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PROPOSITION XXXVI. PROBLEM XVII. 

To find the force of the sun required to move the waters of the sea. 
 
 The force [per unit mass] ML or PT of the sun required to perturb the lunar motion 
acting at the lunar quadratures, was to the force of gravity with us on earth (by Prop. 
XXV. of this Book;), as 1 to 638092,6. And the force TM LM− or 2PK at the lunar 

syzygies is twice as great. [see the notes at the start of the previous section, from which 
the results presented here follow; see also Chandrasekhar, p. 412.] But these forces, if one 
descends to the surface of the earth, are diminished in the ratio of the distances from the 
centre of the earth, that is, in the ratio 1

260 to 1; and thus the first force on the surface of 
the earth is to the force of gravity as 1 to 38604600. It is by this force that the sea is 
lowered in places, which stand apart at 90 degrees from the sun. The sea is raised both 
under the sun and in the region opposite the sun by the other force, which is greater by 
twice as much,. The sum of the forces is to the force of gravity as 1 to 12868200. And 
because the same force produces the same motions,  that either lowers the water in 
regions which are set at  90 degrees to the sun, or raises the same in regions under the sun 
and in regions opposite to the sun, thus sum will be the total force of the sun required to 
set the seas in motion ; and the same effect will be had, if the whole sea may be raised in 
regions under the sun and in regions opposite the sun, but in regions which are set at 90 
degrees to the sun it gives rise to no effect. 
 This is the force of the sun required to set the sea in motion at some given place, both 
when the sun is situated overhead as well as at its mean distance from the earth. In other 
places the force required to raise the sea from the position of the sun is directly as the 
versed sine of twice the altitude of the sun above the horizon of the place, and inversely as 
the cube of the distance of the sun from the earth. 
 Corol. Since the centrifugal force of the parts of the earth arises from the diurnal 
motion of the earth, which is to the force of gravity as 1 to 289, it has the effect that the 
height of the water at the equator exceeds the height of this at the poles by an amount of 
85472 Parisian feet, as in Prop. XIX above ; the force of the sun by which we are driven, 
since it shall be to the force of gravity as 1 to 12868200, and thus to that force as 289 to 
12868200 or 1 to 44527, effects that the height of water in regions under the sun and 
opposite to the sun shall surpass the height of this in places, which are set at 90 degrees to 
the sun, by a measure of one Parisian foot and 1

3011 inches. For this measure is to the 
measure of 85472 feet as 1 to 44527. 
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PROPOSITION XXXVII. PROBLEM XVIII. 

To find the force of the moon required to move the waters of the sea. 
 
 The force of the moon required to move the sea can be deduced from the proportion of 
its force to the force of the sun, and this proportion is to be deduced from the proportion 
of the motions of the seas, which arise from these forces. 
[At the time of writing, the mass of the moon was not known precisely: Newton could 
hardly go to the moon and measure the acceleration of gravity there, and as there was no 
small satellite on hand on which measurements could be made, so he adopted this rather 
imprecise method, the only one available to him at the time.] 
 Before the mouth of the river Avon at the third milestone below Bristol, at spring time 
and in autumn the whole rise of the water at the conjunction and opposition of the moon, 
according to the observation of Samuel Sturmy, is around 45 feet, but in the quadratures it 
is only 25 feet. The first height arises from the sum of the forces, and the last from the 
difference of the same. Therefore let S and L be the forces of the sun and moon  situated 
above the equator and at their mean distances from the earth, and  to L S L S+ − will be as 
45 to 25, or as 9 to 5.  
 
 [These tide-producing forces, due to the sun and moon individually as viewed from the 
earth, act on a unit mass at some place in question; this mass is situated a whole earth-
radius from the centre of the mean earth-sun distance and the mean earth-moon distances 
respectively at the meridian, by which the force is increased by the inverse square law 
above the average value at the centre of the earth ; each force in turn sweeping through 
1800 , from acting initially along one tangent to the sea through the normal at the meridian 
and finally acting along the tangent in the opposite direction, in a time of 12 hours, due to 
the earth's diurnal rotation, while the sun or moon can be considered as almost at rest. 
These actions are simultaneously performed, by the forces of the sun and the moon acting 
through the earth on the water on the far side of the earth, and now diminished by the 
inverse square law,  giving rise on the whole to corresponding tidal bulges on opposite 
sides of the earth. 
 This sum or difference of the forces arises from the simple addition of the vectors L 
and S at the various places : at the new moon syzygies these forces are simply added 
L S+ , allowing 6 hours for the earth to rotate into the tangential position of the forces; 
the full moon case requiring both forces to act in the opposite direction, this being the 
case for the sun as the force is now less than the average at the centre of the earth by the 
same amount S; An elementary derivation of part of this argument is given, e.g. in 
Ohanian, Gravitation and Spacetime, p.26. At the quadrature positions, the tangential 
moon's force and that of the sun after a quarter rotation of the earth, are considered to act 
in opposite directions, giving the magnitude of the force to be now  L S− in this simplified 
scheme. See the notes at the start of the last section.  
 For a concise modern analysis, you may consult p.355 onwards of Volume 7 of the 
Encyclopaedic Dictionary of Physics, where the whole matter of tide-generating forces is 
addressed from the point of view of potentials, introduced some hundred years later by 
Laplace. This is one section of such a work that does not get dated! Thus, the potential 
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energy of a unit mass due to the moon, situated on the earth's surface at a point P a 
distance d from the centre of the moon, is given by 

mGM / d , where Mm is the mass of the moon, G 
the constant of universal gravitation; a negative 
sign may be attached to give the gradient forces 
the correct sign for the direction in which they act. 
Hence, if R is the distance between the centres of 
the earth and moon, and e the radius of the earth 
making an angle ϕ  to R, then 

