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SECTION VIII. 
 

Concerning motion propagated by fluids. 
 

PROPOSITION XLI. THEOREM XXXII. 
 

A pressure is not propagated by a fluid along straight lines, except when the particles of 
the fluid lie in a straight line. 

 
 If the particles a, b, c, d, e may lie on a right line, some pressure can be propagated 
directly from a to e ; but the particle e will act on the sideways placed particles  f  and  g 
in an oblique manner, and these particles f and g will not 
sustain the inflected pressure, unless they are supported by the 
more distant particles h and k ; but provided they are 
supported, they press on supporting particles, and these cannot 
support the pressure unless they are supported by the further 
particles t and m, and they press on these;  and thus henceforth 
indefinitely. Therefore the pressure, that in the first place is 
propagated to the particles which do not lie along the 
direction, will begin to branch out, and to be propagated 
indefinitely obliquely; and after the pressure begins to be propagated obliquely, if it   
should be incident on more distant particles, which do not lie along the same direction, it 
will branch out again ; and just as often as it is incident on particles that are not accurately 
in line, so this will happen. Q.E.D. 
 

Corol. If some part of the pressure,  propagated from some part of the fluid, may be 
intercepted by some obstacle, the remaining part, by which it is not intercepted, will 
branch out in the space behind the obstacle, as that can also be demonstrated thus. From 
the point A the pressure can be propagated in every direction, and thus if it were able to 
made along right lines, and all that pressure may be intercepted by the obstacle NBCK 
perforated in BC, except the conical part APQ,  which passes through the circular opening 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VIII. 
Translated and Annotated by Ian Bruce.                                        Page 673 

BC.  The cone APQ may be separated into frustums by the transverse planes de, fg, hi ;  
and while being propagated within the cone ABC, the pressure may act on the further 
conical frustum degf  at the surface de, and this frustum may act on the nearby frustum  
fgih at the surface  fg, and that frustum acts on the third frustum, and thus henceforth 
indefinitely; it is evident (by the third law of motion) that the first frustum defg by the 
reaction with the second  frustum fghi, will be acting and by pressing with as  great a 
pressure on the surface  fg, as may act and press on that second surface. Therefore the 
frustum degf  is compressed on both sides between the cone Ade and the frustum fhig, and 
therefore (by Corol. VI. Prop. XIX.) is unable to maintain its shape, unless it shall be 
compressed by the same force on both sides. Therefore by the same impulse by which it is 
pressed on the surfaces de and  fg, it will try to go to the sides df and eg; and there (since 
it shall not be rigid, but always a fluid) it will run and expand out, unless surrounding 
fluid may be near. Therefore by trying to depart, it presses with the same impulse both on 
the surrounding fluid on the sides df and eg, as well as on the frustum fghi : and on that 
account none the less the pressure will be propagated from the sides df and eg into the 
spaces NO and KL and thus hence, so that it may be propagated from the surface fg 
towards PQ. Q.E.D. 
 

PROPOSITION XLII. THEOREM XXXIII. 
 

All motion propagated by a fluid diverges from rectilinear motion in an immoveable 
space. 

 

 
 Case1. The motion may be propagated from the point A through the hole BC, and it 
may go, if it can happen, into the conical space BCQP, along right lines diverging from 
the point A. And in the first place we may suppose that this motion shall itself be of waves 
on the surface of water at rest. And let de, fg, hi, kl, &c. be the highest parts of individual 
waves [crests], with just as many distinct intermediate valleys [troughs] in turn. Therefore 
because the water in the crests of the waves is higher than in the fluid in the stationary 
parts LK, NO, the same may flow away from the crest terms  e, g, i, l, etc. d, f, b, k, etc. 
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hence from there towards KL and NO: and since it is lower in the troughs of the waves 
than in the motionless parts of the waves KL, NO; the same may flow from the motionless 
parts into the troughs of the waves. By flowing from the first crest of the waves, hence it 
will be expanding out into the troughs behind that and may propagate towards KL and 
NO. And because the motion of the waves from A towards PQ shall be by a continued 
flowing  away of the crests into the nearest troughs, and thus the speed of crests shall not 
be faster than the speed of the troughs ; and hence the descent of the water from there 
towards KL and NO must be going with the same velocity; hence the expansion of the 
waves from there towards KL and NO will be propagated with the same velocity by which 
these waves are progressing from A towards PQ . And hence the total space from there 
towards KL and NO is occupied by an abundance of spreading crests rfgr, shis, tklt, vmnv, 
&c.. Q.E.D.  Thus these can be tested by anyone for themselves in any still water. 
 Case 2.  We may now suppose that de, fg, hi, kl, mn may designate pulses propagating 
successively from the point A through an elastic medium. The pulses may be considered 

to be propagated by successive condensations and rarefactions of the medium, thus so that 
the most dense part of each pulse  may occupy a spherical surface described about the 
centre A, and equal successive intervals may fall between the pulses. Moreover the lines 
de, fg, hi, kl, etc. may designate the densest parts of the pulses, propagating through the 
hole BC. And because the medium here is more dense than in any quarter towards the 
spaces KL and NO,  thus it will expand itself both towards these spaces KL and NO 
situated on each side, as well as towards the intervals of more rare pulses; and with that 
understood they will share in the same motion, the rarer always emerge from the region of 
the [quiet] intervals and the denser from the region of the [denser] pulses. And because 
the progressive motion of the pulses arises from the continual relaxation of the more 
dense parts towards the antecedent rarer intervals ; and the pulses with almost the same 
speed must relax in the quiet parts of the medium from the different quarters KL and NO ; 
these pulses expand themselves out on each side with almost the same speed into the 
unmoved spaces  KL, NO, by which they may be propagated directly from the centre A ; 
and thus they occupy the whole space KLON. Q.E.D. We experience this with sounds, 
which are heard either with a mountain in between, or they expand on themselves being 
admitted into a room by the window, to be heard in all the corners, not only as reflected 
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from the opposite walls, but propagated directly from the window as well, as much as can 
be judged from the senses. 
 
 Case 3. Finally we may suppose that a motion of any kind may be propagated from A 
through the opening BC : and because the propagation itself does not happen, unless in so 
far as the parts of the medium closer to the centre A may urge the more distant parts into 
some excitation, and the parts which are acted on by the fluid, and thus which recede in 
every direction where they act with a lesser pressure: all the same recede towards the 
resting parts of the medium, both to the sides KL and NO, as well as to the anterior parts 
PQ, and with that agreed upon the motion of all, that first has passed through the opening 
BC, will  begin to expand, and thence at last from a beginning at the centre, is propagated 
directly in every direction. Q. E. D.  
 

 
PROPOSITION XLIII. THEOREM XXXIV. 

Any body vibrating in an elastic medium will propagate the motion of pulses in every 
direction; truly in a non-elastic medium it will excite a circular motion. 
 
 Case 1. For the parts of a vibrating body by alternately coming and going in turn, in its 
going will act on and propel the nearby parts of the medium themselves, and on being 
acted on the same will be compressed and condensed; then by its return the compressed 
parts themselves recede and expand. Therefore the parts of the medium by the vibrations 
of the body will in turn go and return, in the image of the vibrating parts of the body : and  
by that account the parts of this body will disturb these parts of the medium, these by 
similar agitated vibrations will disturb parts nearby to themselves, and these similarly 
agitated will disturb the further parts, and thus henceforth indefinitely. And in whatever 
manner the first parts of the medium by going may be condensed and are relaxed on 
return, thus the remaining parts as often as they shall go will be condensed, and just as 
often as they return they expand themselves. And therefore not all will go and return at 
the same time (for since in turn by maintaining determined distances, they would not be 
rarefied and condensed in turn) but in turn by approaching where they are condensed, and 
by receding where they are rarefied, some of these will be going while others will be 
returning ; and that alternately in turn indefinitely. Moreover the parts going and by so 
going being condensed, are the pulses on account of their progressive motion, by which 
they strike obstacles, and therefore the pulses will be propagated successively from any 
vibrating body along a line ; and thus at around equal distances in turn, on account of  the 
equal intervals of time, in which the body by vibrating excites the individual pulses. And 
whenever the vibrations of the body may go and return along a certain determined 
direction, and the pulses thence propagated by the medium still themselves expand 
laterally, by the preceding proposition; and they will be propagated in both directions 
from that vibrating body as from a common centre, along almost spherical and concentric 
surfaces. We have some sort of example of this from waves, which if they are excited by a 
waving finger, not only do they go to and fro in the direction of the motion of the finger, 
but, in the manner of concentric circles, they will surround the finger at once and be 
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propagated in all directions. For the weight of the waves takes the place of the elastic 
force.  
 
 Case 2. For if the medium shall not be elastic : because the parts of this are unable to 
be compressed to condense from the vibrations of the shaking parts of the body, the 
motion will be propagated at once to the parts where the medium can go most easily, that 
is, to the parts that the shaking body otherwise may leave empty behind it. It is likewise 
the case with a body projected in some medium. A medium by making way for 
projectiles, does not recede indefinitely, but by going in a circle, it will go to the space 
which the body has left behind. Therefore as often as a vibrating body will go into some 
part, the medium by giving way goes by a circle into the parts that the body has 
abandoned ; and as often as the body is returned to the first place, the medium will be 
repelled from there and will return to its first place. And in whatever manner the vibrating 
body may not be rigid, but flexible in some manner; if yet it may have a given magnitude 
that remains, because the medium is unable to become disturbed by the vibrations,  in 
what other way can it affect the medium, so that the medium, by receding from the parts 
where it is pressed, will always go round to the parts which may yield to the same.  
Q. E. D. 
 
 Corol. Therefore people must be wandering in their minds who believe that the 
disturbance of the parts of a flame be conducive to a pressure propagating along right 
lines, through the surrounding medium. A pressure of this kind  cannot be derived from 
the agitation of the flame alone, but from the expansion of the whole medium. 
 

 
PROPOSITION 44.                             THEOREM 35. 
 
If water alternately rises and falls in turn in [uniform] pipes with upright legs KL and MN 
; and moreover, if a pendulum is made of which the length between the point of 
suspension V and the centre of oscillation P is equal to half the length of the water in the 
pipe : then I say that the water rises and falls in time with the oscillations of the 
pendulum.  
 

 
I measure the length of the water along the axes of the pipe and legs, with the same 

equal height of these ; and I ignore the resistance of the water which arises from the 
friction with the pipes. AB and CD designate the mean height of the water in both legs ; 
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and when the water in leg KL has risen to the height EF, the water in leg MN has fallen to 
the height GH. Also, let P be the body of the pendulum, VP the thread, V the point of 
suspension, RPQS is the cycloid that the pendulum describes, of which P is the lowest 
point, and the arc PQ is equal to the height AE. The force, by which the motion of the 
water is either accelerated or decelerated in turn, is the excess of the weight of water in 
the one leg above the weight in the other; thus, when the water in KL has risen to EF, and 
in the other leg fallen to GH, that force is twice the weight of water EABF, and therefore 
is to the total weight of water as AE is to VP or PQ or PR.  Also, the force by which the 
weight P at some place Q is accelerated or decelerated in the cycloid (from the corol. to 
prop 51.) is to the total force as this distance PQ from the lowest place P, is to the length 
of the cycloid PR. Whereby the equal intervals of the water and the pendulum AE and PQ 
describing the motive forces are as the weights to be moved; and thus, if the water and the 
pendulum are initially at rest, these forces will move the same equally in the same time, 
and are effective in order that  the reciprocal motions can go and return at the same time.  
Q. E. D.  

