis qua praeterfluit circellum ascendentem, ut 
differentia circulorum EF & PQ ad circulum EF, sive ut 

  ad   EFq PQq EFq− . Sit illa velocitas relativa aequalis 
velocitati, qua supra ostensum est aquam transire per idem 
spatium annulare dum circellus interea immotus manet, id 
est, velocitati quam aqua cadendo & casu suo describendo altitudinem 1G acquirere potest 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 659 

: & vis aquae in circellum ascendentem eadem erit ac prius (per legum Corol. V.) id est, 
resistentia circelli ascendentis erit ad pondus cylindri aquae cuius basis est circellus ille & 
altitudo est : 1

2 IG , ut 1
2EFq PQq− quamproxime. Velocitas autem circelli erit ad 

velocitatem, quam aqua cadendo & casu suo describendo altitudinem IG acquirit, ut 
  ad   EFq PQq EFq− . 

 Augeatur amplitudo canalis in infinitum: & rationes illae inter   &  EFq PQq EFq− , 
interque 1

2 &      EFq EFq PQq− , accedent ultimo ad rationes aequalitatis. Et propterea 
velocitas circelli ea nunc erit quam aqua cadendo & casu suo describendo altitudinem IG 
acquirere potest, resistentia vero eius aequalis evadet ponderi cylindri cuius basis  est 
circellus ille & altitudo dimidium est altitudinis IG, a qua cylindrus cadere debet ut 
velocitatem circelli ascendentis aequirat; & hac velocitate cylindrus, tempore cadendi, 
quadruplum longitudinis suae describet. Restitentia autem cylindri, hac velocitate 
secundum longitudinem suam progredientis, eadem est cum resistentia circelli (per 
Lemma IV.) ideoque aequalis est vi qua motus eius, interea dum quadruplum longitudinis 
suae describit, generari potest quamproxime. 
 Si longitudo cylindri augeatur vel minuatur: motus eius ut & tempus, quo quadruplum 
longitudinis suae describit, augebitur vel minuetur in eadem ratione; ideoque vis illa, qua 
motus auctus vel diminutus, tempore pariter aucto vel diminuto, generari vel tolli possit, 
non mutabitur , ac proinde etiamnum aequalis  est resistentiae cylindri, nam & haec 
quoque immutara manet per Lemma IV. 
 Si densitas cylindri augeatur vel minuatur : motus eius ut & vis qua motus eodem 
tempore generari vel tolli potest, in eadem ratione augebitur vel minuetur. Resistentia 
itaquae cylindri cuiuscunque erit ad vim qua totus eius motus, interea dum quadruplum 
longitudinis suae describit, vel generari possit vel tolli, ut densitas medii ad densitatem 
cylindri quamproxime. Q.E.D. 
 Fluidum autem comprimi debet ut sit continuum, continuum vero esse debet & non 
elasticum ut pressio omnis, quae ab eius compressione oritur, propagetur in instanti, & in 
omnes moti corporis partes aequaliter agenda resistentiam non mutet. Pressio utique, quae 
a motu corporis oritur, impenditur in motum partium fluidi generandum & resistentiam 
creat. Presso autem quae oritur a compressione fluidi, utcunque fortis sit, si propagetur in 
instanti, nullum generat motum in partibus fluidi continui, nullam omnino inducit 
motus mutationem ; ideoque resistentiam nec auget nec minuit. Certe actio fluidi, quae ab 
eius compressione oritur; fortior esse non potest in partes posticas corporis moti quam in 
eius partes anticas, ideoque resistentiam in hac propositione descriptam minuere non 
potest : & fortior non erit in partes anticas quam in posticas, si modo propagatio eius 
infinite velocior sit quam motus corporis pressi. Infinite autem velocior erit & 
propagabitur in instanti, si modo fluidum sit continuum & non elasticum. 
 Corol. I. Cylindrorum, qui secundum longitudines suas in mediis continuis infinitis 
uniformiter progrediuntur, resistentiae sunt in ratione quae componitur ex duplicata 
ratione velocitarum & duplicata ratione diametrorum & ratione densitatis mediorum. 
 Corol. 2. Si amplitudo canalis non augeatur in infinitum, sed cylindrus in medio 
quiescente incluso secundum longitudinem suam progrediatur, & interea axis 
eius cum axe canalis coincidat: resistentia eius erit ad vim qua totus eius motus, 
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quo tempore quadruplum longitudinis suae describit, vel generari possit vel tolli, in 
ratione quae componitur ex ratione 1

2 & EFq EFq PQq−  semel, & ratione 
 &  EFq EFq PQq−  bis, & ratione densitatis medii ad densitatem cylindri. 

 Corol. 3. lisdem positis, & quod longitudo L sit ad quadruplum longitudinis cylindri in 
ratione qua componitur ex ratione 1

2EFq PQq− ad EFq semel, & ratione  EFq PQq−  ad 
EFq bis: resistentia cylindri erit ad vim qua totus eius motus, interea dum longitudinem L 
describit, vel tolli possit vel generari, ut densitas medii ad densitatem cylindri.  
 