2 2 2 2d e R eRcosϕ= + − ; in which case the 
potential becomes 
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Now, the mean value of e
R is 0.01659, and due to its small magnitude, only a few terms 

need be considered; on differentiation of the potential function to obtain the forces, the 
first term is constant and disappears;  the second term can be shown to give rise to a 
constant force along the line of the centres, and hence only the derivative of the third term 
involving P2 need be considered in most cases to cause relative motion. Since 2

EGM

e
g = , 

where ME is the mass of the earth and e the mean radius of the earth , then the potential 

generating the lunar tides has the form ( ) ( )2
3
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which we see that the tangential component 0 2dV
ed gV sinϕ ϕ= −  is the only large 

component, generating tides over large distances on the earth's surface, since the vertical 
component ( )2

02 1dV
de gV cos ϕ= −  is negligible in comparison with the local acceleration 

of gravity g, since V0 has a mean value of 85 6 10. −× . From the historical viewpoint, we 
may note that Newton worked with forces in his analysis, a hard task, while Laplace on 
introducing the idea of potential, was able to perform a simpler analysis; but of course 
Laplace could not have seen the easier method without Newton's great labours.] 
 
 In the port of Plymouth the tides of the sea from the observations of Samuel Colepress 
rise around 16 feet from the average, and at spring time and autumn the height of the tide  
in syzygies can surpass the height at quadrature by 7 or 8 feet. If the maximum difference 
of these heights shall be 9 feet, then  to L S L S+ − will be as 1 1

2 220  to 11 or 41 to 23. 
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Which proportion agrees well enough with the previous. On account of the magnitude of 
the tide at the port of Bristol, it may appear that the observations of Sturmy to be more 
reliable, and thus we will use the proportion 9 to 5, as it is a little more certain. 
 For the remainder, on account of the reciprocal motion of the waters, the maximum 
tides do not occur at the syzygies of the luminary bodies themselves, but are the third 
tides after the syzygies as it has been said, either nearest to the third passage of the moon 
through the meridian of the place, or rather, (as it has been noted by Sturmy) they are the 
third tides to arrive after the day of the new moon or the full moon, or within an 
[additional] interval of [half of] 12 hours of the new or full moon, and thus are incident a 
little more or less than the 43rd hour from the new or full moon. [Such situations may 
arise when the moon acts as a forcing oscillator on a body of water in a confining basin, 
which builds up a resonance, as it were.] Truly these arrive at this port at around the 
seventh hour from the approach of the moon at the place of the meridian ; and thus the 
tides follow the passage of the moon through the meridian very closely, when the moon 
either stands apart from the sun, or is in opposition by 18 or 19 degrees as a consequence. 
[In fact, the tidal forces at the time act along the tangent rather than normally, as 
Chandrasakher points out; also, this is a place where Mott translates Newton's octodecim 
vel novemdecim  as 18 or 19, which would seem to be correct – though this is not the 
usual way of writing these numbers, and which is translated by Madame du Chatelet as 80 
or 90.] The summer and winter tides are especially vigorous, not in the solstices 
themselves, but when the sun stands at around a twentieth part of the whole circuit, or 
around 36 or 37 degrees. And similarly the maximum tide of the sea arises from the 
approach of the moon to the meridian of the place, when the moon stands away from the 
sun by a tenth part of the whole motion from tide to tide. That distance shall be of around 

1
218 degrees. And the force of the sun at this distance of the moon from syzygies and 

quadratures, will have a smaller value towards increasing or decreasing the motion of the 
seas arising from the force of the moon, than at the syzygies and the quadratures, in the 
ratio of the radius to the sine of twice the complement of the angle 1

218 , i.e. of 370, that is, 
in the ratio 10000000 to 7986355. And thus in the above analogy 0,7986355 S must be 
written for S. 
 And thus the force of the moon in quadrature,  on account of the declination of the 
moon from the equator, must be diminished. For the moon in quadrature, or rather at 

1
2
018  after quadrature, is present at a declination of around 220.13'. And the force required 

to move the sea is diminished by the decline from the equator in the square ratio 
approximately as the square of the complement of the sine of the declination.  
 
[Note from L & S. p. 110, De Mund. Syst.: Let TBD be the plane of the equator, T the 
centre of the earth, and the moon shall be at L, 
the angle LBD will measure the declination 
from the equator, or on account of the very 
small angle TLB, that declination will be 
approximately equal to the angle LTD, the 
cosine of which angle is TF, by taking TL for 
the radius. Now the force which pulls on the water from the centre T, at the location B of 
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the equator, when the moon is present in the equatorial plane at D, is to force that pulls 
the same water directly from the centre, when the moon is at L, as TL to TF, that is, as the 
radius to the sine of the compliment of the declination LDT, distinct from the centripetal 
force of the water towards T. But with that centripetal force increased, the other force 
drawing the water from the centre is diminished in the same ratio; whereby, on 
compounding the effects, the force of the moon at the location D, is to the force of this at 
L, as the square of the whole sine TL, to the square of the complement of the sine, TF, of 
the declination of the moon LTD.] 
 
And thus the force of the moon in these quadratures is only 0,857327 L. Therefore there is 

0 7986355  to 0 857032 7 L  0 79863558 as 9 to 5L , S , . ,+ − . 
 Besides the diameters of the orbit, in which the moon must be moving without 
eccentricity [as in the Horrox sense], are in turn as 69 to 70; and therefore the distance of 
the moon at syzygies is to its distance at the quadratures as  69 ad 70, with all else being 
equal. And the distances of this at 1

2
018  from syzygies, when the maximum tide is 

generated, and at 1
2
018  from quadratures, when the minimum tide is generated, are to the 

mean distance of this as 69,098747 and 69,897345 to 1
269 . But the lunar forces requiring 

to move the sea are inversely in the cubic ratio of the distances, and thus the forces at the 
maximum and minimum of these distances are to the force at the mean distance as  
0,9830427 and 1,017522 to 1. From which there arises 1 017522  0 7986355, L , S+  
to 0 9830427 0 8570327 0 7986355, , L , S× − as 9 to 5. And S to L is as 1 to 4,4815. And thus 
since the force of the sun shall be to the force of the gravity 1 to 12868200, the force of 
the moon shall be to the force of gravity as 1 ad 12871400. 
 