Corollary 1. Therefore all the oscillations for the rise and fall of the water in turn are 
isochronous, whether they are made stronger or weaker [i. e. the period of oscillation is 
independent of the amplitude.] 

Corollary 2. If the whole length of the water in the pipes is 
9
16 Parisian feet, then the 

water descends in a time of one second, and rises in the time of one second, and thus 
henceforth in alternate turns indefinitely. Likewise,  the pendulum of length 

18
13 is 

oscillating with a time of one second. 
Corollary 3. Moreover with the length of the water increased or diminished, the time 

of reciprocation is increased or diminished in the ratio of the square root of the length.  
 
[The Manometer as a S. H. M. Oscillator : In modern terms, if A is the cross-sectional 

area of the pipe, l the length of water in the pipe, and  the density of the water, then if x 
is the extension AE of one arm of the manometer from the equilibrium level AB, and - x 
or DH is the depression of the other level, or vice versa,  then the mass of water 
accelerated is Al, while the unbalanced force is 2Agx; hence, from Newton's Second 
Law of motion,  

xxg/l-x or AgxxAl 2)2(,2    . Hence,  the period of the oscillation is given by 

.2 2/
g

lT   In the case where the period of the whole oscillation is 2 seconds, note that 

Newton has a habit of referring to half periods - in his example 1 second - then the length 
of water is approximately 2 m. 
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The Inverted Cycloidal Pendulum as a S. H. M. Oscillator : 
 


P

Q

V

s

4a

We will save some time by merely quoting the formula for the length of arc s of an 
inverted cycloid, which is of 
course a rectifiable curve - and 
hence was part of its fascination 
for early workers - in terms of 
the tangent angle   at some 
point  Q: ,sin4 as  where 4a is 
the length of the thread of the 
equivalent simple pendulum VP ( 
the cycloid can be considered as 
generated by a point on a circle 

of radius a rolling along a horizontal line at a vertical distance 2a above the x- axis.)  An 
equivalent S. H. M. is a small bead of mass m to slide on a wire in the shape of the 
inverted cycloid without friction. Thus, the unbalanced force on the bead due to gravity 
acting down the slope at Q is ,sinmg and we can set .sinmgvm   That is, 

.sin
42

2
sg

a
g

dt
sd     Hence, setting 4a = l/2 insures equality of the periods, and both 

motions are independent of the amplitude, though Newton has set these or the half periods 

equal in his experiment as this was presumably more expedient :  ,1
4

2/


a

l

T

T

pendulum

manometer on 

setting 4a = l/2.  Note that one does not have to contend with the factors 2 and g, on 
taking a ratio in this way, and the whole or half periods can be used with impunity.  
 

PROPOSITION XLIV.  THEOREMA XXXVI. 
 

The velocity of waves varies as the square root of the wavelength. 
  
This theorem follows from the construction of the following proposition. 
 

PROPOSITION XLVI.   PROBLEM X. 
 

To find the speed of waves. 
A pendulum is set up, the length of which between the point of suspension and the 

centre of oscillation, is equal to the length of the waves : and during the time the 

pendulum performs single oscillations, by advancing the same amount, the  waves 
progress to almost their own width.  

A

B

C

D

E

F  



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VIII. 
Translated and Annotated by Ian Bruce.                                        Page 679 

The transverse width of the waves measured I call the length of the waves, which lies 
between either the deepest valleys or the highest peaks. ABCDEF designates the surface 
of the still water, with successive waves rising and falling; A, C, E, &c. are the peaks of 
the waves, & B, D, F, &c. are the intervening valleys. And since the motion of the waves 
is by the water successively ascending and descending,  thus the parts A, C, E, &c. of this 
surface which now are the highest, soon will become the lowest; & the driving force of 
the motion, by which the highest parts will descend & the lowest parts ascend, is the 
weight of the elevated water ; this alternate rising and falling is analogous to the 
reciprocal motion of the water in the pipes, and the same laws governing the time will be 
observed : & therefore (by prop. XLIV) if the  distances between the peaks of the waves 
A, C, E & and the troughs B, D, F are equal to twice the length of the pendulum, then  the 
highest parts A, C, E,  in the time of one oscillation avoid the troughs, & in the time of 
another oscillation have ascended again. [Recall that the manometer always has a peak 
and a trough for the maximum displacements, and therefore corresponds to half a 
wavelength.] Therefore between the passage of individual waves there will be the time of 
two oscillations; that is, the wave describes its own width in the time that pendulum 
oscillates twice ; but the pendulum that oscillates in time with the wave is four times as 
long, and thus oscillates once, equal in time with the length of the waves.  Q.E.I. 

Corol. 1. Therefore waves which are 
18
13 feet long, progress a distance equal to their 

own width in a time of one second (around 1 m/s); and thus in a time of one minute from 
the start run through a distance of 

3
1183 feet, & in the space of an hour 11000 ft 

approximately.   
Corol. 2. And the speed of the long waves is increased or diminished in the ratio of the 

square root of the width.  
From the hypothesis, thus waves are considered to have part or the water either 

ascending straight up or descending straight down (as in the manometer) ; but the up and 
down motion of the water shall more truly be described in a circle, and likewise I 
emphasize that the time derived from this proposition can only be defined approximately.   

 
[ Notes :  There may be some confusion as to what Newton means by the time of an 

oscillation  - the word itself just means a swing, of course. However, in the experiment the 
pendulum bob is released as a peak of the wave train passes, and reaches the position of 
the peak of the passing wave again at the end of its forward swing, which occupies at this 
instant the position of the preceding peak at the start of the pendulum's motion. Newton 
asserts that the pendulum which achieves this synchronous behavior has the same length 
as the distance between the peaks. The previous experiment with the manometer tube, 
which is a sort of standing wave generator of water waves with a 'free end', has a wave or 
pulse that travels a distance set to some half wavelength by the length l (for small 
amplitudes) in the time the pendulum completes its forward motion, as the water in the 
legs interchange peaks and troughs.  Now, by analyzing the s. h. m. of the pendulum and 
the manometer, we find the periods are equal when 4a = l/2, or a half-wavelength l 
corresponds to a pendulum twice as long as that used at present, and the period needed for 
a whole wavelength is thus four times as long as the original pendulum. The original 
pendulum is l/2 or /4, so that the reasoning is correct : a pendulum of length  is required 
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to be synchronous with the waves.   However, the period of such a simple pendulum is 2 
seconds, and hence we conclude that Newton is talking about single swings when he 
considers oscillations of 1 second.  

As mentioned in Cor. 2, there is augmentation or diminution of the waves as they 
proceed, as they do not all travel with the same speed, and dispersion is taking place. 
Hence, it is more appropriate to consider the group velocity 
of the  pulses of waves, rather than the phase velocity - 
which cannot be measured in any case - and the group 
velocity is responsible for the transfer of energy down the 
channel. Thus, from his experimental measurements, 
Newton had observed that the length of the pendulum  

executed its forward swing in a time T given by 
g
 , for 

which smgTv /1~/ 1   as  ~ 1m and g ~10m/s2. This 

quantity we would identify as the group velocity . We 
cannot read much more into Newton's experiments, as he 
has not furnished details of the physical dimensions of the 
channel and pipes apart from the total length of the axis, 
factors upon which the rate of transmission depends. 
Nevertheless, the main ideas are essentially correct, and at 
the time, he was a man in a hurry, and he had sown the 
seeds for further development.] 
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PROP. XLVII. THEOR. XXXVII. 

 
For pulses propagating through the fluid, the individual 
particles of the fluid are oscillating in the shortest 
reciprocal motion, always accelerating and decelerating 
according to the law of the pendulum.   
 
 Let AB, BC, and CD, &c. designate the positions of 
equally spaced successive pulses [i. e. such as progressive 

sound waves of a given 
wavelength  of AB.] ; 
the motion of the pulses 
is propagated from A 
towards B along a line 
ABC in the region  ; E, F, G are three physical points 
of the quiescent medium on the line AC, situated at 
equal distances from each other; Ee, Ff, Gg are equal 
lengths in turn [of the maximum amplitudes] through 
which in short time intervals, by the individual 
reciprocal motions, these points E, F, and G move to 
and fro ; , ,   are some intermediate locations of the 
same points in the medium;  EF and FG are small 
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physical sections or incremental parts of the medium placed between these points, & 
which in succession are translated into the positions  and ,  & then ef and fg. The line 
PS is drawn equal to the line Ee [in the lower diagram]. PS is bisected in O, and with 
centre O & length OP, a small circle SIPi is described. In this circle, the whole 
circumference represents the time of one complete vibration, together with its 
proportional intermediate parts. Thus,  in order that some time such as PH or PHSh can be 
compared with the time of the complete oscillation, if a perpendicular HL or hl is dropped 
on PS, then E is taken to be equal PL or Pl, at this instant the physical point E is to be 
found at  in the moving fluid.  According to the law of the pendulum,  any point E in the 
fluid moves from the equilibrium value E to the maximum displacement e through , & 
returns to E again through , where each vibration has the same degrees of acceleration 
and retardation [at intermediate points],  so that the oscillation is completed in step with 
the oscillation of a pendulum [i.e. any particle such as E executes s. h. m. from its 
equilibrium point in the fluid; the actual words in Newton's explanation have been 
augmented occasionally to reinforce the reader's understanding, as Latin is a little skimpy 
at times]. This must be the case since the individual physical points of the medium are 
disturbed in this way by such a motion [as in the analogous case of the water waves]. 
Hence we establish a medium in which such a motion is produced in some manner, and 
we observe what may then follow. On the circumference PHSh, the equal arcs HI and IK 
or hi and ik [of a traveling wave or pulse] are taken in the same ratio to the total 
circumference as the equal lines EF and FG have to the total length of the pulse interval 
BC, and the perpendiculars IM and KN or im and kn can be dropped, as the points E, F 
and G are disturbed in turn by the same motion, & their whole vibrations meanwhile are 
carried out from the sum of the oscillations as the pulse is transferred from B to C. Thus, 
if PH or PHSh is the time of the motion starting from the initial point E, then similarly PI 
or PHSi is the time of the motion starting from the initial point F, and again PK or PHSk 
is the time of the motion starting from the initial point G [An  extended pulse passed 
through the increments E, F, and G in turn, then the angles are in proportion to the times 
as the are length s = OP   = OP  t , where  is the angular frequency]. Hence, E, 
F and G will be respectively equal to the lengths PL, PM and PN themselves in the 
movement away from equilibrium position , or to Pl, Pm and Pn themselves in the return. 
From which  or EG + G - E leads to EG - LN being equal to the incremental pulse 
width in the movement away from equilibrium.  But   is the width or the expansion 
[contraction really] of the part of the medium EG when it is transferred to the location  ; 
& therefore the expansion of that part in the outward motion is to the mean expansion as 
EG - LN is to EG ; and moreover in the return journey, the ratio is as EG + ln to EG.   
[EG - LN  is the contracted length  ; and thus (EG - LN)/EG is 1 - V/V, as Newton 
goes on to demonstrate. Again, this is needed to make the outgoing contraction into an in 
going expansion on the return leg of the journey, taken to be (EG + ln)/EG or 1 + V/V]  