Scholium. 
 In hac propositione resistentiam investigavimus quae oritur a sola magnitudine 
transverse sectionis cylindri, neglecta resistentiae parte quae ab obliquitate motuum oriri 
possit. Nam quemadmodum in casu primo Propositionis XXXVI. obliquitas motuum, 
quibus partes aquae in vase, undique convergebant in foramen EF, impedivit effluxum 
aquae illius per foramen: sic in hac propositione, obliquitas motuum, quibus partes aquae 
ab anteriore cylindri termino pressae, cedunt pressioni & undique divergunt, retardat 
eorum transitum per loca in circuitu termini illius antecedentis versus posteriores 
partes cylindri, efficitque ut fluidum ad maiorem distantiam commoveatur & resistentiam 
auget, idque in ea fere ratione qua effluxum aquae e vase diminuit, id est, in ratione 
duplicata 25 ad 21 circiter. 
Et quemadmodum, in propositionis illius casu primo, effecimus ut partes aquae 
perpendiculariter & maxima copia tranfirent per foramen EF, ponendo quod aqua omnis 
in vase quae in circuitu cataractae congelata fuerat, & cuius motus obliquus erat & 
inutilis, maneret sine motu: sic in hac propositione, ut obliquitas motuum tollatur, & 
partes aquae motu maxime directo & brevissimo cedentes facillimum praebeant transitum 
cylindro, & sola maneat resistentia, quae oritur a magnitudine sectionis transversae, 
quaeque diminui non potest nisi diminuendo diametrum cylindri, concipiendum est quod 
partes fluidi, quarum motus sunt obliqui & inutiles & resistentiam creant, quiescant inter 
se ad utrumque cylindri terminum, & cohaereant & cylindro iungantur. Sit ABCD 
rectangulum, & sint AE & BE arcus duo parabolici axe AB descripti, latere autem recto 
quod sit ad spatium HG, describendum a cylindro cadente dum velocitatem suam acquirit, 
ut HG ad 1

2 AB . Sint etiam CF & DF arcus alii duo parabolici, axe CD & latere recto 
quod sit prioris lateris recti quadruplum descripti ; & convolutione figurae circum axem 
EF generetur solidum cuius media pars ABDC sit cylindrus de quo agimuss, & partes 
extremae ABE & CDF contineant partes fluidi 
inter se quiescentes & in corpora duo rigida 
concretas, quae cylindro utrinque tanquam caput 
& cauda adhaereant. Et solidi EACFDB, 
secundum longitudimem axis sui FE in partes 
versus E progredientis, resistentia ea erit 
quamproxime quam in hac propositione descripsimus, id est, quae rationem illam habet ad 
vim qua totus cylindri motus, interea dum longitudo 4AC motu illo uniformiter continuato 
describatur, vel tolli possit vel generari, quam densitas fluidi habet ad densitatem cylindri 
quamproxime. Et hac vi resistentia minor esse non potest quam in ratione 2 ad 3, per 
Corol. 7. Prop. XXXVI. 
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LEMMA V. 

 Si cylindrus, sphaera & sphaerois, quorum latitudines sunt aequales, in medio canalis 
cylindrici ita locentur successive ut eorum axes cum axe canalis coincidant: haec corpora 
fluxum aquae per canalem aequaliter impedient. 
 
 Nam spatia inter canalem & cylindrum, sphaeram, & spheroidem per quae aqua transit, 
sunt aequalia: & aqua per aequalia spatia aequaliter transit. 
 Haec ita se habent ex hypothesi, quod aqua omnis supra cylindrum sphaeram vel 
sphaeroidem congelatur, cuius fluiditas ad celerrimum aquae transitum non requiritur, ut 
in Corol. VII, Prop. XXXVl. explicui. 
 

LEMMA VI. 
 Iisdem positis, corpora praedicta aequaliter urgentur ab aqua per canalem fluente. 
 
 Patet per lemma V. & motus legem tertiam. Aqua utique & corpora in se mutua 
aequaliter agunt. 
 

LEMMA  VII. 
 Si aqua quiestat in canali, & haec corpora in partes contrarias aequali velocitate per 
canalem ferantur : aequales erunt eorum resistentiae inter se. 
 
 Constat ex lemmate superiore, nam motus relativi iidem inter se manent. 
 

Scholium. 
 Eadem  est ratio corporum omnium convexorum & rotundorum, quorum axes cum axe 
canalis coincidunt. Differentia aliqua ex maiore vel minore frictione oriri potest, sed in his 
lemmatis corpora esse politissima supponimus, & medii tenacitatem & frictionem esse 
nullam, & quod partes fluidi, quae motibus suis obliquis & superfluis fluxum aquae per 
canalem perturbare, impedire, & retardare possunt, quiescant inter se tanquam gelu 
constrictae, & corporibus ad ipsorum partes anticas & posticas adhaereant, perinde ut in 
scholio propositionis praecedentis exposui. Agitur enim in sequentibus de resistentia 
omnium minima quam corpora rotunda; datis maximis sectionibus transversis descripta, 
habere possunt. 
 Corpora fluidis innatantia, ubi moventur in directum, efficiunt ut fluidum ad partem 
anticam ascendat, ad posticam subsidat, praesertim si figura sint obtusa , & inde 
resistentiam paulo maiorem sentiunt quam si capite & cauda sint acutis. Et corpora in 
fluidis elasticis mota, si ante & post obtusa sint, fluidum paulo magis condensant ad 
anticam partem & paulo magis relaxant ad posticam ; & inde resistentiam paulo maiorem 
sentiunt quam si capite & cauda sint acutis. Sed nos in his lemmatis & propositionibus 
non agimus de fluidis elasticis, sed de non elasticis; non de insidentibus fluido, sed de alte 
immersis. Et ubi resistentia corporum in fluidis non elasticis innotescit, augenda erit haec 
resistentia aliquantulum tam in fluidis elasticis, qualis est aer, quam in superficiebus 
fluidorum stagnantium, qualia sunt maria & paludes. 
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PROPOSITIO XXXVIII. THEOREMA XXX. 
 Globi, in fluido compresso infinito & non elastico uniformiter progredientis, 
resistentia est ad vim qua totus eius motus, quo tempore octo tertias partes diametri suae 
describit, vel tolli possit vel generari, ut densitas fluidi ad densitatem globi quamproxime. 
 