[Because this value of S to L adopted is even further than the original estimate of 3.5 from 
the now accepted value of 2.34, Chandrasekhar wisely decides not to investigate the 
following Corollaries.] 
 
 Corol. 1. Since the water disturbed by the force of the sun rises to a height of 

1
301ft 11 ''., , by the force of the moon the same will rise to a height of 5

228ft.,7 ''  and the 
force with each acting shall be to a height of 1

210 ft., and when the moon is in perigee to a 
height of 1

212 ft.and more, especially when the tide is helped by the winds blowing. 
Moreover so much force suffices in abundance for all the excited motions of the sea, and 
corresponds properly to the quantity of the motions. For in seas which extend out widely 
from east to west, as in the Pacific, and in the parts of the Atlantic & Ethiopic [i.e. Indian] 
Oceans outside the tropics, the water is accustomed to be raised to a height of 6, 9, 12, or 
15 feet. But in the Pacific Ocean, because it is deeper and extends wider, the tides are said 
to be  greater than in the Atlantic and Indian Oceans. And indeed so that the tide shall be 
full, the width of the sea from east to west cannot be less than 900. In the Indian Ocean 
the rise of the water within the tropics  is less than in the temperate zone, on account of 
the narrow seas between the African and the southern part of America. The water is 
unable to rise in the middle of the sea unless at it may fall on each eastern and western 
shore at the same time: since yet with our narrow seas it must fall alternately in turn on 
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these shores. For that reason the flow and ebb for islands which are farthest from the 
shores, is usually very small. In certain ports, where water is trying to flow in and out 
with great force through the shallow places, alternately filling and emptying the bays,  the 
flow and ebb must be customarily greater, as at  Plymouth & at Chepstowe bridge in 
England ; at mount St. Michael and at  Avranches in Normandy ; at Cambaia and 
Pegu in the East Indies. In these places the sea, by approaching and receding with great 
speed, now inundates the shore and again now leaves it dry for many miles. Neither the 
impetus of the inflow or of the return of the first can be broken, as the water is raised or 
lowered by 30, 40, or 50 feet and more. And equal is the account of long narrow and 
shallow seas, as the Magellanic Straits, and of that by which England is surrounded. The 
tide in ports of this kind and in narrow channels is augmented  by the impetuosity of the 
flow and ebb above the normal. Truly, the magnitude of the tide corresponds to the forces 
of the sun and moon for shores which descend to the depths of the abyss and which are 
seen to be open, and where water without precipitation can flow and ebb by rising and 
falling without an impetuous motion.  
 
 Corol.  2. Since the force of the moon requiring to move the seas shall be to the force 
of gravity as 1 to 2871400, it is evident that that force shall be much less than those 
considered in any experiments with pendulums, or in statics or hydrostatics. This force is 
able to produce a sensible effect only in the tides in the sea. 
 
 Corol. 3. Because the force of the moon required to move the sea compared to the 
force of the sun is as 4,4815 to 1 [recall that this is an overestimate roughly by a factor of 
2, so that the following values are not numerically correct and the conclusion is wrong], 
and these forces (by corol. 14 Prop. LXVI, Book I.) are as the densities of the bodies of 
the moon and of the sun and the cubes of the apparent diameters conjointly ; the density 
of the moon will be to the density of the sun as 4,4815 to 1 directly, and the cube of the 
diameter of the moon to the cube of the diameter of the sun inversely : that is (since the 
mean apparent diameters of the moon and sun shall be 1

231  16''  and 32 12' . , ' . " ) as 4891 to 
1000. But the [mean] density of the sun was to the density of the earth as 1000 to 4000; 
and therefore the density of the moon is to the density of the earth as 4891 to 4000 or 11 
to 9. Therefore the body of the moon is more dense that our earth. 
 
 Corol. 4. And since the true diameter of the moon from astronomical observations shall 
be to the true diameter of the earth as 100 to 365 the mass of the moon to the mass of the 
earth shall be as 1 to 39,788. 
 
 Corol. 5. And the gravitational acceleration on the surface of the moon will be as if 
three times smaller than the acceleration of gravity on the surface of the earth. 
 
 Corol.6. And the distance of the centre of the moon from the centre of the earth will be 
to the distance of the centre of the moon from the common centre of gravity of the earth 
and the moon, as 40,788 to 39,788. 
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 Corol. 7. And the mean distance of the centre of the moon from the centre of the earth 
in the lunar octants will be approximately 2

560 of the maximum earth radii. For the 
maximum radius of the earth became 19658600 Parisian feet, and the mean distance of 
the centres of the earth and the moon from 2

560  constant radii [these are called diameters 
in the original] of this kind, is equal to 1187379440 feet. And this distance (by the above 
corollary) is to the distance of the centre of the moon from the common centre of gravity 
of the earth and the moon, as 40,788 to 39,788: and thus the latter distance is 158268534 
feet.  And since the moon is revolving with respect to the fixed stars, in 27 days, 7 hours, 
an 4

943  minutes; the versed sine of the angle, that the moon will describe in a time of one 
minute, is 12752341 parts, for a radius of 1000,000000,000000 parts. And as the radius is 
to this versed sine, thus as 1158268534 feet is to 14,7706353 feet. Therefore the moon, by 
that force by which it is held in orbit, by falling towards the earth, describes a distance of  
14,7706353 feet in a time of one minute.  And by increasing this force in the ratio 

29 29
40 40178  to 177 ,  the total force of gravity of the moon in orbit will be had, by the corol. 