Whereby the ratio LN to KH shall be as IM to the radius OP [This involves 
differentiation : see following note.], & KH to EG as the circumference PHShP to BC, i. 
e., if V is put in place for the radius of another circle with the circumference set equal to 
the pulse interval BC, then the ratio becomes as [the amplitude] OP to [the wavelength  
or] V ; & from the equality LN to EG as IM to V : the expansion of the part EG or of the 
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physical point F at the location  to the mean or quiescent expansion, as that part has in 
its first position EG, as V - IM to V in going, and as V + im to V on returning. From which 
the elastic force of the point F at the position   is to the mean elastic force of this at the 
position EG, as 

IMV 
1 to 

V
1  in going,  and on returning truly as 

imV 
1 ad 

V
1 . And by the 

same argument the elastic forces of the physical points E and G on going, are in the ratios 

V
111   toand

KNVHLV  ; and the difference of the forces to the mean or quiescent elastic force 

of the medium, as 
V
1  to

KNHLKNVHLVVV
KNHL


 . That is, as 

V
1  to

VV
KNHL , or as HL - KN to V,  if  

(on account of the narrow limits of the vibrations) we may suppose HL and KN  to be 
indefinitely smaller quantities than V. Whereby when the quantity V is given, the 
difference of the forces is as HL - KN, that is as OM  (on account of the proportionals HL 
- KN to HK, & OM to OI or OP, with HK & OP given) ; i.e. if  Ff  is bisected in , as . 
And by the same argument the difference of the elastic forces of the physical points  & , 
in the return of the small physical line  is as . But that difference (i.e, the excess of 
the elastic force at the point  over the elastic force at point ) is the force of the medium 
which is introduced for the small physical line   to be accelerated in returning and 
retarded in going; & therefore the acceleration force on the small physical line , is as its 
distance from the mean position of the vibrations . Hence the time for the straight line 
motion PI is explained (by prop. XXXVIII. Book. I) ; & the part   of the medium is 
moved according to the prescribed law, that is, by the law for the oscillations of a 
pendulum : and the reasoning is the same for all the line increments from which the whole 
medium is composed. Q. E.D. 

Corol. Hence it is apparent that the number of pulses propagating is the same as the 
number of vibrations of the trembling body, without change in their number in 
progressing. For the incremental line in the medium , when first to its original situation 
returns remains at rest, and henceforth will not move, except either by the impulse of a 
trembling or oscillating body, or from the impulse of a pulse which is propagating from 
such a body, when it sets off a new movement.  The medium will therefore be quiescent 
when the starting pulses from the vibrating body cease to be propagated.  

 
 

Notes on Prop. 48 :  

H
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S

P and S are the positions where the amplitude and
values, and the condensation is zero; as the phase angle increases,  the condensation
grows to a maximum at 900, while the amplitude and pressure gradient go to zero,

and subsequently these quantities revert again at S to their P conditions.  The return
stroke sees the dilatation go through the same sequence.

The left-hand sketches show positive density or pressure changes for the outgoing
air, while the right-hand ones show negative changes for the returning air. The

projection of HIK on to the PS axis shows the passage of the condensation along PS,
and the returning dilatation, which are a maximum along the diameter at I and i.
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We enlarge on 
Newton's ideas a 
little from a modern 
perspective, but 
relate to his 
derivation as much 
as possible. First, we 
need to explain his 
diagram 
accompanying the 
trajectory diagram 
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for a ray of sound in one dimension, based on his ideas. According to the diagram 
opposite,  the points P and S represent the positions of the maximum amplitude  of the 
s.h.m. associated with the point F.  In Newton's words, the time for the motion is spread 
around the circumference of the circle; in the course of the motion, the matter in the 
incremental length EFG is physically moved as a whole to some intermediate distance F 
relative to the reference frame of still air, and a wave of  compression passes through the 
element to give the incremental length  , finally to come to rest again momentarily at f 
with no compression. The pulse is considered to move from the positive displacement  
of the s. h. m. to the negative displacement in the diagram.  Thus, R = OP =  rotates 
clockwise.  The times of arrival at e, f, and g can also be recorded, as are the times of the 
return of the air to its instantaneous position of maximum displacement : the matter that 
left first returns first, so H  h, etc, in the intermediate section. The actual rest position of 
the air in the absence of  waves is at ,  while P and S are the points of instantaneous rest 
for a continuous wave.  Newton considers the projection of the maximum compression 
HIK on to the line PS as the contraction or expansion of the element at the same point of 
its motion to and fro : thus, there is no compression or condensation at P and S, while the 
maximum compression/expansion occurs at O, and a wave of compression/ expansion of 
some lesser amount but in the same ratio passes along the element PS at other times. In 
addition, by taking ratios at the same out and in positions on the cycle, he is able to 
proceed without using the bulk modulus, that we now consider as part of the modern 
theory. 

Modern ideas: Initially, we consider the boundary conditions placed on the elemental 
oscillators.  Each incremental length acts as an s.h.m. oscillator, each driven by or coupled 
to the one before, and driving the next one in a chain of oscillators, which we assume to 
be in one dimension. Each oscillator has the same amplitude , and all vibrate with the 
same angular frequency  as the wave, which we assume to be continuous and of a single 
frequency; also, each increment has an in-built constant phase factor (x) depending on its 
location: when t = 0, these phases construct a harmonic wave between the crests of the 
wavelength .  Thus, the increment associated with the point E has two components of 
phase that add/subtract to give the total phase :  There is the time related phase of the 
form (2/T).t = t, and for a given quiescent position, there is the constant distance 
related phase angle for the oscillator,  that we can call e. g.  (E) = (2/).BE = k.BE.  The 
other equally separated quiescent oscillator points F and G have similar distance phases 
(F) = (2/).BF and (G) = (2/).BG associated with them. The passage of the wave is 
the transmission of regions of constant phase from oscillator to oscillator. This region of 
constant phase is driven forwards in the mathematical model by an argument of the form 
kx - t = constant, or t = kx, resulting in a phase velocity v =  x/t =  /k. There are 
some details of Newton's model that are inconsistent with the modern theory, even at this 
kinematic level. We have noted already that he describes the air as being at rest at P and 
S; although this is true, it is not in its quiescent condition as there is a maximum pressure 
difference across the element here in accordance with s. h. m. principles, and the air 
element is actually at its true length (i. e. in the absence of the sound wave)when it passes 
the origin of the oscillation at its maximum speed at the half-way point , when there is 
no pressure difference across the ends of the element. Recall that for s. h. m. the 
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acceleration is proportional to the negative displacement : hence, there is a maximum 
acceleration and force at the maximum displacement, and zero acceleration and force at 
zero displacement. The model succeeds in producing the s. h. m. equation with the correct 
 and wave speed /k.  

d



)dx(dx x
η



Px dxx
P

x
xP

dx




Before leaving this narrative, we shall briefly give a modern derivation of the wave 
equation [following Pain, The Physics of Vibrations and Waves, Ch. 5 (Wiley)]. The 

motion of an undisturbed infinitesimal element 
of air of original thickness x and unit area 
under the influence of a sound wave in one 
dimension is considered. The element as a 
whole is displaced a distance , and expanded 
by an amount (/x)dx, as shown in the 
diagram :   

The increase in the volume is dx
x

  , while the 

change in the volume per unit volume is 
x

  or 

the dilatation dv/v. The quantity d/ inverse to the dilitation is known as the 
condensation. Meanwhile, the net force exerted on the element to the right in the 

compression or expansion due to the pressure gradient is dx.
x
Px

 ; hence, by Newton's 

Second Law, 2

2

0
dx.ρ dx .

tx
Px





   . There is now a need to relate the pressure gradient to the 

changes in the volume : this is usually done by means of the bulk B modulus for the 
substance. The change in the volume per unit volume is proportional to the impressed 
pressure,  
or dp = - B. dv/v, where B is the constant of proportionality, and the negative sign is 
necessary as an increase in pressure results in a decrease in the dilatation, or change in 

volume per unit volume. In the present case, dv/v = 
x

 , and hence 2

2

.
xx

P Bx





   . From 

which it follows that 2

2

02

2

ρ  
tx

B




    and 2

2

2

2

  2

tx
c





   , where c2 = B/0. This is the 

conventional wave equation for sound waves in a gas: Newton does not derive this 
equaton; instead, he derives the equation for the s. h. m. of an elemental section of air, 

resulting in 2

2

  222

t
ck


   for a sinusoidal motion. Now, compression or expansion 

of a gas results in heating or cooling; Newton was unaware of the adiabatic nature of 
sound waves, and used essentially the isothemal form of B or P/0, rather than the correst 
adiabatic form P/0 ;  thus his value for c was out by  , where  is the ratio of the 
specific heats of the gas at constant pressure to constant volume, and depends on the 
nature of the gas - internal degrees of freedom, etc. It would take us too far away from 
Newton's work to consider this matter further, though of course it is developed in books 
on thermodynamics.  

 
There are inevitably problems associated with understanding what the words actually 

mean when comparing Newton's model with the actual model for sound waves that we 
have briefly outlined above; thus, the word 'expansion' can mean either the volume or the 
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change in volume - the various translations suffer from this ambiguity, and one must 
proceed with caution. We are not in the business of correcting Newton's model, which 
would be a great travesty as well as a meaningless exercise, but are merely trying to 
understand what his thoughts might have been as he developed his ideas.  

So we return to Newton's argument:  
Subsequently, to make further progress with the Proposition, use has to be made of 
calculus. Initially, two useful ratios are evaluated. Pressure - modified volumes 
represented by the lengths OL, OM, ON are related to V/V, the dilatation; and the 
angular phase of the rotating radius OP of the s. h. m. is related to the linear phase of the 
wave.   
Thus,  OL, OM, and ON are given by : cos(t +t), cost , and cos(t - t),  leading 
to  
 
LN/KH =  [cos(t +t) -cos(t - t)]/2t  -sint,  the limiting value of the ratio;  

or equivalently,   ; 0)  as ,sin(
2.

)cos()cos(





 IM

KH

NLorLN



 Δ

Δ

ΔΔ  

[This first differentiation gives the rate of change of  LN or V, the decrease in the 
volume, and LN/EG = V/V, the fractional change in the volume.] 
 

and 
)2/(.
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

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V
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BCcircumwithcircle

PHSbPcircum

BC

PHSbPcircum

EG

KH  relates the phases. 

 
[Thus, In the time the line OP turns through a certain small angle, the pulse advances a 
certain amount along PS. The original circle with radius OP describes the time variation 
or the phase of the oscillation at some fixed point,  while the second circle with radius Vr 

= /2, rather than V that we use for the volume for a little while EG describes the 
displacement variation of the phase of the oscillation at some fixed time. Hence, 





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2
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2
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2. ΔΔ


EG

V
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r
 : thus, a path difference of EG corresponds to a 

phase difference of 2.  as required by the coupled oscillators discussed above.  
Or, v = /k = (2/t)/(2/) = (2/t).Vr; hence EG = v.t = 2. . Vr =  arc 
HK.Vr/OP]   
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follows that the excursion compression of EG at   to the quiescent volume at F is in the 

ratio 
r

r

V
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Δ , while the return expansion ratio is : 

r
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EG
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


 ln
1

lnΔ .  