 Nam globus est ad cylindrum circumscriptum ut duo ad tria; & propterea vis illa, quae 
tollere possit motum omnem cylindri interea dum cylindrus describat longitudinem 
quatuor diametrorum, globi motum omnem tollet interea dum globus describat duas 
tertias partes huius longitudinis, id est, octo tertias partes diametri propriae. Resistentia 
autem cylindri  est ad hanc vim quamproxime ut densitas fluidi ad densitatem cylindri vel 
globi per Prop. XXXVII. & resistentia globi aequalis est resistentiae cylindri per Lem. V, 
VI, VII. Q.E.D. 
Corol. I. Globorum, in mediis compressis infinitis, resistentiae sunt in ratione quae 
componitur ex duplicata ratione velocitatis, & duplicata ratione diametri, & ratione 
densitatis mediorum. 
Corol. 2. Velocitas maxima quacum globus, vi ponderis sui comparativi, in fluido 
resistente potest descendere, ea est quam acquirere potest globus idem, eodem pondere, 
sine resistentia cadendo & casu suo describendo spatium quod sit ad quatuor tertias partes 
diametri sua ut densitas globi ad densitatem fluidi. Nam globus tempore casus sui, cum 
velocitate cadendo acquisita, describet spatium quod erit ad octo tertias diametri suae, ut 
densitas globi ad densitatem fluidi; & vis ponderis motum hunc generans, erit ad vim quae 
motum eundem generare possit, quo tempore globus octo tertias diametri suae eadem 
velocitate describit, ut densitas fluidi ad densitatem globi: ideoque per hanc 
propositionem, vis ponderis aequalis erit vi resistentiae, & propterea globum accelerare 
non potest. 
Corol. 3. Data & densitate globi & velocitate eius sub initio motus, ut & densitate fluidi 
compressi quiescentis in qua globus movetur ; datur ad omne tempus & velocitas globi & 
eius resistentia & spatium ab eo descriptum, per Corol. VII. Prop. XXXV. 
Corol. 4. Globus in fluido compresso quiescente eiusdem secum densitatis movendo, 
dimidiam motus sui partem prius amittet quam longitudinem duarum ipsius diametrorum 
descripserit, per idem Corol. VII. 
 

PROPOSlTIO XXXIX. THEOREMA XXXI. 
 Globi, per fluidum in canali cylindrico clausum & compressum uniformiter 
progredientis, resistentia est ad vim, qua totas eius motus, interea dum octo tertia partes 
diametri suae describit,  vel generari possit vel tolli, in ratione quae componitur ex 
ratione orifici  canalis ad excessum huius orificii supra dimidium circuli maximi globi, & 
ratione duplicata orificii canalis ad excessum huius orifici supra circulum maximum 
globi, & ratione densitatis fluidi ad densitatem globi quamproxime. 
 
 Patet per Corol. 2. Prop. XXXVII. procedit vero demonstratio quemadmodum in 
propositione precedente. 
 

Scholium. 
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 In propositionibus duabus novissimis (perinde ut in Lem. V.) suppono quod aqua 
omnis congelatur quae globum praecedit, & cuius fluiditas auget resistentiam globi. Si 
aqua illa omnis liquescat, augebitur resistentia aliquantulum. Sed augmentum illud in his 
propositionibus parvum erit & negligi potest, propterea quod convexa superficies globi 
totum fere officium glaciei faciat. 
 

PROPOSITIO XL. PROBLEMA IX. 
Globi, in medio fluidissimo compresso progredientis, invenire resistentiam per 

phaenomena. 
 
Sit A pondus globi in vacuo, B pondus eius in medio resistente, D diameter globi, F 
spatium quod sit ad 4

3 D  ut densitas globi ad densitatem medii, id est, ut A ad A B− , G 
tempus quo globus pondere B sine resistentia cadendo describit spatium F, & H velocitas 
quam globus hocce casu suo acquirit. Et erit H velocitas maxima quacum globus, pondere 
suo B, in medio resistente potest descendere, per Corol. 2. Prop. XXXVIII. & resistentia, 
quam globus ea cum velocitate descendens patitur, aequalis erit eius ponderi B: resistentia 
vero, quam patitur in alia quacunque velocitate, erit ad pondus B in duplicata ratione 
velocitatis huius ad velocitatem illam maximam H, per Corol, I. Prop. XXXVIII. 
 Haec  est resistentia quae oritur ab inertia materiae fluidi. Ea vero qua oritur ab 
elasticitate, tenacitate, & frictione partium eius, sic investigabitur. 
 Demittatur globus ut pondere suo B in fluido descendat; & sit P tempus cadendi, idque 
in minutis secundis si tempus G in minutis secundis habeatur, Inveniatur numerus 
absolutus N qui congruit logarithmo 20 4342944819 P

G, , sitque L logarithmus numeri 
1N

N
+ ; & velocitas cadendo acquisita erit 1

1
N
N H−
+ , altitudo autem descripta 

erit 2 1 3862943611 4 605170186PF
G , F , LF− + . Si fluidum satis profundum sit, negligi 

potest terminus 4 605170186, LF ; & erit 2 1 3862943611PF
G , F−  altititudo descripta 

quamproxime. Patent haec per libri secundi propositionem nonam & eius corollaria, 
ex hypothesi quod globus nullam aliam patiatur resistentiam nisi quae oritur ab inertia 
materiae. Si vero aliam insuper resistentiam patiatur, descensus erit tardior, & ex 
retardatione innotescet quantitas huius resistentiae. 
 Ut corporis in fluido cadentis velocitas & descensus facilius innotescant, composui 
tabulam sequentem, cuius columna prima denotat tempora descensus, secunda exhibet 
velocitates cadendo acquisitas existente velocitate maxima 100000000, tertia exhibet 
spatia temporibus illis cadendo descripta, existente 2F spatio quod corpus tempore G cum 
velocitate maxima describit, & quarta exhibet spatia iisdem temporibus cum velocitate 
maxima descripta.  
Numeri in quarta columna sunt 2P