of Prop. III. And by this force the moon by falling for a time of one minute describes a 
distance of 14,8538067 feet. And to the sixtieth part of the distance of the moon from the 
centre of the earth, that is to the distance of 197896573 feet from the centre of the earth, a 
heavy body in a time of one minute will also describe a distance of 14,853067. And thus 
at the distance of 19615800 feet,  which is the mean radius of the earth, a weight by 
falling describes 15,11175 feet, or 15 feet, 1 inch, and lines 1

114  [a line was the twelfth 
part of an inch]. This will be the descent of bodies at 450 latitude. And by the table 
described in the preceding Prop. XX, the descent will be a little greater arising at the 
latitude of Paris by an excess of as much as the 2

3  parts of a line. Therefore a weight 
through this computation by falling in a vacuum at the latitude of Paris, describes around 
15ft,, 1inch, and 25

334  lines in a time of one second. And if the weight may be diminished 
by taking away the centrifugal force, which arises from the diurnal motion of the earth at 
that latitude, then weights by falling there describe15 feet,1 inch, and 1

21  lines in a time of 
one second. And a weight had been shown above in Prop. IV and XIX to be falling with 
this speed at the latitude of Paris. 
 
 Corol.8. The mean distance between the centres of the earth and of the moon at 
syzygies is 60 of the earth's maximum radius, with around a 30th part of the radius taken 
away. And in quadrature the mean distance of the moon from the same centres is 5

660  
earth radii.  For these two distances are to the mean distance of the moon in the octants as  
69 and 70 to 1

269  by Prop. XXVIII. 
 
 Corol.9. The mean distance between the centres of the earth and the moon in the lunar 
syzygies is 1

1060  radii of the mean earth radius. And in the lunar quadratures the mean 
distance of the same centres is 61 mean radii of the earth, with the 30th part of a radius 
taken away. 
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 Corol.10. In the lunar syzygies, its mean horizontal parallax at the latitudes of  
0 0 0 0 0 0 00  30  38  45  52  60  90, , , , , , , is 

57  20  57 16", 57  14  57  12  57  10  57  8"  57  4' . ", ' . ' . ", ' . ,", ' . ", ' . , ' . " respective.  
 
[This quantity of almost 10 can be considered as the difference in the angle the moon 
subtends against the fixed stars, by viewing the moon vertically at one place on the earth, 
and horizontally at another.] 
 
In these computations I have not considered the magnetic attraction of the earth, as its 
quantity is very little and it has been ignored. Indeed if whenever this attraction will be 
able to be investigated, then all the measurements of degrees at the meridian, the lengths 
of isochronous pendulums at different places, the laws of motion of the seas, the parallax 
of the moon, the different apparent diameters of the sun and moon, will have to be 
determined more carefully from the phenomena: then one would be permitted to repeat all 
these calculations more accurately. 
 

PROPOSITION XXXVIII. PROBLEM XIX. 
To find the figure of the body of the moon. 

 
 If the lunar body were fluid just like our seas, the force of the earth required to raise 
that fluid into parts both nearest and furthest from the earth, would be to the force by 
which our sea is raised in parts both under the moon and opposite the moon, as the 
acceleration of gravity of the moon on the earth is to the gravitational acceleration of the 
earth on the moon, and the diameter of the moon to the diameter of the earth conjointly : 
that is, as 39,788 to 1 and 100 to 365, or as 1081 to 100. From which since our sea is 
raised to 3

58  feet by the force of the moon, the lunar fluid by the force of the earth must be 
raised to 93 feet. And for that reason the figure of the moon must be a spheroid, of which 
the maximum diameter produced passes through the centre of the earth, and exceeds the 
perpendiculars by an excess of 186 feet. Therefore the moon affects such a figure, and the 
same must endure from the beginning. Q.E.I. 
 
 Corol. Hence indeed it shall be for this reason that the same face of the moon is always 
turned towards the earth. For the moon cannot be at rest in any other situation, but by 
oscillating always returns to that situation. Yet the oscillations, on account of the 
smallness of the forces of agitation, have to be the slowest, acting over a long period of 
time : and thus so that that face, which must always look towards the earth, can look 
towards the other focus of the moon's orbit (on account of the reason referred to in Prop. 
XVII), and cannot at once be turned to look away from the earth. 
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LEMMA I. 

 If  APEp may designate an earth of uniform density, with centre C and with the poles 
P, p  and with the equator delineated by the line AE; and furthermore from the centre C 
and with the [smallest] radius CP, the sphere Pape is understood to be described ; 
moreover QR shall be a plane, to which the right line drawn from the centre of the sun to 
the centre of the earth stands normally; and the individual particles of all the exterior 
part of the earth PapAPepE, only those particles which have been described beyond the 
sphere will try to recede thence from the plane QR, and the attempt of each particle to 
recede shall be as its distance from the plane. 
 
 [This Lemma starts the calculation of the torque exerted on the earth by the sun due to 
the equatorial bulge of the earth, as the earth rotates about an axis at an angle of 23.50 to 
the normal to the plane of the ecliptic. The forces acting away from the plane QR towards 
the sun arise from the inverse square law applied at the slightly shorter distance than 
average at the centre of the earth, while those in the opposite direction away from the sun 
arise from the slightly smaller than average inverse square forces. Such forces are 
proportional to their distance from the plane QR, and exert a torque along an axis formed 
by the intersection of the plane of the equator with the plane QR. There is an uncertainty 
about this proposition, as the particles within the inner sphere are not supposed to 
contribute to the bulge by having an unbalanced force acting on them] 
 
  I say in the first place, that the total force and effectiveness [i.e. the torque] in making 
the earth rotate around its centre [i.e. precess], of all the particles that have been placed 
in the plane of the equator AE, and which are arranged regularly around the globe in the 
form of a ring, will be to the whole force exerted by an equivalent number of particles 
placed at the point A of the equator, which shall be maximally distant from the plane QR, 
and which constitute a similar force and effectiveness for the circular motion [i.e. 
precession] of the earth moving around its centre, in the ratio one to two. And this 
circular motion will be carried out around the axis lying in the common section of the 
equator and the plane QR.  
 