[The common reader may wish to refer to the work by S. Chandrasekhar at this point 
(Newton's Principia for the Common Reader (1995); Oxford. p. 586) : this author has not 
attempted, as we have attempted, to actually link up Newton's derivation with modern 
theory, but has presented this theory from a Newton - friendly point of view.  The other 
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authors of interest, Cohen & Whitman: Newton The Principia. (California), and Cajori  : 
Newton's Principia (U. Cal.) have not given any explanation of Newton's theory of sound, 
and have only presented an English version of the Latin text, with all its vagaries. Cajori 
in his translation, even goes to the extent of re-arranging the labels on the phase diagram, 
thus changing something which is correct into something which is incorrect !] 

Newton now sets out to construct what is essentially the second order differential 
equation describing the s. h. m. of an elemental volume of air in the presence of a sound 
wave of constant frequency.   
Now, if the elastic force varies inversely as the expansion or volume, then 

IMV

V

Fatforceelquiescent

atforceel


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.

.  , essentially Boyle's Law, where we revert to Newton's V = 

/2 rather than Vr. On the return, 
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V
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.  . A similar argument applies for 

the ratio of the elastic forces (or pressures) acting on the volume increments E and G : 
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.   respectively. It follows that the difference 

of these elastic forces to the mean elastic force, which is the same at E, F, and G,  is given 
by : 
 

V

KNHL

V

KNHLV

KNVHLV

KNHLV

KNV

V

HLV

V

Fatforceelquiescent

atforceelatforceel 















2

)(
~

))((

)(

.

..  . 

Note that second order quantities are ignored, as they vanish in the limit. 
Now, 
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Hence, calling P the pressure or the quiescent elastic force at F, and canceling the x 
which is synonymous with , while setting  = x, we find that 

s.h.m.for  required as ,.
)/2.(

2
2

2

22

2
xx

k

v
x

P

dt

xd 


 In which case, .
Pv   Newton did 

not pursue his differential equation to this logical conclusion for some reason, and was 
content to note that the equation defined the same kind of motion as the cycloidal 
pendulum, although he immediately proceeds to use the above formula for the speed. His 
final proposition is to present an extreme case involving the s. h. m. of a cycloidal 
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pendulum to corroborate his formula ; one gets the impression he was over-impressed 
with this particular kind of s. h. m., rather than seeing it rather as just another example of 
this kind of motion, and that he was not entirely convinced with his derivation of this 
proposition.  
 

PROPOSITION XLVIII.               THEOREM XXXVIII. 
 

The speeds of pulses propagating in an elastic fluid are in the ratio composed from the 
direct proportion of the square root of the elastic force or pressure and the inverse 
proportion of the square root of the density ;  but only if the same elastic force is 
supposed for the same proportional condensation [ i.e. the gases obey Boyle's Law].   
 
Case. 1. [ Newton's explanation of why pulses or waves of differing intensities travel at 
the same speed in a medium.]  

If the media are homogeneous, & the distances between the pulses in these media are 
equal amongst themselves,  but the motion [i. e. the sound] is more intense in one medium 
than in the other,  then the contractions and expansions of the analogous parts are as the 
same motions  [i.e. one has a larger amplitude than the other]. The proportion of these 
intensities cannot be measured with accuracy.  However,  unless the contractions and 
dilatations are of greatly differing intensities, there will be no sensible error, and thus 
these can be used [for the measurement of physical quantities] with accuracy. But the 
elastic motive forces are in the ratio of the contractions & dilations ; &  the velocities of 
the equal parts likewise generated are in the ratio of the forces [as the forces act for the 
same lengths of time].  Hence equal & corresponding parts of corresponding pulses are 
coming and going by contracting and dilating in their proportional intervals, with 
velocities which are in the ratio as the intervals, likewise are carried out : & therefore 
pulses, which in the time of one oscillation are made to progress a distance of one width, 
& always follow into the place of the nearest proceeding pulse, on account of the equality 
of the distances, with equal velocity can proceed in either medium.  
[We note that the amplitude cancels in the derivation presented in the previous theorem, 
but see notes below.] 

 
Case 2. [Newton's explanation of why all wavelengths travel at the same speed in the 
same medium.] 

 But if the distances between the pulses or the widths are greater in one medium than 
the other, then we can put corresponding parts in place , and the proportional widths of 
the individual pulses that come and go can be described [i.e. we can compare the ratio of 
the wavelengths or pulse widths]: and the contractions and dilations of [each of] these are 
equal. Thus if the media are homogeneous, then these elastic motive forces by which the 
reciprocating motion is driven are also equal [i.e. the amplitudes of the pressure 
fluctuations are the same]. But the masses to be moved by these forces are in the same 
ratio as the widths of the pulses; & the corresponding wavelengths of the pulses as they 
come and go are in the same ratio. But the time of one complete reciprocal motion is 
composed from the ratio of the square root of the mass & the square root of the interval, 
and thus as the interval. [Thus, the oscillation time T is proportional to the width of the 



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book II Section VIII. 
Translated and Annotated by Ian Bruce.                                        Page 688 

pulses of wavelength , or   T or 1/f] . But pulses perform their reciprocal motion or 
s.h.m in a time equal to the passing of one width, that is, the space and the time intervals 
are proportionals that advance in step, and hence the velocities are equal. [See notes 
below.] 

 
Case 3. [The ratio of the speeds in differing media.] 

Therefore all the pulses travel at the same speed in media with the same density and 
elastic forces. But if either the density or the elastic force of the medium is increased, 
since the motive force is increased in the ratio of the elastic force, & the matter to be 
moved is increased in the ratio of the density ; the time, by which the same motions are 
driven from the previous situation, will be augmented in the ratio of the square root of  the 
density, and diminished in the square root ratio of the elastic force. And therefore the 
velocity of the pulses will be in the ratio composed from the ratio of the inverse of the 
square root of the density  &  directly in the ratio of the square root of the elastic force.  
Q.E.D. 

This proposition is more apparent from the following construction.   
 
Notes on Prop. 48 :  
Case 1. We are to imagine two media with the same pressure and density, and waves of 
some wavelength travel at the same speed in each medium. However, pulses with 
different intensities in the two media are considered.  We try to understand why the 
speeds of the pulses are equal in the two media and independent of the amplitude of the 
oscillations, using s.h.m. Using the pendulum analogy of s.h.m,  the ratio of the elastic 
motive forces on corresponding elements is the same as the ratio of the amplitudes, and 
since these forces act for the same lengths of time on the corresponding elements, during 
which time the pulses move forwards a distance equal to the inter-pulse displacement, 
then the velocity of propagation is the same. [However, the ratio of the maximum 
velocities of the elements is proportional to the ratio of the maximum displacements, as 
there is a greater pressure associated with the more intense pulses.  There is hence a 
distinction to be drawn between the phase velocity and the maximum speed associated 
with the s.h.m.]  
Case 2. We are to imagine two media with the same pressure and density, and thus at least 
waves of one wavelength travel at the same speed in each medium. However, pulses with 
different widths or wavelengths in the two media are considered, each wavelength of 
constant width in its medium.  We try to understand why the speeds of the pulses are 
nevertheless equal in the two media using s.h.m ideas. The s.h.m motion of the small 
incremental widths have the same amplitude in each case, otherwise the waves will have 
differing amplitudes and intensities. However, the longer wavelength requires more of the 
elementary oscillators, and the pressure differences across each of the incremental widths 
is thus less for the longer wavelength, as the total pressure fluctuation is the same for both 
wavelengths,  which supplies the motive force on the element. Newton, however, does not 
consider the individual elements as such at this stage, but focuses his attention on the ratio 
of the whole condensed or rarefied pulses at some point, and returns to his pendulum idea 
of s.h.m. In this case, he considers the period T of an s.h.m to depend on the mass m to be 
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moved, and the force constant k to effect the motion, for which 
k
mT 2 . By simply 

adding the number of elementary incremental oscillators, the masses to be moved for the 

long and short wavelengths L and S are in the ratio 
L

S

L

S
m
m


 . Now, regarding the force 

constant k, or the spring constant of the air, it can be taken as proportional to the excess 

pressure p, and inversely as the wavelength ; or, 
pk  . Hence, the periods for the short 

and the long waves are as : .
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T







   Or, the frequencies vary 

inversely as the ratio of the wavelengths, as required.  
 
 Case 3. The speed of propagation v of a pulse in a medium with elastic force or pressure 

p and density  is given by 
pv  , to be finally proved in the next Proposition. Thus, if 

the density is increased from 1 to 2, for the same pressure, then the associated speeds 

are in the ratio 
1

2

2

1



v
v ; while if the pressure is increased from p1 to p2, for the same 

density, then 
2

1

2

1
p
p

v
v  . If both pressure and density increase in the same ratio, then there 

is no change in the speed of the pulses. In general, if both pressure and density are 
allowed to change, but in different ratios, (as for example, for media such as ideal gases at 

different temperatures), then 1 1 1 1

2 2 2 2

v p / p
v p / p . 2

1
, 

   which is Newton's comment.] 

 
PROPOSITION XLIX.            PROBLEM XI. 

 
To find the velocity of pulses for a given density and elastic force of medium.  
 

We can imagine the medium to be compressed  by the incumbent weight of the air in 
the manner of our air ; and let A be the height of the homogeneous medium which is equal 
to the incumbent weight [from the quiescent point], and the density of which is the same 
as that of the compressed medium, in which the pulses are propagated. Moreover, a 
pendulum is considered to be set up, the length of which is A between the point of 
suspension and the centre of oscillation [thus, the radius of the generating circle of the 
cycloid is A/2, and the whole arc length is 2A.] : and in the time that the pendulum 
executes a complete to and fro oscillation, a pulse will travel a distance equal to the 
circumference of the circle described by the radius A. [Referring back to Prop. 47, and to 
the phase diagram; note that PS = /2.] 