G , & subducendo numerum 1 3862944 4 6051702 , , L− , 
inveniuntur numeri in tertia columna, & multiplicandi sunt hi numeri per spatium F ut 
habeantur spatia cadendo descripta. Quinta his insuper adieda est columna, que 
continet spatia descripta iisdem temporibus a corpore, vi ponderis sui comparativi B, in 
vacuo cadente. 
.  
Tempora Velocitates Spatia cadendo Spatia motu Spatia cadendo 
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P cadentis in 
fluido 

descripta in fluido maximo 
descripta 

descripta in 
vacuo 

0,001G 29
3099999  0 000001, F  0,002F 0,000001F 

0,01G 999967 0,0001F 0,02F 0,0001F 
0,1G 9966799 0,0099834F 0,2F 0,01F 
0,2G 19737532 0,0397361F 0,4F 0,04F 
0,3G 29131261 0,0886815F 0,6F 0,09F 
0,4G 37994896 0,1559070F 0,8F 0,16F 
0,5G 46211716 0,2402290F 1,0F 0,25F 
0,6G 53704957 0,3402706F 1,2F 0,36F 
0,7G 60436778 0,4545405F 1,4F 0,49F 
0,8G 66403677 0,5815071F 1,6F 0,64 F 
0,9G 71629787 0,7196609F 1,8F 0,81F 
1G 7615 9416 0,8675617F 2F 1F 
2G 96402758 2,65 00055F 4F 4F 
3G 99505475 4,6186570F 6F 9F 
4G 99932930 6,6143765F 8F 16F 
5G 99990920 8,6137964F 10F 25F 
6G 99998771 10,6137179F 12F 36F 
7G 99999834 12,6137073F 14F 49F 
8G 99999980 14,6137059F 16F 64F 
9G 99999997 16,6137057F 18F 81F 
10G 99999999 3

5  18,6137056F 20F 100F 
 
 
 
 
 

Scholium. 
Ut resistentias fluidorum investigarem per experimenta, paravi vas ligneum quadratum, 
longitudine & latitudine interna digitorum novem pedis Londinensis, profunditate pedum 
novem cum semisse, idemque implevi aqua pluviali; & globis ex cera & plumbo 
incluso formatis, notavi tempora descensus globorum, existente descensus altitudine in 
digitorum pedis. Pes solidus cubicue Londinensis continet 76 libras Romanas aquae 
pluvialis, & pedis huius digitus solidus continet 19

36  uncias librae huius seu grana 1
3253  ; 

 & globus aquaeus diametro digiti unius descriptus continet grana 132,645 in medio aeris, 
vel grana 132,8 in vacuo; & globus quilibet alius est ut excessus ponderis eius in vacuo 
supra pondus eius in aqua. 
 Exper. 1. Globus, cuius pondus erat 1

4156  granorum in aere & 77 granorum in aqua, 
altitudinem totam digitorum 112 tempore minutorum quatuor secundorum descripsit. Et 
experimento repetito, globus iterum cecidit eodem tempore minutorum quatuor 
secundorum. 
 Pondus globi in vacuo est 13

38156  gran. & excessus huius ponderis supra pondus globi 
in aqua est 13

3879  gran. Unde prodit globi diameter 0,84224 partium digiti. Est autem ut 
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excessus ille ad pondus globi in vacuo, ita densitas aquae ad densitatem globi, & ita partes 
octo tertiae diametri globi (viz. 2,24597 dig.) ad spatium 2F, quod proinde erit 4,4156 dig. 
Globus tempore minuti unius secundi, toto suo pondere granorum 13

38156 , cadendo in 
vacuo describet digitos 1

3193  & pondere granorum 77, eodem tempore, sine resistentia 
cadendo in aqua describet digitos 95,219; & tempore G, quod sit ad minutum unum 
secundum in subduplicata ratione spatii F seu 2,2128 dig. ad 95,219 dig. describet 2,2128 
dig. & velocitatem maximam H acquiret quacum potest in aqua descendere. Est igitur 
tempus G  0",15244. Et hoc tempore G, cum velocitate illa maxima H, globus describet 
spatium 2F digitorum 4,4256; ideoque tempore minutorum quatuor secundorum describet 
spatium digitorum 1l6,1245 . Subducatur spatium 1,3862944F seu 3,0676 dig. & manebit 
spatium 113,0569 digitorum quod globus cadendo in aqua, in vase amplissimo, tempore 
minutorum quatuor secundorum describet. Hoc spatium, ob angustiam valis lignei 
praedicti, minui debet in ratione quae componitur ex subduplicate ratione orificii vasis ad 
excessum orificii huius supra semicirculum maximum globi & ex simplici ratione orificii 
eiusdem ad excessum eius supra circulum maximum globi, id est, in ratione 
I ad 0,9914. Quo facto, habebitur spatium 112,08 digitorum, quod globus cadendo in aqua 
in hoc vase ligneo tempore minutorum quatuor secundorum per theoriam describere 
debuit quamproxime. Descripsit vero digitos 112 per experimentum. 
 Exper. 2. Tres globi aequales, quodrum pondera seorsim erant 1

376  granorum in aere 
& 1

165  granorum in aqua, successive demittebantur ; & unusquisque cecidit in aqua 
tempore minutorum secundorum quindecim, casu suo describens altitudinem digitorum 
112. 
 Computum ineundo prodeunt pondus globi in vacuo 5

1276  gran., excessus huius 
ponderis supra pondus in aqua 17

4871  gran. diameter globi 0,81296 dig, octo tertiae partes 
huius diametri 2,16789 dig.; spatium 2F 2,3217 dig. spatium quod globus pondere 1

165  
gran. tempore 1" sine resistentia cadendo describat 11,808 dig., & tempus G 0",301056. 
Globus igitur, velocitate maxima quacum potest in aqua vi ponderis, 1