[The diagram below is actually in three dimensions : and represents the earth with its axis 
Pp tilted to the plane of the ecliptic, which is itself normal to the plane QR, and both 
planes can be imagined to extend out of the plane of the diagram (note that Newton calls 
QR a plane and not a line); the line AE is then the outermost part of the permanent 
semicircular equatorial bulge as viewed normally, and the lines AH, FG, etc. are the 
perpendicular distances of points on this bulge to the plane QR of the average distance to 
the sun, passing through the centre of the earth C. Thus, the axis normal to the plane of 
the diagram passing through C is the one about which the torques act (according to the 
right-hand thumb rule, with the thumb pointing out of the plane of the page), due to the 
equal and opposite attractions of the sun on the equatorial bulges in front of and behind 
the earth w.r.t. the sun, leading to an unbalanced torque acting on the earth, which thus 
precesses slowly about its angular momentum vector direction Pp. The component of the 
torque described normal to Pp, performs this task ; and which is proportional to the whole 
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torque acting, because of the constant angle. The first Lemma shows that the torque acting 
on all the points on the bulge at the equator added together is half the torque required to 
produce the same motion with all the equatorial mass of the bulge placed at A, directly 
under the sun, at the maximum separation from the plane QR ; note that the mass of a line 
or curve can be taken as proportional to its length, as detailed in Lemma III below. We 
may visualise the arch starting at C out of the plane, passing through A and going behind 
the plane of the diagram. Note that we should use phrases such as moment of inertia and 
angular momentum with due caution, as these notions came later from Euler's work on 
mechanics. This then is Newton's excursion into the realm of extended bodies acted on by 
torques, rather than particles being acted on by forces. It is then perhaps inappropriate to 
consider these lemmas from the point of view of vector calculus, as Chandrasekhar does. 
The approach adopted by the old faithful Le Seur and Jacquier is probably more useful.] 

 
 For with centre K and diameter IL the semicircle INLK is described. It may be 
understood that the semi circumference INL has been divided into innumerable equal 
parts, and from each of the individual parts N the sine NM may be sent to the diameter IL. 
And the sum of the squares from all the sines NM will be equal to the sum of the squares 
from all the [co]sines KM, and both sums will be equal to the sum of the squares from the 
whole radius KN; and thus the sum of the squares from all NM is half as large as the sum 
of the squares from the whole radius KN.  
[Thus, from a more modern viewpoint, the moment of inertia of the semicircular arch 
through K normal to the diagram is twice as great as the moment of inertia about either 
diameter IL or the vertical one through K in the plane of the diagram. Physically, the 
torque required to generate the same angular speed is twice as great in the first case than 
in the following two equal cases.] 
 Now the perimeter of the circle AE may be divided into just as many equal parts, and 
from any of these F a perpendicular FG is sent to the plane QR, just as the perpendicular 
AH is sent from the point A. And the force, by which a small particle F tries to recede 
from the plane QR, will be by hypothesis as that perpendicular FG, and this force 
multiplied by the distance CG will be the effectiveness [i.e. the word Newton uses here 
for torque] of the small particle F in turning the earth about its centre [i.e. about an axis 
normal to the plane of the diagram, passing through C]. And thus the effectiveness of the 
particle at the place F, will be to the effectiveness of the particle at the place A, as 

 to  FG GC AH HC× × , that is, as 2 2 to  FC AC  ;  
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[For the ratio  to  FG GC AH HC× × or FG GC FC FC

AH HC AC AC
×
× = ×  by the similar triangles AHC 

and FGC. Thus the torques are as the equivalent moments of inertia. For, the sum of all 
the terms 2 2 2 2FC .dm KM .dm AC d cosσ θ θ= = , and the summations give 

( ) 1
2

2 2 2 2
2

M M
.AC ACi

i
FC . M AC d cos ACπΔ θ θ= = ×∑ ∫ , where AC KN= , and where 

AC. M MΔ = ; while ( )2 2M
AC

i
AC . M ACΔ = ×∑ ,  thus giving the required ratio. Thus, the 

torque produced by the annulus is half the torque exerted by the whole mass placed at A 
required to produce the same motion, where both the force and distance are a maximum. ]   
  
and therefore the total effectiveness of all the particles in the positions of F will be to the 
effectiveness of an equivalent number of particles at the place A, as the sum of all FC2 to 
the sum of just as many AC2, that is (as now shown) as one to two. 
Q. E. D. 
 
 And because the particles exert forces by receding perpendicularly from the plane QR, 
and that equally from each side of the plane: the same will cause the circumference of the 
equatorial circle to turn, and with that holding fast to the earth, around both the axis lying 
in that plane QR as well as that in the plane of the equator.  
 
 

LEMMA II. 
 With these in place: in the second place I say that the force and the effectiveness of all 
the individual particles situated on both sides outside the globe, for making the earth 
rotate [i.e. precess] around the same axis, shall be as the total force of just as many 
particles set out uniformly on the equator of the circle AE in the manner of a ring, to set 
the earth moving in a similar circular motion, as two to five. 
[Thus, if we sum over the whole bulge, it will exert a torque equal to 2

5
th of the torque 

provided by a uniform ring with the same number of particles in the bulge over the 
equator at the maximum distance.] 
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 Let IK be some smaller circle parallel to the equator AE, and L, l shall be any two equal 
particles placed on this circle beyond the globe Pape. And if perpendiculars LM, lm are 
sent to the plane QR, that has been drawn perpendicularly to a ray from the sun: the total 
forces, by which these particles flee from the plane QR, will be proportional to these 
perpendiculars  LM and lm. But the right line Ll [lying under the arc Ll] shall be parallel 
to the plane Pape, and is bisected by the same at X and through the point X there is drawn 
Nn, which shall be parallel to the plane QR and crosses the perpendiculars LM, lm at N 
and n, and the perpendicular XY may be sent to the plane QR. And the opposite forces of 
the particles L and l, rotating in opposite directions to the earth, are as the forces  
 