For in agreement with what has been stated in proposition XLVII, if some physically 
narrow region EF is pushed to the limits of the oscillatory motion which are located at P 
and S, with the vibrations within the space PS to be described by the single element, [thus, 
the motion of the single increment occupies the whole amplitude or is responsible for the 
entire s. h. m.] then the elastic force [or pressure] is itself equal to the weight of the air, 
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and  it will perform these individual vibrations in the same time that the oscillations can 
be performed on the cycloid,  the whole perimeter of which is equal to the length PS [ = 
2A]: since equal forces can push small bodies [of equal mass] through equal distance in 
the same time.  Whereby as the times of oscillations are in the square root ratio of the 
lengths of pendulums, and the length of the pendulum is equal to half of the whole arc of 
the cycloid ; the time of one vibration in the air to the time of the oscillation of the 
pendulum, the length of which is A, is in the ratio of the square root of the length 

2
1 PS (or 

PO) to the length  A.   
But the elastic force, by which the incremental length EG is forced, present in its 

extreme places P and S, is (as in the demonstration of proposition XLVII) to the total 
force of this as HL - KN to V,  

E

GP

O

S

A/2

A

A/2

P S

O

that is (as the point K thus falls in P) as HK to V: and that total force, that is the 
incumbent weight by which the incremental line EG is compressed, is to the weight of the 
elemental line as the altitude A for the weight of the incumbent air to the incremental line 
of length EG; and thus from the equality, the force by which the incremental line EG is 
pushed in its locations P and S,  is to the weight of the incremental line as HK  A to V  
EG, or as PO  A to VV, for HK is to EG as PO to V. Whereby with the times, for which 
equal bodies are pushed through equal distances, are reciprocally in the square root ratio 
of the forces [Essentially at2 is constant, or Ft2/m is constant, giving t  1/F.], the time of 
one vibration will be, from the force exerted by the pressure, to the time of the vibration, 
for the force due to the weight [in the pendulum case], in the square root ratio VV to PO  
A, and thus to the time of the oscillation of the pendulum of which the length is A in the 
square root ratio VV to PO  A and the square root ratio PO to A jointly; that is, in the 
ratio all together as V to A. [The starting point P or S of the motion is chosen; there is no 
difference for other points in the motion as the displacement cancels; see the note.] But in 
the time of one vibration composed from the to and fro motion, the pulse by proceeding 
makes its own length BC [for  = 2  PS. Therefore the time, in which the pulse travels 
through the distance BC, is to the time of one oscillation composed from the to and fro 
motion of the  pendulum, as V to A, that is, as BC to the circumference of the circle of 

which the radius is A. 
Moreover the time, in 
which the pulse travels 
through the distance 
BC, is to the time by 
which it travels the 
length of this equal 
circumference, in the 
same ratio;  and thus for 
the time of such an 
oscillation the pulse 
travels a distance equal 

to the circumference of this circle.  Q.E.D. 
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Notes on Proposition 49 :  
Newton initially considers the height of an atmosphere of uniform density that results 

in the pressure observed at ground level. We note in passing that this height h is related to 
the height k of mercury in a barometer according to the elementary rule , or kh Hgair  

kh airHg )/(  , or the ratio of the specific gravity of mercury to air times by the length of 

the mercury column, as you would expect if you is not too concerned about finer details. 
Newton calls this height A.  

Let us set up the oscillating atmosphere envisaged : 
The height of the homogeneous atmosphere is A, and O  is taken as the half-way point. A 
relatively small segment of air of quiescent length EG is part of the oscillating air mass of 
amplitude OS = OP. The situation at some intermediate stage ascending is shown at on 
the left-hand side of the diagram L. The explanation relies on Prop. 47 :   
 

V

KNHL

pressurequiescent

EGelementonforceunbalanced

Fatforceelquiescent

atforceelatforceel 



.

..  . In the present case, the 

element is at an extreme position, in which case KN is zero, and the length HL is 

approximately equal to the arc length HK; hence, 
V

HK

pressurequiescent

EGelementonforceUnbalanced
 . 

Also, the ratio  

.
EG

A
 




EGg

gA

EGlineofweight

PatEGonpressureorforceincumbent


  Hence, 

EG

A

V

HK

EGofweight

pressurequiescent

pressurequiescent

EGelementonforceUnbalanced
 . Again, from  Prop.47 :   

,  ..
)2/(

.
.

).(
- x. 

22

2



 ΩΩΔΔΔ const

Fatforceelquiescent
xx

dx

forceeld

dt

xd













  

we have the ratio of the unbalanced force to the mass of the element :  
2

2 2 2

2 2

2 2 2

( )
 . / .  - / . . / .  . .

;  hence : . .  for the air mass; while for the pendulum, . .

d x d P gA gA gA
EG EG x const x OP OP

dxdt V V V

HK Ag d x Ag d x g

2

x x
V EG Adt V dt

                          

        
 

 
 

Thus, the period of oscillation of the air 
gA

V
Tair .

2
2

 , while the period of the cycloidal 

pendulum is given by : 
g

A
Tpen 2.  . Hence. .

2
/

2

2

. AA

V

A

V
TT penair 


  Note that 

Newton always uses ratios, so there is no need to worry about constant factors such as g 
and 2 that have to be inserted in absolute measurements and calculations; indeed the use 
of  as a ratio had not been introduced at this time. 
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Corollary 1. The velocity of the pulses is the same as that which weighty bodies 
acquire by falling under the acceleration of gravity, and in their case through half the 
height A. For the time in this case, for the velocity to be acquired by falling, the pulse 
travels through the space equal to the whole interval A; and thus the time of the oscillation 
composed from one coming and going the space traveled through is equal to the 
circumference of the circle A described. Indeed the ratio of the time to fall to the time of 
the oscillation is as the radius of the circle to the circumference of the same.  

Note on Cor. 1 : For the time for a body to fall a vertical distance A/2 is given by 

g

A
Tbody  , while the time for the pulse to perform half an oscillation and travel from P to 

S is given by 
gA

V
Tair .

2/
2

 ; hence, .1
2/.

:2/:
2




 A

V

A

gA

V

g

A
TT airbody  Also, the 

pendulum bob in these times traverses a space in the ratio 

.
1

.
2

2

2
/

2

2

. ncecircumfere

diameter

A

A

AA

V

A

V
TT penair 


  

 
Corollary 2 :  Hence since that height A shall be directly proportional to the elastic force 
and in inverse proportion to the density of the fluid; the velocity of the pulse will be in the 
ratio composed from the square root of the inverse of the density and in direct proportion 
to the square root of the elastic force.  
 
Note on Cor. 2 :  If the periodic time T for a complete oscillation is inversely proportional 
to A, and  
P = gA , then the velocity is proportional to 1/T or (P/). As Chandrasekhar points out, 
this theorem was probably added by Newton as he was not entirely satisfied with Prop. 
47, which he did not work through to its conclusion. However, this author makes claims 
for what Newton has done which bear little resemblance to reality - there is a distinct lack 
of sophisticated mathematical machinery in Newton's work, although the intuitive ideas 
are there. The mathematical structure describing phase velocity was not in place at the 
time, and Newton's work presumably set this theory in motion. We may note in passing its 
use of an extreme amplitude of around 8000m for the height of the isotropic atmosphere 
to give a known pressure, as Newton sought known numbers to use in his equation as a 
check, with which one could associate a wave with a period of some 25 seconds, more in 
the realms of internal gravitational waves in the atmosphere than sound waves.   
 

PROPOSITION L.   PROBLEM XII. 
 

To find the lengths of the pulses. 
The number of vibrations in a given time need to be found for the body which is 

exciting the pulses. The distance which the pulses are able to traverse in this time is 
divided by this number, and the fraction of the length found is the width of one pulse. Q. 
E. I. 

Note : Thus the well-known result for the phase velocity  v = f comes into being. 
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Scholium. 

 
The most recent propositions consider the motion of light and of sound. Indeed light is 

propagated in straight lines, without interaction (by prop. XL & XLII.). Hence, since sounds 
arise from the vibrations of bodies, they are nothing other than pulses propagated in the 
air, by prop. XLIII.  This is confirmed from the vibrations which they cause in bodies 
presented to them, but only if they are strong and deep, such as the sounds of small 
drums. For quicker and shorter vibrations are more difficult to be excited. But it is well 
known also that any sounds can interact with the strings of  musical instruments and 
excite vibrations.  This is also confirmed from the velocity of sound. For since the specific 
gravity of rainwater and quicksilver are in turn as 1 to 

3
213 roughly, and where the height 

of mercury in a Barometer reaches a height of 30 English inches, the specific gravity of 
air and of rainwater are in the ratio 1 to 870 roughly;  the specific gravity of air and 
quicksilver are as 1 to11890. Then since the height of quicksilver is 30 inches, the height 
of the air in a uniform atmosphere, which our air is subject to in compression,  is 356700 
inches, or 29725 English feet. This is the height that we have called A in the construction 
of the above problems.  The circumference of  the circle described by a radius of 29725 
feet is 186768 feet. And since it is well-known that a  pendulum

5
139 inches long  results in 

a complete oscillation in a time of two seconds,  then a pendulum  29725 feet long or 
356700 inches ought to complete a similar oscillation in a time of 

4
3190 seconds. Therefore 

in that time the sound should progress a distance of 186768, and thus in a time of one 
second sound should travel 979 feet.  

In the computation presented here, no account is made for other effects, such as the 
density of solid particles in the air, through which the sound certainly is propagated.  
Since the weight of air is to the weight of water as 1 to 870, and  salts are nearly twice as 
dense as water ; if the particles of air are put to be roughly the same density as the 
particles of water or salt, and the rareness of air arises from the intervals between the 
particles: then the diameter of the air particles will be as the interval between the centres 
of the particles, as 1 to 9 or 10 roughly, and to the interval between the particles as 1 to 8 
or 9. Hence to the 979 feet in the above calculation, one may add 

9
979  or 109 feet roughly, 

to the distance that sound travels in a time of one second, on account of the density of 
particles in the air : & thus the distance that sound travels in a time of one second is made 
to be roughly 1088 feet. 

To these you may add the effect of vapours hidden in the air,  since they are of a 
different tone and elastic nature they may or may not participate in the motion of sound 
that is propagated through the air. But from these quiet sources, the motion is propagated 
more quickly than by the air alone, and that in the ratio of the square root of the lesser 
matter.  For if the atmosphere is made up from ten parts air and one part of vapor, the 
speed of sound is faster in the ratio of the square root of 11 to 10, or altogether around the 
ratio 21 ad 20, than if the sound is propagated by eleven parts of pure air : and thus the 
motion of the air found above is increased in this ratio.  From which the speed of sound is 
agreed upon to be 1142 feet in one second. 
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Thus these ought to have an effect in springtime and autumn, when the air is rarefied 
by the temperate heat and the pressure is increased. In wintertime, when the air is 
condensed by the cold, and its pressure is lowered, the speed of sound should be less in 
the square root ratio of the densities, while in summertime in turn, the speed should be 
increased.  

Moreover, it is agreed upon by experiment that the distance gone in a time of one 
second is more or less London feet 1142,  and truly 1070 Parisian feet.  

With the speed of sound recognised, the intervals between the pulses can also become 
known. Certainly Sauveur has found from measurements made in his experiments, that an 
open pipe, the length of which is more or less five Parisian feet, send forth a sound of the 
same tone as the sound of strings which are vibrating at a rate of a hundred times in one 
second.  Thus, there are more or less one hundred pulses in a space of 1070 Parisian feet, 
which sound travels through in a time of one second ; hence a single  pulse takes up a 
space of 

10
710  Parisian feet, that is, around twice the length of the tube. Thus, it is the 

same for pulses of all lengths from the sounds produced by tubes, for they are equal to 
twice the lengths of the open ended tubes.  

Again since sounds stop with the motion of the vibrating body when we stand nearby, 
but not for a long time when we stand a long way from the source of the sound,  which is 
apparent from the corollary to proposition XLVII of this book. Moreover why sounds are 
greatly increased in volume by deep sounding trumpets is apparent from these principles. 
Indeed the reciprocal motion of all recurring individual pulses is usually increased by the 
source of the vibration. Moreover,  the motion of sound is impeded in trumpets, to be 
emitted later and louder, and therefore a new individual motion is returned later more 
loudly. And these are the main phenomena associated with sound. 

 
 [Thus, Newton remained unaware of the true source of the error in his analysis; this 

was eventually corrected by Laplace when the effect of heat on a gas was much better 
understood, and the adiabatic form of the gas law was applied, rather than Boyle's Law.] 
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SECTIO VIII. 