165  gran. 
descendere, tempore 0",301056 describet spatium 2,3217 dig., & tempore 15" spatium 
115,678 dig. Subducatur spatium 1,3862944F seu 1,609 dig. & manebit spatium 
114,069 dig., quod proinde globus eadem tempore in vase latissimo cadendo describere 
debet. Propter angustiam vasis nostri detrahi debet spatium 0,895 dig. circiter. Et sic 
manebit spatium 113,174 dig., quod globus cadendo in hoc vase, tempore 15" describere 
debuit per theoriam quamproxime. Descripsit vero digitos 112 per experimentum. 
Differentia eft insensibilis. 
 Exper. 3. Globi tres aequales, quorum pondera seorsim erant 121 gran. in aere & 1 
gran. in aqua, successive demittebantur ; & cadebant in aqua temporibus 46", 47", & 50" 
describentes altitudinem digitorum 112. 
 Per theoriam hi globi cadere debuerunt tempore 40"  circiter, 
Quod tardius ceciderunt , utrum minori proportioni resistentia, quae a vi inertiae in tardis 
motibus oritur, ad resistentiam quae oritur aliis causis tribuendum sit; an potius bullulis 
nonnullis globo adhaerentibus, vel rarefactioni cerae ad calorem vel tempestatis vel 
manus globum demittentis, vel etiam erroribus insensibilibus in ponderandis globis in 
aqua, incertum esse puto. Ideoque pondus globi in aqua debet esse plurium granorum, ut 
experimentum certum & fide dignum reddatur. 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VII. 
Translated and Annotated by Ian Bruce.                                        Page 666 

 Exper. 4. Experimenta hactenus descripta coepi, ut investigarem resistentias fluidorum, 
antequam theoria in propositionibus proxime pracedentibus exposita mihi innotesceret. 
Postea, ut theoriam inventam examinarem, paravi vas ligneum latitudine interna 
digitorum 2

38 , profunditate pedum quindecim cum triente. Deinde ex cera & plumbo 
incluso globos quatuor formavi, singulos pondere 1

4139  granorum in aere & 1
87 granorum 

in aqua. Et hos demisi ut tempora cadendi in aqua per pendulum, ad semi-minuta 
secunda oscillans, mensurarem. Globi, ubi ponderabantur & possea cadebant, frigidi erant 
& aliquamdiu frigidi manserant; quia calor ceram rarefacit, & per rarefactionem diminuit 
pondus globi in aqua, & cera rarefacta non statim ad densitatem pristinam per frigus 
reducitur. Antequam caderent, immergebantur penitus in aquam; ne pondere partis 
alicuius ex aqua extantis descensus eorum sub initio acceleraretur. Et ubi penitus immersi 
quiescebant, demittebantur quam cautissime, ne impulsum aliquem a manu demittente 
acciperent. Ceciderunt autem successive temporibus oscillationum 1 1

2 247  48, , 50 & 51, 
describentes altitudinem pedum quindecim & digitorum duorum. Sed tempestas iam paulo 
frigidior erat quam cum globi ponderabantur, ideoque iteravi experimentum alia die, & 
globi ceciderunt temporibus oscillationum 49, 1

249 ,50 & 53, ac tertio temporibus 
oscillationum 1

249 , 50, 51 & 53. Et experimento saepius capto, globi ceciderunt maxima 
ex parte temporibus oscillationum 1

249  & 50. Ubi tardius cecidere, suspicor 
eosdem retardatos fuisse impingendo in latera vasis. 
 Iam computum per theoriam ineundo, prodeunt pondus globi in vacuo 2

5139  granorum. 
Excessus huius ponderis supra pondus globi in aqua 11

40132  gran. Diameter globi 0,99868 
dig. Octo tertiae partes diametri 2,66315 dig. Spatium 2F  2,8066 dig. Spatium 
quod globus pondere 1

87  granorum, tempore minuti unius secundi, sine resistentia 
cadendo describit 9,88164 dig. Et tempus G 0", 376843. Globus igitur, velocitate maxima, 
quacum potest in aqua vi ponderis 1

87  granorum descendere, tempore 0",376843 describit 
spatium 2,8066 digitorum, & tempore 1" spatium 7,44766 digitorum, & tempore 25" seu 
oscillationum 50 spatium 186,1915 dig. Subducatur spatium 1,386294F, seu 1,9454 dig. 
& manebit spatium 184,2461 dig. quod globus eodem tempore in vase latissimo describet, 
Ob angustiam valis nostri, minuatur hoc spatium in ratione quae componitur ex 
subduplicata ratione orificii vasis ad excessum huius orificii supra semicirculum 
maximum globi, & simplici ratione eiusdem orificii ad excessum eius supra circulum 
maximum globi; & habebitur spatium 181,86 digitorum, quod globus in hoc vase tempore 
oscillationum 50 describere debuit per theoriam quamproxime. Descripsit vera spatium 
182 digitorum tempore oscillationum 1

249  vel 50 per experimentum. 
 Exper. 5 . Globi quatuor pondere 1

8154  gran. in aere & 1
221  gran. in aqua saepe 

demissi, cadebant tempore oscillationum 1 1
2 228  29  29, ,  & 30, & nonnunquam 31, 32  & 

33, describentes altitudinem pedum quindecim & digitorum duorum. 
Per theoriam cadere debuerunt tempore oscillationum 29 quamproxime. 
 Exper. 6. Globi quinque pondere 3

8212  gran. in aere & 1
279  gran. in aqua saepe 

demissi, cadebant tempore oscillationum 1
215 , 16, 17  & 18, describentes altitudinem 

pedum quindecim & digitorum duorum. 
 Per theoriam cadere debuerunt tempore oscillationum 15 quamproxime, 
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 Exper.7. Globi quatuor pondere 3
8293  gran. in aere & 7