[here and subsequently, Newton uses the word force, but clearly as the quantities are 
forces times perpendicular distances from the vertical axis through C,  these are moments 
or torques] 
 

 and  LM MC lm mC× × , that is, as LN MC NM MC× + × and ln mC nm mC× − × , or 
 and  LN MC NM MC LN mC NM mC× + × × − × : and the difference of these  

LN Mm NM MC mC× − × + ,  is the force [i.e. resultant torque] of both the particles taken 
together required to rotate the earth [i.e. precess].  
 The positive part of this difference :  or 2LN Mm LN NX× ×  is to force of two particles 
of the same magnitude put in place at A , 2 22  as   to AH HC, LX AC× .   
 And the negative part : NM MC mC× + or 2XY CY× is to the force of the same two 
particles put in place at A, 2 22  as  to AH HC, CX AC× .  
 And hence the difference of the parts, that is, the force  of the two particles  L & l taken 
together at the place A required to turn the earth is to the force of the same two equal 
particles situated in the same place turning the earth in the same manner, as 

2 2 2 to LX CX AC− . [By part of Lemma I.] 
 But if the circumference IK of the circle may be divided into innumerable equal parts  
L, all the terms LX2 will be to a comparable number of terms IX2 as 1 to 2 (by applying the 
same argument as in Lemma I.) and as a consequence to a like number particles in AC2, as 
IX2 to 2AC2; and the equivalent number of particles in CX2 to just as many in AC2 is as 
2CX2 to 2AC2 [i.e. this ratio is maintained, and written as shown for later convenience in 
subtracting.].  



Isaac NEWTON:  Philosophiae Naturalis Principia Mathematica. 3rd Ed.  
 

Book III Section III. 
Translated and Annotated by Ian Bruce.                                        Page 855 

[Thus, 
( ) ( )2 2

2 2
1
2= =

i ii ii i

i

m LX m LX

IX m M IX

∑ ∑

∑ ×
,  and 

( ) 2
2

2 22
=

i ii

i

m LX
IX

AC m AC

∑

∑
; while 

2 2

2 2
2
2

CX CX
AC AC

= ; hence the total 

torques acting at A are as 2 2 22  to 2IX CX AC− .] 
 
Whereby the forces of all the particles taken together in the course of the circle IK are to 
the forces taken together of just as many particles at the place A, as 

2 2 22  to  2IX CX AC− : and therefore (by Lem. 1.) to the forces  taken together of an 
equivalent number of the particles on the circumference of the circle AE, as 

2 2 22  to  IX CX AC− .  
[Thus, a circuit of the bulge has been replaced by a mass at A, and then this mass is 
distributed about the equatorial ring AE, and as the distance of the masses is now variable 
to the plane QR, the torque is decreased to half its maximum value, according to Lemma 
I.] 
 Now truly if the diameter of the sphere Pp may be divided into innumerable equal 
parts, in which there are present just as many circles IK; the matter in the perimeter of 
each circle  IK will be as  IX2 : [Recall that all the matter in the ring IK was put at this 
position above, where it exerted the maximum torque for that ring; and which matter is 
proportional to the length of the IX, so that the quantity of motion is taken as  IX 2   .], and 
thus the force of that matter requiring to rotate the earth will be as IX 2  into 2 22IX CX− .  
But the force of the same matter, if it shall be present in the circumference of the circle  
AE, shall be as  IX 2  into AC2. And therefore the force [torque] of all the particles of all 
the matter, outside the globe present in the perimeters of all the circles [constituting the 
bulge], is to the force of just as many particles present in the perimeter of the great circle 
AE, as all IX 2 by 2 22IX CX− to just as many IX2 by AC2, that is, as all 

2 2 2 2 by  3AC CX AC CX− − to just as many 2 2 2 into  AC CX AC− ,  
 
[For from the centre C, to the point I, the right line CI is supposed to be drawn, and there 
will be 2 2 2IX CI CX= − : but CI AC= , whereby 2 2 2IX AC CX= − , and hence the total 
number of particles by their appropriate torques,  

( ) ( ) ( )2 2 2 2 2 2 22 3IX IX CX AC CX AC CX× − = − × − .]  

that is, as the whole of 4 2 2 44 3AC AC CX CX− × + to just as many 4 2 2AC AC CX− × , 
that is, as the total fluent quantity, the fluxion of which is 4 2 2 4 3AC AC CX CX− × + , to 
the total fluent quantity , the fluxion of which is 4 2 2AC AC CX− × ;  
and hence by the method of fluxions, as  34

3 5
4 2 3 5AC CX AC CX CX× − × + to 

1
3

4 2 3AC CX AC CX× − × , that is, if the total Cp or AC may be written for CX, as 
4 2

15 3
5 5 to AC AC , that is, as two is to five. Q.E.D. 
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[The quantities 4 2 2 44 3AC AC CX CX− × + and 4 2 2AC AC CX− × , taken multiplied 
together by the fluxion of the line CX, and with the fluents taken, will be the fluent of the 
first quantity 34

3 5
4 2 3 5AC CX AC CX CX× − × + ; but the fluent of the second quantity 

becomes 1
3

4 2 3AC CX AC CX× − × , and from that the total effectiveness may be obtained, 
for CX there is written Cp or AC, the first fluent to the second fluent will be as 

4 2
15 3

5 5 to AC AC , giving the ratio quoted. (A note from L. & S.). Basically, the torque 
required to rotate the extended shell around earth is 2

5
th of the torque required to rotate a 

uniform ring of the same mass about the earth with the same angular acceleration.] 
 