 
De motu per fluida propagato. 

 
PROPOSITIO XLI. THEOREMA XXXII. 

 
Pressio non propagatur per fluidum secundum lineas rectas,nisi ubi particulae fluidi in 

directum iacent. 
 
Si iaceant particulae a, b, c, d, e in linea recta, potest quidem pressio directe propagari ab 
a ad e ; at particula e urgebit particulas oblique positas f & g 
oblique, & particulae illae f & g non sustinebunt pressionem 
illatam, nisi fulciantur a particulis ulterioribus h & k ; 
quatenus autem fulciuntur, premunt particulas fulcientes , & 
hae non sustinebunt pressionem nisi fulciantur ab ulterioribus 
t & m easque premant, & sic deinceps in infinitum. Pressio 
igitur, quam primum propagatur ad particulas quae non in 
directum iacent, divaricare incipiet & oblique propagabitur in 
infinitum; & postquam incipit oblique propagari, si inciderit 
in particulas ulteriores, quae non in directum iacent, iterum divaricabit; idque toties, 
quoties in particulas non accurate in directum iacentes inciderit. Q.E.D. 
Corol. Si pressionis, a dato puncto per fluidum propagatae, pars aliqua obstaculo 
intercipiatur, pars reliqua, qua non intercipitur, divaricabit in spatia pone obstaculum, id 
quod sic etiam demonstrari potest. A puncto A propagetur pressio quaquaversum, idque 

si fieri potest secundum lineas rectas, & obstaculo NBCK perforato in BC intercipiatur ea 
omnis, praeter partem coniformem APQ,  quae per foramen circulare BC transit.  Planis 
transversis de, fg, hi distinguatur conus APQ in frusta;  & interea dum conus ABC, 
pressionem propagando, urget frustum conicum ulterius degf in superficie de, & hoc 
frustum urget frustum proximum fgih in superficie fg, & frustum illud urget frustum 
tertium, & sic deinceps in infinitum, manifestum est (per motus legem tertiam, quod 
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fructum primum defg, reactione frusti secundi fghi, tantum urgebitur & premetur in 
superficie fg, quantum urget & premit frustum illud secundum. Frustum igitur degf inter 
conum Ade & frustum fhig comprimitur utrinque, & propterea (per Corol. VI. Prop. XIX., 
figuram suam servare nequit, nisi vi eadem comprimatur undique. Eodem igitur impetu 
quo premitur in superficiebus de, fg, conabitur cedere ad latera df, eg; ibique (cum 
rigidum non sit, sed omnimodo fluidum excurret) ac dilatabitur, nisi fluidum ambiens 
adsit, quo conatus iste cohibeatur. Proinde conatu excurrendi, premet tam fluidum 
ambiens ad latera df, eg quam frustum fghi eodem impetu : & propterea pressio non 
minus propagabitur a lateribus df, eg in spatia NO, KL hinc inde, quam propagatur a 
superficie fg versus PQ. Q.E.D. 
 

PROPOSITIO XLII. THEOREMA XXXIII. 
Motus omnis per fluidum propagatus divergit a recto tramite in spatia immota. 

 
 Cas.1. Propagetur motus a puncto A per foramen BC, pergatque, si fieri potest, in 
spatio conico BCQP, secundum lineas rectas divergentes a puncto A. Et ponamus primo 
quod motus iste sit undarum in superficie stagnantis aquae. Sintque de, fg, hi, kl, &c. 
undarum singularum partes altissimae, vallibus totidem intermediis ab invicem distinctae. 
Igitur quoniam aqua in undarum iugis altior est quam in fluidi partibus immotis LK, NO, 
defluet eadem de iugorum terminis e, g, i, l, &c. d, f, b, k, &e. hinc inde versus KL & NO: 
& quoniam in undarum vallibus depressior est quam in fluidi partibus immotis KL, NO; 
defluet eadem de partibus illis immotis in undarum valles. Defluxu priore undarum iuga, 
posteriore valles hinc inde dilatantur & propagantur versus KL & NO. Et quoniam motus 
undarum ab A versus PQ sit per continuum defluxum iugorum in valles proximos, 

ideoque celerior non est quam pro celeritate descensus; & descensus aquae hinc inde 
versus KL & NO eadem velocitate peragi debet; propagabitur dilatatio undarum hinc inde 
versus KL & NO eadem velocitate qua unde ipse ab A versus PQ recta progrediuntur. 
Proindeque spatium totum hinc inde versus KL & NO abundis dilitatis rfgr, shis, tklt, 
vmnv, &c. occupabitur. Q.E.D.  Haec ita se habere quilibet in aqua stagnante experiri 
potest. 
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 Cas. 2.  Ponamus iam quod de, fg, hi, kl, mn designent pulsus a puncto A per medium 
elasticum successive propagatos. Pulsus propagari concipe per successivas 
condensationes & rarefactiones medii, sic ut pulsus cuiusque pars densissima sphericam 
occupet superficiem circa centrum A descriptam, & inter pulsus successivos aequalia 
intercedant intervalla. Designent autem lineae de, fg, hi, kl, &c. densissimas pulsuum 
partes, per foramen BC propagatas. Et quoniam medium ibi densius est quam in spatiis 
hinc inde versus KL & NO, dilatabit sese tam versus spatia illa KL, NO utrinque 
sita, quam versus pulsuum rariora intervalla; eoque pacto rarius semper evadens e regione 
intervallorum ac densius e regione pulsuum, participabit eorundem motum. Et quoniam 
pulsuum progressivus motus oritur a perpetua relaxatione partium densiorum versus 
antecedentia intervalla rariora ; & pulsus eadem fere celeritate sese in medii partes 
quiescentes KL, NO hinc inde relaxare debent ; pulsus illi eadem fere celeritate sese 
dilatabunt undique in spatia immota KL, NO, qua propagantur directe a centro A ; ideoque 
spatium totum KLON occupabunt. Q.E.D. Hoc experimur in sonis, qui vel monte 
interposito audiuntur, vel in cubiculum per fenestram admissi sese in omnes cubiculi 
partes dilatant, inque angulis omnibus audiuntur, non tam reflexi a parietibus oppositis, 
quam a fenestra directe propagati, quantum ex sensu iudicare licet. 
 
 Cas. 3. Ponamus denique quod motus cuiuscunque generis propagetur ab A per 
foramen BC & quoniam propagatio ista non fit, nisi quatenus partes medii centro A 
propiores urgent commoventque partes ulteriores , & partes quae urgentur fluidae sunt, 
ideoque recedunt quaquaversum in regiones ubi minus premuntur: recedent 
eaedem versus medii partes omnes quiescentes, tam laterales KL & NO, quam anteriores 
PQ, eoque pacto motus omnis, quam primum per foramen BC transiit, dilatari incipiet & 
inde tanquam a principio & centro, in partes omnes directe propagari. Q. E. D.  
 

PROPOSITIO XLIII. THEOREMA XXXIV. 
Corpus omne tremulum in medio elastico propagabit motum pulsuum undique in 
directum; in media vero non elastico motam circularem excitabit. 
 
 Case1. Nam partes corporis tremuli vicibus alternis eundo & redeundo, itu suo 
urgebunt & propellent partes medii sibi proximas, & urgendo compriment easdem & 
condensabunt; dein reditu suo sinent partes compressas recedere & sese expandere. Igitur 
partes medii corpori tremulo proximae ibunt & redibunt per vices, ad instar partium 
corporis illius tremuli: & qua ratione partes corporis huius agitabant hasce medii partes, 
hae similibus tremoribus agitatae agitabunt partes sibi proximas, eaeque similiter agitatae 
agitabunt ulteriores, & sic deinceps in infinitum. Et quemadmodum medii partes primae 
eundo condensantur & redeundo relaxantur, sic partes reliquae quoties eunt 
condensabuntur, & quoties redeunt sese expandent. Et propterea non omnes ibunt & simul 
redibunt (sic 
enim determinatas ab invicem distantias servando, non rarefierent & condensarentur per 
vices) sed accedendo ad invicem ubi condensantur, & recedendo ubi rarefiunt, aliquae 
earum ibunt dum aliae redeunt; idque vicibus alternis in infinitum. Partes autem euntes & 
eundo condensatae, ob motum suum progressivum, quo feriunt obstacula, sunt pulsus , & 
propterea pulsus successivi a corpore omni tremulo in directum propagabuntur ; idque 
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aequalibus circiter ab invicem distantiis, ob aequalia temporis intervalla, quibus corpus 
tremoribus suis singulis singulos pulsus excitat, Et quanquam corporis tremuli partes eant 
& redeant secundum plagam aliquam certam & determinatam, tamen pulsus inde per 
medium propagati sese dilatabunt ad latera, per propositionem precedentem, & a corpore 
illo tremulo tanquam centro communi, secundum superficies propemodum sphaericas & 
concentricas, undique propagabuntur. Cuius rei exemplum aliquod habemus in undis, 
quae si digito tremulo excitentur, non solum pergent hinc inde secundum plagam motus 
digiti, sed, in modum circulorum concentricorum, digitum statim cingent & undique 
propagabuntur. Nam gravitas undarum supplet locum vis elasticae.  
 
 Case 2. Quod si medium non sit elasticum : quoniam eius partes a corporis tremuli 
partibus vibratis pressae condensari nequeunt, propagabitur motus in instanti ad partes ubi 
medium facillime cedit, hoc est, ad partes quas corpus tremulum alioqui vacuas a tergo 
relinqueret. Idem est casus cum casu corporis in medio quocunque proiecti. Medium 
cedendo proiectilibus, non recedit in infinitum; sed in circulum eundo, pergit ad spatia 
quae corpus relinquit a telgo. Igitur quoties corpus tremulum pergit in partem 
quamcunque, medium cedendo perget per circulum ad partes quas corpus relinquit 
; & quoties corpus regreditur ad locum priorem, medium inde repelletur & ad locum suum 
priorem redibit. Et quamvis corpus tremulum non sit firmum, sed modis omnibus flexile, 
si tamen magnitudine datum maneat, quoniam tremoribus suis nequit medium ubivis 
urgere, quin alibi eidem simul cedat; efficiet ut medium, recedendo a partibus ubi 
premitur, pergat semper in orbem ad partes quae eidem cedunt. Q. E. D. 
 
 Corol. Hallucinantur igitur qui credunt agitationem partium flammae ad pressionem, 
per medium ambiens, secundum lineas rectas propagandum conducere. Debebit eiusmodi 
pressio non ab agitatione sola partium flammae, sed a totius dilatatione derivari. 
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PROPOSITION XLIV. THEOREMA XXXV. 
 