835  gran. in aqua saepe 
demissi, cadebant tempore oscillationum 1 1

2 229  30  30, , , 31, 32 & 33, describentes 
altitudinem pedum quindecim & digiti unius cum semisse. 
 Per theoriam cadere debuerunt tempore oscillationum 28 quamproxime. 
 Causuam investigando cur globorum, eiusdem ponderis & magnitudinis, aliqui citius 
alii tardius caderent, in hanc incidi; quod globi, ubi primum demittebantur & cadere 
incipiebant, oscillarent circum centra, latere illo quod forte gravius esset primum 
descendente, & motum oscillatorium generante. Nam per oscillationes suas globus 
maiorem motum communicat aquae, quam si sine oscillationibus descenderet; & 
communicando, amittit partem motus proprii quo descendere deberet: & pro maiore vel 
minore oscillatione, magis vel minus retardatur. Quinetiam globus recedit semper a latere 
suo quod per oscillationem descendit, & recedest, do appropinquat lateribus vasis & in 
latera nonnunquam impingitur. Et haec oscillatio in globis gravioribus fortior est, & in 
maioribus aquam magis agitat. Quapropter, ut oscillatio globorum minor redderetur, 
globos novos ex cera & plumbo construxi, infigendo plumbum in latus aliquod globi 
prope superficiem eius; & globum ita demisi, ut latus gravius, quoad fieri potuit, esset 
infimum ab initio descensus. Sic oscillationes factae sunt multo minores quam prius, & 
globi temporibus minus inequalibus ceciderunt, ut in experimentis sequentibus. 
 Exper. 8. Globi quatuor, pondere granorum 139 in aere & 1

26  in aqua, saepe demissi, 
ceciderunt temporibus oscillationum non plurium quam 52, non pauciorum quam 50, & 
maxima ex parte tempore oscillationum 51 circiter, describentes altitudinem digitorum 
182. 
Per theoriam cadere debuerunt tempore oscillationum 52 circiter. 
 Exper. 9. Globi quatuor, pondere granorum 1

4273  in aere & 1
4140  in aqua, saepius 

demissi, ceciderunt temporibus oscillationum non pauciorum quam 12, non plurium quam 
13, describentes altitudinem digitorum 182. 
 Per theoriam vero hi globi cadere debuerunt tempore oscillationum 1

311 quamproxime. 
 Exper. 10. Globi quatuor, pondere granorum 384 in aere & 1

2119  in aqua, saepe 
demissi, cadebant temporibus oscillationum 3 1

4 217 , 18  18  19,  & , describentes altitudinem 
1
2181 digitorum. Et ubi ceciderunt tempore oscillationum 19, nonnunquam audivi 

impulsum eorum in latera vasis antequam ad fundum pervenerunt. 
 Per theoriam vero cadere debuerunt tempore oscillationum 5

815  quamproxime. 
Exper. 11. Globi tres aequales, pondere granorum 48 in aere & 29

303  in aqua, saepe 
demissi, ceciderunt temporibus oscillationum 1 1

2 243 44 44, , , 45 & 46, & maxima ex parte 
44 & 45 , describentes altitudinem digitorum 1

2182  quamproxime. 
 Per theoriam cadere debuerunt tempore oscillationum 5

946  circiter. 
 Exper. 12. Globi tres aequales, pondere granorum 141 in aere & 3

84  in aqua, aliquoties 
demissi, ceciderunt temporibus oscillationum 61, 62, 63, 64 & 65, describentes 
altitudinem digitorum 182. 
 Et per theoriam cadere debuerunt tempore oscillationum 3

464  quamproxime. 
 Per haec experimenta manifestum est quod, ubi globi tarde ceciderunt, ut in 
experimentis secundis, quartis, quintis, octavis, undecimis ac duodecimis, tempora 
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cadendi recte exhibentur per theoriam: at ubi globi velocius ceciderunt, ut in experimentis 
sextis, nonis ac decimis, resistentia paulo maior extitit quam in duplicata ratione 
velocitatis. Nam globi inter cadendum oscillant aliquantulum, & haec oscillatio in globis 
levioribus & tardius cadentibus, ob motus languorem cito cessat , in gravioribus autem & 
maioribus, ob motus fortitudinem diutius durat, & non nisi post plures oscillationes 
ab aqua ambiente cohiberi potest. Quinetiam globi, quo velociores sunt, eo minus 
premuntur a fluido ad posticas suas partes; & si velocitas perpetuo augeatur, spatium 
vacuum tandem a tergo relinquent, nisi compressio fluidi simul augeatur. Debet autem 
compressio fluidi (per Prop. XXXII. & XXXIII.) augeri in duplicata ratione velocitatis, ut 
resistentia sit in eadem duplicata ratione. Quoniam hoc non sit, globi velociores paulo 
minus premuntur a tergo, & defcctu pressionis huius, resistentia  eorum sit paulo maior 
quam in duplicata ratione velocitatis. 
 Congruit igitur theoria cum phaenomenis corporum cadentium in aqua, reliquum est ut 
examinemus phaenomena cadentium in aere. 
 Exper.13. A culmine ecclesiae Sancti Pauli, in urbe Londini, mense Iunio 1710, globi 
duo vitaei simul demittebantur, unus argenti vivi plenus, alter aeris ; & cadendo 
describebant altitudinem pedum Londinensium 220. Tabula lignea ad unum eius terminum 
polis ferreis suspendebatur, ad alterum pessulo ligneo incumbebat , & globi duo huic 
tabulae impositi simul demittebantur, subtrabendo pessulum ope fili ferrei ad terram 
usque demissi ut tabula polis ferreis solummocto innixa super iisdem devolveretur, & 
eodcm temporis momento pendulum ad minuta secunda oscillans, per filum 
illud ferreum tractum demitteretur & oscillare inciperet. Diametri & pondera globorum ac 
tempora cadendi exhibentur in tabula sequente. 
 

Globorum mercurio plenorum Globorum aere plenorum. 
 

Pondera Diametri Tempora cadendi. Pondera Diametri Tempora 
cadendi. 