[Chandrasekhar establishes a result similar to this by modern methods, but he appears to 
have solved a different problem, involving the moment of inertia of the whole earth and 
solid discs. The results as stated here are also shown by Cohen.] 

 
LEMMA III. 

 With the same in place: I say in the third place that the motion of the whole earth 
about the axis already described, composed from the sum of all the motions of the 
particles, will be to the motion of the aforesaid ring around the same axis in a ratio, 
which is composed from the ratio of the matter in the earth to the matter in the ring, and 
in the ratio of three times the square of the arc of the quadrant of some circle to twice the 
square of the diameter ; that is, in the ratio of the matter in the ring to the matter in the 
earth, and of number  925275 to the number 1000000. 
[This ratio amounts to

23
32
π ] 

 For the motion of a cylinder revolving about its fixed axis is to the motion of the 
inscribed sphere and likewise rotating, as any four equal squares are to three circles 
inscribed in these squares ; and the motion of the cylinder to the motion of a very thin 
ring,  going around with the sphere and the cylinder at their common point of contact, as 
twice the matter in the cylinder to three times the matter in the ring ; and the continued 
uniform motion of this ring around the axis of the cylinder is to its uniform motion around 
its own, made in the same periodic time, as the circumference of the circle to twice the 
diameter. 
 
[L. & J. Note 126:  Lemma III is demonstrated. By rotating the semicircle AFB, and the 
circumscribed rectangle 
AEDB of the same, a 
sphere and a circumscribed 
cylinder may be described. 
Let the radius 1CB = , the 
periphery of the circle 
described in this ratio 

( )or 2n, ,π= the abscissa 
CP x= , the ordinate 
PM y= , some part of this 
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PR v= , rR dv= ; the periphery of the circle described with the radius PR is 2π v; the 
circular ring from the revolution of the line increment 2rR vdvπ= ; the velocity of the 
point R v= ; (taking the angular velocity as 1 for convenience and setting the density as 1, 
so that the mass and volume are given by the same variable ; thus the angular momentum 
considered – here called the motion, for a given increment is the volume times the radius) 
the motion of the aforementioned ring 22 v dvπ= , the motion of the whole circle described 
(i.e. disc with unit thickness) with the radius PR 2

3
3vπ= ; the motion of the whole disc with 

unit thickness described with the radius PM 2
3

3yπ= ; the motion of the unit disc described 
with the radius PN 2

3
π= , and the motion of the whole cylinder 4

3
π= . 

 Let Pp dx= ; the motion of the solid ring described by the revolution of the figure 

PMmp is equal to ( )
3
22 2 2

3 3 3
3 2 31y dx dx x sin d sinπ π π θ θ θ= × − = ×− × ,  on setting x cosθ= .   

From which the motion of the solid figure of revolution of figure described CFMB 
is equal to 22

3 8
4sin d .π πθ θ =∫  Therefore the motion of the half cylinder to the motion of 

the hemisphere is as 
2

2
3 8 to  or 16 to 3π π π ; that is, as some four equal squares 24 2 16× =  

to three  circles with 21π × ; and so for the whole cylinder and sphere. 
 The most tenuous matter of the ring going around touching the sphere and the cylinder 
adjacent to the common point F shall be at the height m, and the velocity shall be as CF, 
or as 1; and thus the motion m= , and thus the motion (or angular momentum) of the 
cylinder to the motion of this ring is 4

3 to mπ , or as 4π  to 3m, that is, as twice the matter 
in the cylinder (taken as its volume) to three times the matter in the ring; for the base of 
the cylinder is the circle 21π ×  and the diameter height 2AF = , and thus the cylinder 

2π= . The matter of the aforesaid ring shall be 2 2a . π (where a2 is the line density), and 
thus the motion around the axis of the cylinder itself 2 2a . π= . Now likewise the ring may 
be revolving around  closer to the axis that the diameter AB may be showing, and the 
particles of the matter of the arc corresponding to the infinitesimal Mm, will be 2a Mm×  
and the motion of this 2 2a y Mm a dx× = , on account of the proportion 

( )
( )
( )

1CM i.e.arc Mm
mH or dx PM i.e. y= . Whereby the motion of the part FM, of the ring is 2a x , and by 

making 1x = , the motion of the quadrant of the ring 2a= ; and the motion of the whole 
ring nearer the axis is 24a= . Therefore the motion of the ring about the axis of the 
cylinder to its motion about the nearer axis is as 2 22  to 4a . aπ , or as 2π  to 4 ; that is, as 
the circumference of the circle 2π  to twice the diameter 4. On account of which we have 
the ratios :  
 
the motion of the cylinder to the motion of the sphere is as                   16 to 3  π  ;                                            
the motion of the ring around the axis of the cylinder is to the motion of the cylinder as 
                                                                                                                 4

3 to m π ; 
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and the motion of the ring around the nearer axis is to its  
motion around the axis of the cylinder as                                                 4 to 2 .π                                               
Whereby, by the composition of the ratios and from the equation, the motion of the sphere 

around the closer axis is to the motion of the ring as ( )32  to 64 .mπ  But
24 123

3 168
64 8=m m

π ππ ×
× , and 

4
3
π is the quantity of matter in the earth of radius 1; m, the quantity of matter in the 

ring;
212

16
π  is the sum of three squares from the arc of the circle AFB, and 8 is the sum of 

two squares from the diameter AB. Whereby the motion of the whole earth around the 
axis now described, composed from the motions of all the particles, will be to the motion 
of the aforesaid ring around the same axis, in the ratio that is composed from the ratio of 
the matter of the earth to the matter in the ring, and from the ratio of three squares from 
the arc of the quadrant of some circle to two squares from the diameter, that is, in the ratio 
of the matter to the matter and the number 925275 to the number 1000000 or 

23
32
π , with 

the ratio of the diameter to the periphery taken approximately as 1 to 3.141 
approximately. Q.e.d.] 
 