Si aqua in canalis cruribus erectis KL, MN vicibus alterius ascendat & descendat; 
construatur autem pendulem cuius longitudo inter punctum suspensionis & centrum 
oscillationis aequetur semissi longitudines aquae in canali : dico quod aqua ascendet & 
descendet iisdem temporibus quibus pendulum oscillatur.  
  Longitudinem aquae mensuro secundum axes canalis & crurum, eandem summae 
horum axium aequando ; & resistentiam aquae, quae oritur ab attritu canalis, hic non 
considero. Designent igitur AB, CD mediocrem altitudinem aquae in crure utroque ; & ubi 
aqua in crure KL ascendit ad altitudinem EF, descenderit aqua in crure MN ad altitudinem 

GH. Sit autem P corpus pendulum, VP filum, V punctum suspensionis, RPQS cyclois 
quam pendulum describat, P ejus punctum infimum, PQ arcus altitudini AE aequalis. Vis, 
qua motus aquae alternis vicibus acceleratur & retardatur, est excessus ponderis aquae in 
alterutro crure supra pondus in altero,ideoque, ubi aqua in crure KL ascendit ad EF, & in 
crure altero descendit ad GH, vis illa est pondus duplicatum aquae EABF, & propterea est 
ad pondus aquae totius ut AE seu PQ ad VP seu PR. Vis etiam qua pondus P in loco 
quovis Q acceleratur & retardatur in cycloide (per Corol. Prop LI.) est ad eius pondus 
totum ut eius distantia PQ a loco infimo P, ad cycloidis longitudinem PR. Quare aquae & 
penduli, aequalia spatia AE, PQ describentium vires motrices sunt ut pondera movenda; 
ideoque, si aqua & pendulum in principio quiescunt, vires illae movebunt eadem 
aequaliter temporibus aequalibus, efficientque ut motu reciproco simul eant & redeant.  
Q. E. D.  

Corol. 1. Igitur aquae ascendentis & descendentis, sive motus intensior sit sive 
remissior, vices omnes sunt isochronae.   

Corol. 2. Si longitudo aquae totius in canali sit pedum Parisiensium  
9
16 : aqua tempore 

minuti unius secundi descendet, & tempore minuti alterius secundi ascendet; & sic 
deinceps vicibus alternis in infinitum . Nam pendulum pedum 

18
13 longitudinis tempore 

minuti unius secundi oscillatur.  
Corol. 3. Aucta autem vel diminuta longitudine aquae, augetur vel diminuitur tempus 

reciprocationis in longitudinis ratione subduplicata.  
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PROPOSITION XLIV. THEOREMA XXXVI. 

 
Undarum velocitas est in subduplicata ratione latitudinum. 
 
Consequitur ex constructione propositionis sequentis.  
 

PROPOSITION XLVI. PROBLEMA X. 
 

Invenire velocitatem undarum. 
 
Constituatur  pendulum cuius longitudo, inter punctum suspensionis & centrum 

oscillationis, aequetur latitudini undarum : & quo tempore pendulum illud oscillationes 
singulas peragit, eadem undae progrediendo latitudinem suam propemodum conficient. 

Undarum latitudinem voco mensarum transversam, quae vel vallibus imis,vel summis 
culminibus interjacet. Designet ABCDEF superficiem aquae stagnantis, undis successivis 
ascendentem ac descendentem; sintque A, C, E, &c. undarum culmina, & B, D, F, &c. 
valles intermedii. Et quoniam motus undarum sit per aquae successivum ascensum & 
descensum, sic ut ejus partes A, C, E, &c. quae nunc altissimae sunt, mox fiant infimae; & 
vis motrix, qua partes altissimae descendunt & infimae ascendunt, est pondus aquae 
elevatae; alternus ille ascensus & descensus analogus erit motui reciproco aquae in canali, 
easdemque temporis leges observabit : & propterea (per Prop. XLIV) si distantiae inter 
undarum loca altissima A, C, E & infima B, D, F aequentur duplae penduli longitudini; 
partes altissimae A, C, E, tempore oscillationis unius evadent infimae, & tempore 
oscillationis alterius denuo ascendent. Igitur inter transitum undarum singularum tempus 

erit oscillationum duarum; hoc est, unda describet latitudinem suam, quo tempore 
pendulum illud bis oscillatur ; sed eodem tempore pendulum , cuius longitudo quadrupla 
est, ideoque aequat undarum latitudinem, oscillabitur semel. Q.E.I. 

Corol. 1. Igitur undae, quae pedes Parisienses 
18
13 latae sunt, tempore minuti unius 

secundi progrediendo latitudinem suam conficient ; ideoque tempore minuti unius primi 
percurrent pedes ,183

3
1 & horae spatio pedes 11000 quamproxime.  

Corol. 2. Et undarum majorum velocitas augebitur vel diminuetur in subduplicata 
ratione latitudinis.  

Haec ita se habent ex hypothesi quod partes aquae recta ascendunt vel recta 
descendunt; sed ascensus & descensus ille verius fit per circulum, ideoque tempus hac 
propositione non nisi quamproxime definitum esse affirmo.  
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PROP. XLVII.   THEOR.  XXXVII. 

 

C 

Pulsibus per fluidum propagatis, singulae fluidi particulae, 
motu reciproco brevissimo euntes & reeuntes, accelerantur 
semper & retardantur pro lege oscillantis penduli.  

D 

B

F 
E 
G 

f 
e 

g  



  


H
I

K

O

S

P

N

M

L n

m

l h

i

k

 

 Designent AB, BC, CD, &c. pulsuum successivorum 
aequales distantias ; ABC plagam motus pulsuum ab A versus B 
propagati ; E, F, G puncta tria physica medii quiescentis in 
recta AC ad aequales ab invicem distantias sita ; Ee, Ff, Gg 
spatia aequalia per brevia per quae puncta illa motu reciproco 
singulis vibrationibus eunt & redeunt ; , ,   loca quaevis 
intermedia eorundem punctorum ; & EF, FG lineolas physicas 
seu medii partes lineolas punctis illis interjectas, & successive 
translatas in loca , , & ef, fg. Rectae Ee aequalis ducatur 
recta PS. Bisecetur eadem in O, centroque O & intervallo OP 
describatur circulus SIPi. Per hujus circumferentiam totam cum 
partibus suis exponatur tempus totum vibrationis unius cum 
ipsius partibus 
proportionalibus; sic ut 
completo tempore quovis 
PH vel PHSh, si demittatur 
ad PS perpendiculum HL vel 
hl, & capiatur E aequalis 
PL vel Pl, punctum 
physicum E reperiatur in . 
Hac lege punctum quodvis 
E, eundo ab E per  ad e, & 
inde redeundo per  ad E, 
iisdem accelerationis ac 
retardationis gradibus 
vibrationes singulas peraget cum oscillante pendulo. 
Probandum est quod singula medii puncta physica tali motu agitari debeant. Fingamus 
igitur medium tali motus a causa quacunque cieri, & videamus quid inde sequatur.  

In circumferentia PHSh capiantur aequales arcus HI, IK vel hi, ik, eam habentes 
rationem ad circumferentiam totam quam habent aequales rectae EF, FG ad pulsuum 
intervallum totum BC, Et demissis perpendiculis IM, KN vel im, kn ; quoniam puncta E, 
F, G motibus similibus successive agitantur, & vibrationes suas integras ex itu & reditu 
compositas interea peragunt dum pulsus transfertur a B ad C; si PH vel PHSh sit tempus 
ab initio motus puncti E, erit PI vel PHSi tempus ab initio motus puncti F, & PK vel 
PHSk tempus ab initio motus puncti G; & propterea E, F, G erunt ipsis PL, PM, PN in 
itu punctorum, vel ipsis Pl, Pm, Pn in punctorum reditu, aequales respective. Unde  seu 
EG + G - E aequalis erit EG - LN, in reditu autem aequalis EG + ln. Sed  latitudo est 
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seu expansio partis medii EG in loco  ; & propterea expansio partis illius in itu est ad 
ejus expansionem mediocrem, ut EG - LN ad EG ; in reditu autem ut EG + ln seu EG + 
LN ad EG. Quare cum sit LN ad KH ut IM ad radium OP, & KH ad EG ut circumferentia 
PHShP ad BC, id est, se ponatur V pro radio circuli circumferentiam habentis aequalem 
intervallo pulsuum BC, ut OP ad V ; & ex aequo LN ad EG ut IM ad V : erit expansio 
partis EG punctive physici F in loco  ad expansionem mediocrem, quam pars illa habet 
in loco suo primo EG, ut V - IM ad V in itu, utque V + im ad V in reditu. Unde vis elastica 
puncti F in loco  est ad vim ejus elasticam mediocrem in loco EG, ut 

IMV 
1 ad 

V
1 in itu, 

in reditu vero ut 
imV 

1 ad 
V
1 . Et eodem argumento vires elasticae punctorum physicorum E 

& G in itu, sunt ut 
V
111  ad &

KNVHLV  ; & virum differentia ad medii vim elasticam 

mediocrem, ut 
V
1 ad 

KNHLKNVHLVVV
KNHL


 . Hoc est, ut 

V
1 ad 

VV
KNHL , sive ut HL - KN ad V, si 

modo (ob angustos limites vibrationum) supponamus HL & KN indefinite minores esse 
quantitae V. Quare cum quantitas V detur, differentia virium est ut HL - KN, hoc est (ob 
proportionales HL - KN ad HK, & OM ad OI vel OP, dataque HK & OP) ut OM ; id est, si 
Ff  bisecetur in , ut . Et eodem argumento differentia virium elasticarum punctorum 
physicorum  & , in reditu lineolae physicae  est ut . Sed differentria illa (id est,  
excessus vis elasticae puncti  supra vim elasticam puncti ) est vis qua interjecta medii 
lineola physica  acceleratur in itu & retardatur in reditu ;& propterea vis acceleratrix 
lineolae physicae , est ut ipsius distantia a medio vibrationis loco . Poinde tempus (per 
prop. XXXVIII. lib. I) recte exponitur, id est, lege oscillantis penduli : estque par ratio 
partium omnium linearium ex quibus medium totum componitur. Q. E.D. 

Corol. Hinc patet quod numerus pulsuum propagatorum idem sit cum numero 
vibrationum corporis tremuli, neque multiplicatur in eorum progressu. Nam lineola 
physica , quamprimum ad locum suum primum redierit, quiescet; neque deinceps 
movebitur, nisi vel ab impetu corporis tremuli, vel ab impetu pulsuum qui a corpore 
tremulo propagantur, motu novo cieatur. Quiescet igitur quamprimum pulsus a corpore 
tremulo propagari desinunt.  

 
 

PROPOSITIO XLVIII.            THEOREMA XXXVIII. 
 

Pulsuum in fluido elastico propagatorum velocitates sunt in ratione composita ex 
subduplicata ratione vis elasticae directe & subduplicata ratione densitatis inverse ; si 
modo fluidi vis elastica ejusdem condensationi proportionalis esse supponatur.  
 