908 gran. 0,8 digit 4" 510 gran. 5,1 digit. 8" 1
2  

983 0,8 4 – 642 5,2 8 
866 0,8 4 599 5,1 8 
747 0,75 4+ 5I5 5,0 8 1

4  
808 0,75 4 483 5,0 8 1

2  
784 0,75 4+ 641 5,2 8 
 
 Caeterum tempora observata corrigi debent. Nam globi mercuriales (per theoriam 
Galilaei) minutis quatuor secundis describent pedes Londinensis 257, & pedes 220 
minutis tantum 3" 41'" . Tabula lignea utique, detracto pessulo, tardius devolvebatur quam 
par erat, & tarda sua devolutione impediebat descensum globorum sub initio. Nam globi 
incumbebant tabule prope medium eius, & paulo quidem propiores erant axi eius quam 
pessulo. Et hinc tempora cadendi prorogata fuerunt minutis tertiis octodecim circiter, 
& iam corrigi debent detrahendo illa minuta, praesertim in globis maioribus qui tabulae 
devolventi paulo diutius incumbebant propter magnitudinem diametrorum. Quo facto 
tempora, quibus globi sex maiores cecidere, evadent 8" 12'" , 7" 42'"  , 7" 42'", 7" 57'", 
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8" 12'" , & 7" 42'". 
 Globorum igitur aere plenorum quintus, diametro digitorum quinque pondere 
granorum 483 constructus, cecidit tempore 8" 12'" , describendo altitudinem pedum 220. 
Pondus aquae huic globo aequalis est 16600 granorum; & pondus aeris eidem aequalis 
est 16600

800 gran. seu 3
1019  gran. ideoque pondus globi in vacuo est 3

10502  gran. & hoc 
pondus est ad pondus aeris globo aequalis, ut 3 3

10 10502  ad 19 , & ita sunt 2F ad octo tertias 
partes diametri globi, id est, ad 1

313  digitos. Unde 2F prodeunt 28 pede 11 dig. Globus 
cadendo in vacuo, toto suo pondere 3

10502   granorum, tempore minuti unius secundi 
describit digitos 1

3193  ut supra, & pondere 483 gran. describit digitos 185,905 , & eodem 
pondere 483 gran. etiam in vacuo describit spatium F seu 14 ped. 1

25 dig. tempore  
57" 58"" , & velocitatem maximam acquirit quacum possit in aere descendere. Hac 
velocitate globus, tempore 8" 12'", describet spatium pedum 245 & digitorum 1

35 . Aufer 
1,3863F seu 20 ped. 1

20 dig. & manebunt 225 ped. 5 dig. Hoc spatium igitur globus, 
tempore 8" 12'", cadendo describere debuit per theoriam. Descripsit vero spatium 220 
pedum per experimentum. Differentia insensibilis est.  
  Similibus computis ad reliquos etiam globos aere plenos applicatis, confeci tabulam 
sequentem. 
 
Globorum pondera. Diametri. Tempora 

cadendi ab 
altitudine 

pedum 220. 

Spatia 
describinda per 

theoriam. 

Excessus. 

510 gran. 5,1 dig. 8" 12'" 226ped. 11 dig. 6 ped. 11 dig. 
642 5,2 7   42 230          9 7         10 
599 5,1 7   42 227        10 7         10 
515 5 7   57 224          5 4           5 
483 5 8   12 225          5 5           5 
641 5,2 7   42 230          7 10         7 
 
Exper. 14. Anno 1719. mense Iulio, D Desaguliers huiusmodi experimenta iterum cepit, 
formando vesicas porcorum in orbem sphaericum ope sphaerae lignese concavae, quam 
madefactae implere cogebantur inflando aerem; & hasce arefactas & exemptas demittendo 
ab altiore loco in templi eiusdem turri rotunda fornicata, nempe ab altitudine pedum 272; 
& eodem temporis momento demittendo etiam globum plumbeum cuius pondus erat 
duarum librarum Romanarum circiter, Et interea aliqui stantes in suprema 
parte templi, ubi globi demittebantur, notabant tempora tota cadendi, & alii stantes in terra 
notabant differentiam temporum inter casum globi plumbei & casum vesicae. Tempora 
autem mensurabantur pendulis ad dimidia minuta secunda oscillantibus. Et eorum qui 
in terra stabant unus habebat horologium cum elatere ad singula minuta secunda quater 
vibrante, alius habebat machinam aliam affabre constructam cum pendulo etiam ad 
singula minuta secunda quater vibrante. Et similem machinam habebat unus eorum qui 
habant in summitate templi. Et haec instrumenta ita formabantur, ut motus eorum pro 
lubitu vel inciperent vel sisterentur. Globus autem plumbeus cadebat tempore minutorum 
secundorum quaruor cum quadrante circiter. Et addendo hoc tempus ad praedictam 
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temporis differentiam, colligebamr tempus totum quo vesica cecidit. Tempora, quibus 
vesicae quinque post casum globi plumbei prima vice ceciderunt, 
erant 3 3 5 3 3

4 4 8 4 414 12 14 17 16", ", ", ",& " , & secunda vice 31 1
2 4 414 12 14 19 16", ", ", ",& " . 

Addantur 1
44 " , tempus utique quo globus plumbeus cecidit, & tempora tota, quibus 

vesicae quinque ceciderunt, erant prima vice 7 1
8 819 17 18 22 21", ", ", ",& " ; & secunda vice, 

3 1 1 1
4 2 4 418 18 18 23 21", ", ", ",& " .. Tempora autem in summitate templi notata, erant prima 

vice 3 3 51 1
4 4 4 8 819 17 18 22 21", ", ", ",& " . ; & secunda vice 5 3 1

8 8 419 18 18 24 21", ", ", ",& " . . 
Caeterum vesicae non semper recta cadebant, sed nonnunquam volitabant, & hinc inde 
oscillabantur inter cadendum. Et his motibus tempora cadendi prorogata sunt & aucta 
nonnunquam dimidio minuti unius secundi, nonnunquam minuto secundo toto. Cadebant 
autem rectius vesica secunda & quarta prima vice; & prima ac tertia secunda vice. Vesica 
quinta  rugosa erat & per rugas suas nonnihil retardabatur. Diametros vesicarum 
deducebam ex earum circumferentiis filo tenuissimo bis circundato mensuratis. Et 
theoriam contuli cum experimentis in tabula sequente, assumendo densitatem 
aeris esse ad densitatem aquae pluvialis ut 1 ad 860, & computando spatia quae globi per 
theoriam describere debuerunt cadendo.  
 