Cas. 1. Si media sint homogenea, & pulsuum distantiae in his mediis aequentur inter se, 
sed motus in uno medio intensior sit : contractiones & dilationes partium analogarum 
erunt ut iidem motus. Accurata quidem non est haec proportio. Veruntamen nisi 
contractiones & dilatationes sint valde intensae, non errabit sensibiliter, ideoque pro 
physice accurata haberi potest. Sunt autem vires elasticae motrices ut contractiones & 
dilatationes ; & velocitates partium aequalium simul genitae sunt ut vires. Ideoque 
aequales & correspondentes pulsuum correspondentium partes itus & reditus suos per 
spatia contractionibus & delatationibus proportionalia, cum velocitatibus quae sunt ut 
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spatia, simul peragent : & propterea pulsus, qui tempore itus & reditus unius latitudinem 
suam progrediendo conficiunt, & in loca pulsuum proxime praecedentium semper 
succedunt, ob aequalitatem distantiarum, aequali cum velocitate in medio utroque 
progredientur.  
Cas. 2. Sin pulsuum distantiae seu longitudines sint majores in uno medio quam in altero ; 
ponamus quod partes correspondentes spatia latitudinibus pulsuum proportionalia singulis 
vicibus eundo & redeundo describant : & aequales erunt earum contractiones & 
dilatationes. Ideoque si media sint homogenea, aequales erunt etiam vires illae elasticae 
motrices quibus reciproco motu agitantur. Materia autem his viribus movenda est ut 
pulsuum latitudo ; & in eadem ratione est spatium per quod singulis vicibus eundo & 
redeundo moveri debent. Estque tempus itus & reditus unius in ratione composita ex 
ratione subduplicata materiae & ratione subduplicata spatii, atque ideo ut spatium. Pulsus 
autem temporibus itus & reditus unius eundo latitudines suas conficiunt, hoc est, spatia 
temporibus proportionalia percurrunt; & propterea sunt aequiveloces.  
Cas. 3. In mediis igitur densitate & vi elastica paribus, pulsus omnes sunt aequiveloces. 
Quod si medii vel densitas vel vis elastica intendatur, quoniam vis motrix in ratione vis 
elasticae, & materia movenda in ratione densitatis augetur ; tempus, quo motus iidem 
peragantur ac prius, augebitur in subduplicata ratione densitatis, ac diminuetur in 
subuplicata ratione vis elasticae. Et propterea velocitas pulsuum erit in ratione composita 
ex ratione subduplicata densitatis medii inverse & ratione subduplicata vis elasticae 
directe. Q.E.D. 

Haec propositio ulterius patebit ex constructione sequentis.  
 

PROPOSITIO XLIX.            PROBLEMA XI. 
 

Datis medii densitate & vi elastica, invenire velocitatem  pulsuum.  
 

Fingamus medium ab incumbente pondere promore aeris nostri comprimi; sitque A 
alitudo medii homogenei, cuius pondus adaequet pondus incumbens, & cuiis densitas 
eadem sit cum densitate medii compressi, in quo pulsus propagantur. Constitui autem 
intelligatur pendulum, cuius longitudo inter punctum suspensionis & centrum oscillationis 
sit A : & quo tempore pendulum illud oscillationem integram ex itu & reditu compositam 
peragit eodem pulsus eundo conficiet spatium circumferentiae circuli radio A descripti 
aequale. 

Nam stantibus quae in Propositione XLVII constructa sunt, si linea quaevis physica 
EF, singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus 
cuiusque locis P & S, a vi elastica quae ipsius ponderi aequetur; peraget haec vibrationes 
singulas quo tempore eadem in cycloide, cuius perimeter tota longitudini PS aequalis est, 
oscillari posset : id adeo quia vires aequales aequalia corpuscula per aequalis spatia simul 
impellent. Quare cum oscillationum tempora sint in subduplicata ratione longitudinis 
pendulorum, & longitudo penduli aequetur dimidio arcui cycloidis totius; foret tempus 
vibrationis unius ad tempus oscillationis penduli, cuius longitudo est A, in subduplicata 
ratione longitudinis 

2
1 PS seu PO ad longitudinem A. Sed vis elastica, qua lineola physica 

EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione propositionis 
XLVII) ad eius vim totam elasticam ut HL - KN ad V, hoc est (cum punctum K iam 
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incidat in P) ut HK ad V: & vis illa tota, hoc est pondus incumbens, quo lineola EG 
comprimitur, est ad pondus lineolae ut ponderis incumbentis altitudo A ad lineolae 
longitudinem EG; ideoque ex aequo, vis qua lineola EG in locis suis EG ut PO ad V. 
Quare cum tempora, quibus aequalia corpora per aequalia spatia impelluntur, sint 
reciproce in subduplicata ratione virium, erit tempus vibrationis unius, urgente vi illa 
elastica, ad tempus vibrationis, urgente vi ponderis, in subduplicata ratione VV ad PO  A, 
atque ideo ad tempus oscillationis penduli cuius longitudo est A in subduplicata ratione 
BB ad PO  A. & subduplicata ratone PO ad A conjunctim; id est, in ratione integra V ad 
A. Sed tempore vibrationis inius ex itu & reditu compositae, pulsus progrediendo conficit 
latiudinem suam BC. Ergo tempus, quo pulsus percurrit spatium BC, est ad tempus 
oscillatonis unius ex itu & reditu compositiae, ut V ad A, id est, ut BC ad circumferentiam 
curculi cuius radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus 
quo percurret longitudinem huic circumferentiae aequalem, in eadem ratone; ideoque 
tempore talis oscillationis pulsus percurret longitudinem huic circumferentiae aequalem. 
Q.E.D. 
 

Corol. 1. Velocitas pulsuum ea est, quam acquirunt gravia aequaliter accelerato motu 
cadendo, & casu suo describendo dimidium altitudinis A. Nam tempore casus huius, cum 
velocitate cadendo acquisita, pulsus percurret spatium quod erit aequale toti altitudini A; 
ideoque tempore oscillationis unius ex itu & reditu compositae percurret spatium aequale 
circumferentiae circuli radio A descripti : est enim tempus casus ad tempus oscillationis ut 
radius circuli ad ejusdem circumferentiam.  

Corol. 2 Unde cum altitudino illa A sit ut fluidi vis elastica directe & densitas eiusdem 
inverse ; velocitas pulsuum erit in ratione composita ex subduplicata ratio densitatis 
inverse & subduplicata ratione vis elasticae directe.  

 
 

PROPOSITIO L.            PROBLEMA XII. 
 

Invenire pulsuum distantias. 
 

Corporis, cuius tremore pulsus excitantur, inveniatur numerus vibrationibus dato 
tempore. Per numerum illum dividatur spatium quod pulsus eodem tempore percurrere 
possit, & pars inventa erit pulsus unius latituto. Q. E. I.  

 
Scholium. 

Spectant propositiones novissimae ad motum lucis & sonorum. Lux enim cum 
propagatur secundum lineas rectas, in actione sola (per prop. XL & XLII.) consistere nequit. 
Soni vero propterea quod a corporibus tremulis oriantur, nihil aliud sunt quam aëris 
pulsus propagati, per prop. XLIII. Confirmatur id ex tremoribus quos excitant in corporibus 
objectis, si modo vehementes sint & graves, quales sunt soni tympanorum. Nam tremores 
celeriores & breviores difficilius excitantur. Sed & sonos quosvis, in chordas corporibus 
sonoris unisonas impactos, excitare tremores notissimum est. Confirmatur etiam ex 
velocitate sonorum. Nam cum pondera specifica aquae pluvialis & argenti vivi sint ad 
invicem ut 1 ad 

3
213 circiter, & ubi mercurius in Barometro altitudinem attingit digitorum 
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Anglicorum 30, pondus specificum aëris & aequae pluvialis sint ad vicem ut 1 ad 870 
circiter; erunt pondera specifica aëris & argenti vivi ut 1 ad 11890. Proinde cum altitudo 
argenti vivi sit 30 digitorum, altitudo aëris uniformis, cuius pondus aërem nostrum 
subjectum comprimere posset, erit 356700 digitorum, seu pedum Anglicorum 29725. 
Estque haec altitudo illa ipsa quam in constructione superioris problematis nominavimus 
A. Circuli radio 29725 pedum descripti circumferentia est pedum 186768. Et cum 
pendulum digitos 

5
139 longum oscillationem ex itu & reditu compositam tempore 

minutorum duorum secundorum, uti notum est, absolvat; pendulum pedes 29725 seu 
digitos 356700 longum oscillationem consimilem tempore minutorum secundorum 

4
3190 absolvere debebit. Eo igitur tempore sonus progrediendo conficiet pedes 186768, 

ideoque tempore minuti unius secundi pedes 979.  
Caeterum in hic computo nulla habetur ratio crassitudinis solidarum particularum aëris, 

per quam sonus utique propagatur in instanti. Cum pondus aëris sit ad pondus aquae ut 1 
ad 870. & sales sint fere duplo densiores quam aqua; si particulae aëris ponantur esse 
ejusdem circiter densitatis cum particulis vel aquae vel salium, & raritas aëris oriatur ab 
intervallis particularum : diameter particulae aëris erit ad intervallum inter centra 
particularum, ut 1 ad 9 vel 10 circiter, & ad intervallum inter particulas ut 1 ad 8 vel 9. 
Proinde ad pedes 979, quos sonus tempore minuti unius secundi juxta calculum 
superiorem conficiet, addere licet pedes 

9
979  vel 109 circiter, ob crassitudinem 

particularum aëris : & sic sonus tempore minuti unius secundi conficiet pedes 1088 
circiter. 

His adde quod vapores in aëre latentes, cum sint alterius elateris & alterius toni, vix aut 
ne vix quidem participant motum aëris veri quo soni propagantur. His autem 
quiescentibus, motus ille celerius propagibitur per solum aërem verum, idque in 
subduplicata ratione minoris materiae. Ut si atmosphaera constet ex decem partibus aëris 
veri &  una parte vaporum, motum sonorum celerior erit in subduplicata ratione 11 as 10, 
vel in integra circiter ratione 21 ad 20, quam si propagaretur per undecim partes aëris veri 
: ideoque motus sonorum supra inventus , augendus erit in hac ratione. Quo pacto sonus, 
tempore minuti unius secundi, conficiet pedes 1142. 

Haec ita se habere debent tempore verno & autumnali, ubi aër per ca;orem temperatum 
rarescit & ejus vis elastica nonnihil intenditur. At hyberno tempore, ubi aër per frigus 
condensatur, & ejus vis elastica remittitur, motus sonurum tardior esse debet in 
subduplicata ratione densitatis; & vicissim aestivo tempore debet esse velocior.  

Constat autem per experimenta quod soni tempore minuti unius secundi eundo 
conficiunt pedes Londinenses plus minus 1142, Parisienses vero 1070.  

Cognita sonorum velocitate innotescunt etiam intervalla pulsuum. Invenit utique D. 
Sauveur, factis a se experimentis, quod fistula aperta, cujus longitudo est pedum 
Parisiensium plus minus quinque, sonum edit ejusdem toni cum sono chordae quae 
tempore minuti unius secundi centies recurrit. Sunt igitur pulsus plus minus centum in 
spatio pedum Parisiensium 1070, quo sonus tempore minuti unius secundi percurrit; 
ideoque pulsus unus occupat spatium pedum Parisiensium 

10
710 , id est, duplam circiter 

longitudinem fistulae. Unde versimile est quod latitudines pulsuum, in omnium apertarum 
fistularum sonis, aequentur duplis longitudinibus fistularum.  
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Porro cur soni cessante motu corporis statim cessant, neque diutius audiuntur ubi 
longissime distamus a corporibus sonoris, quam cum proxime absumus, patet ex 
corollario propositionis XLVII libri huius. Sed & cur soni in tubis stentorophonicis valde 
augentur ex allatis principiis manifestum est. Motus enim omnis reciprocus singulis 
recuribus a causa generante augeri solet. Motus autem in tubis dilatationem sonorum 
impedientibus, tardius amittitur & fortius recurrit, & propterea a motu novo singulis 
recursibus impresso magis augetur. Et haec sunt praecipua phaenomena sonorum. 
 