Vesicarum 
pondera.  

Diametri. Tempora cadendi ab 
altitudine pedum 272. 

Spatia iisdem 
temporibus 
describenda per 
theoriam. 

Differentia 
inter theor. & 
exper. 

128 gran. 5, 28 dig. 19" 271ped.            11 dig. – 0ped. 1dig. 
156 5, 19 17 272                1

20   + 0        1
20  

1
2137  5,   3 1

218  272                 7 + 0         7 
1
297 , 5  26 22 277                  4 + 5         4 
1
899  5 1

821  282                  0 + 10       0 
 
Globorum igitur tam in aere quam in aqua motorum resistentia prope omnis per theoriam 
nostram recte exhibetur, ac densitati fluidorum, paribus globorum velocitatibus ac 
magnitudinibus, proportionalis est. 
 In scholio, quod sectioni sextae subiunctum est, ostendimus per experimenta 
pendulorum quod globorum aequalium & aequivelocium in aere, aqua, & argento vivo 
motorum resistentiae sunt ut fluidorum densitates. Idem hic ostendimus magis accurate 
per experimenta corporum cadenuum in aere & aqua. Nam pendula singulis 
oscillationibus motum cient in fluido motui penduli redeuntis semper contrarium, & 
resistentia ab hoc motu oriunda, ut & resistentia fili quo pendulum suspendebatur, totam 
penduli resistentiam maiorem reddiderunt quam resistentia quae per experimenta 
corporum cadentium prodiit. Etenim per experimenta pendulorum in scholio illo exposita, 
globus eiudem densitatis cum aqua, describendo longitudinem semidiametri suae in aere. 
amittere deberet motus sui partem 1

3342 .  At per theoriam in hac septima sectione 
expositam & experimentis cadentium confirmatam, globus idem describendo 
longitudinem eandem, amittere deberet motus sui partem tantum 1

4586  posito quod densitas 
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aquae sit ad densitatem aeris ut 860 ad 1. Resistentiae igitur per experimenta pendulorum 
maiores prodiere (ob causas iam descriptas) quam per  experimenta globorum cadentium, 
idque in ratione 4 ad 3 circiter. Attamen cum pendulorum in aere, aqua & argento vivo 
oscillantium resistentiae a causis similibus similiter augeantur, proportio resistentiarum in 
his mediis, tam per experimenta pendulorum, quam per experimenta corporum cadentium, 
satis recte exhibebitur. Et inde concludi potest quod corporum in fluidis quibuscunque 
fluidissimis motorum resistentiae, caeteris paribus, sunt ut densitates fluidorum. 
 His ita stabilitis, dicere iam licet quamnam motus sui partem globus quilibet, in fluido 
quocunque proiectus, data tempore amittet quamproxime. Sit D diameter globi, & V 
velocitas eius sub initio motus, & T tempus, quo globus velocitate V in vacuo describet 
spatium, quod sit ad spatium 8

3 D ut densitas globi ad densitatem fluidi : & globus in fluido 
illo proiectus, tempore quovis alio t, amittet velocitatis suae partem tV

T t+   manente parte  
TV
T t+    & describet spatium, quod sit ad spatium uniformi velocitate V eadem tempore 

descriptum in vacuo, ut logarithmus numeri T t
T
+  multiplicatus per numerum 2,302585093 

est ad numerum t
T   per Corol. VII. Prop. XXXV. In motibus tardis resistentia potest esse 

paulo minor, propterea quod figura globi paulo aptior sit ad motum quam figura cylindri 
eadem diametro descripti. In motibus velocibus resistentia potest esse paulo maior, 
propterea quod elasticitas & compressio fluidi. non augeantur in duplicata ratione 
velocitatis. Sed huiusmodi minutias hic non expendo.  
 Et quamvis aer, aqua,  argentum vivum & similia fluida, per divisionem partium in 
infinitum, subtiliarentur & fierent media infinite fluida ; tamen globis proiectis haud 
minus resisterent. Nam resistentia, de qua agitur in propositionibus praecedentibus, oritur 
ab inertia materiae , & inertia materiae corporibus essentialis est & quantitati materiae 
semper proportionalis. Per divisionem partium fluidi, resistentia quae oritur a tenacitate & 
frictione partium diminui quidem potest : sed quantitas materiae per divisionem partium 
eius non diminuitur; & manente quantitate materiae, manet eius vis inertae, cui resistentia, 
de qua hic agitur, semper proportionalis est. Ut hac resistentia diminuatur, diminui debet 
quantitas materiae in spatiis per quae corpora moventur. Et propterea spatia coelestia, 
per quae globi planetarum & cometarum in omnes partes liberrime & sine omni motus 
diminutione sensibili perpetuo moventur, fluido omni corporeo destituuntur, si forte 
vapores longe tenuissimos & traiectos lucis radios excipias. 
 Proiectilia utique motum cient in fluidis progrediendo, & hic motus oritur ab excessu 
pressionis fluidi ad proiectilis partes anticas supra pressionem ad eius partes posticas, & 
non minor esse potest in mediis infinite fluidis quam in aere, aqua & argento vivo pro 
densitate materiae in singulis. Hic autem pressionis excessus, pro quantitate sua, non 
tantum motum ciet in fluido, sed etiam agit in proiectile ad motum eius retardandum : & 
propterea resistentia in omni fluido est ut motus in fluido a proiectili excitatus, nec 
minor esse potest in aethere subtilissimo pro densitate aetheris, quam in aere, aqua & 
argento vivo pro densitatibus horum fluidorum. 
 
 
 