 

HYPOTHESIS II. 
 If the aforesaid ring, with all of the remaining earth removed, alone may be carried in 
orbit around the sun in its annual motion, and meanwhile revolving in a diurnal motion 
around its axis inclined to the plane of the ecliptic at an angle of 1

223  degrees : likewise 
the motion of the equinoctial points shall be the same, whether the annulus shall be fluid 
or constructed from rigid and firm matter. 
 

PROPOSITION XXXIX. PROBLEM XX. 
To find the precession of the equinoxes. 

 
 The mean hourly motion of the lunar nodes in a circular orbit, when the nodes are in 
quadrature, was iv v16 35 16 36" . "' . . , and the mean hourly motion of the nodes in such an 
orbit is half of this iv v8 17 38 18" . "' . .  (on account of the reasons explained above); and in a 
sidereal year in total it shall be gr20 11  46. ' . " . Therefore because in the preceding the 
lunar nodes in such an orbit put such an annual amount in place gr20 11  46. ' . " ; and if 
there were several moons, the motion of the nodes of each (by Corol. 16. Prop. LXVI. 
Book I.) would become as the periodic times ; if a moon were revolving next to the 
surface of the earth in the space of a sidereal day, the annual motion of the nodes would 
be to  gr20 11  46. ' . " as the sidereal day of 23. 56' hours to the periodic time of the moon of 
27 days, 7 hours, 43minutes ; that is, as 1436 to 39343. And the ratio of the nodes of a 
ring of moons around the earth is the same ; whether these moons do not affect each 
other, or they merge together and form a continuous ring,  or in fact that ring may be 
rendered rigid and inflexible. 
 Therefore we may consider that this ring as a quantity of matter that shall be equal to 
all the earth PapAPepE which is above the globe Pape; (See the figure for Lemma II ) and 
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because such a globe is to the earth above as  aC2 to 2 2AC aC− , that is (since the smaller 
radius of the earth PC or aC shall be to the greater radius AC as 229 to 230) as 52441 to 
459; if this ring should surround the earth around the equator and each were revolved 
around the diameter of the ring, the motion of the ring would be to the motion of the 
interior globe (by Lem. III of this part) as 459 to 51441 and 1000000 to 925175 
conjointly, that is, as 4590 to 485223 ; and thus the motion of the ring would be to the 
sum of the motions of the ring and the globe, as 4590 to 489813. From which if the ring 
were attached to the globe, and its motion, by which nodes of this or the equinoctial 
points were regressing, since it may share with the globe: the motion which will remain in 
the ring will be to the first motion, as 4590 to 489813; and therefore the motion of all the 
equinoctial points will be diminished in the same ratio. Therefore the annual equinoctial 
motion of all the points of the body composed from the ring and the globe will be to the 
motion  gr20 11  46. ' . " ,  as 1436 to 39343 and 4590 to 489813 conjointly, that is, as 100 to 
292369. But the forces by which the lunar nodes (as I have set out above) and thus by 
which the equinoctial points of the ring are regressing (that is the forces  3IT in the figure 
to Prop. 30) are by the individual particles as the distances of the particles from the plane  
QR, and by these forces these particles flee from that plane; and therefore (by Lem. II.) if 
the matter of the ring may be spread out over the whole globe in the manner of the figure  
PapAPepE above that part of the earth put in place, the force and the total turning effect  
of all the particles rotating around the equator of the earth in some manner, and thus to the 
movement of the equinoctial points, will emerge smaller than in that first ratio of 2 to 5. 
And thus the annual regression of the equinoxes now will be to gr20 11  46. ' . "  as 10 to 
73092 : and hence it becomes iv9  56  50" . ''' . . 
 Further this motion on account of the inclination of the plane of the equator to the 
plane of the ecliptic is to be diminished, and that in the ratio of the sine 91706 (which is 
the complement of the sine of 1

223 degrees) to the radius 100000. On which account this 

motion now becomes iv9  7  20" . ''' . . This is the annual precession of the equinoxes arising 
from the force of the sun. 
 Moreover the force of the moon requiring to move the sea was to the force of the sun 
as 4,4815 to 1 approximately. And the force of the moon required to move the equinoxes 
is in the same proportion to the force of the sun. And thence the annual precession of the 
equinoxes by the force of the moon arises : iv40  52  52" . ''' . , and thus the total annual 
precession arising from both forces will be iv50  00  12" . ''' . . And this motion agrees with 
the phenomena. For the precession of the equinoxes from astronomical observations is 
annually a little more or less than fifty minutes. 
 If the height of the earth at the equator should exceed that at the poles, by more than 

1
617  miles, its matter will be rarer at the circumference than at the centre : and the 

precession of the equinoxes on account of that height will be increased, on account of the 
rareness it must be diminished. 
 Now we have described the system of the sun, of the earth, moon and planets; it 
remains that something may be added concerning comets. 
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PROPOSITIO XXXVI. PROBLEMA XVII. 

Invenire vim solis ad mare movendum. 
 
 Solis vis ML seu PT, in quadraturis lunaribus, ad perturbandos motus lunares erat (per 
Prop. XXV. huius) ad vim gravitatis apud nos, ut 1 ad 638092,6. Et vis TM LM− seu 
2PK in syzygiis lunaribus est duplo major. Hae autem vires, si descendatur ad superficiem 

terrae, diminuuntur in ratione distantiarum a centro terrae, id est, in ratione 1
260 ad 1; 

ideoque vis prior in superficie terrae est ad vim gravitatis ut 1 ad 38604600. Hac vi mare 
deprimitur in locis, quae 90 gradibus distant a sole. Vi altera, quae duplo major est, mare 
elevatur & sub sole & in regione soli opposita. Summa virium est ad vim gravitatis ut  
1 ad 12868200. Et quoniam vis eadem eundem ciet motum, sive ea deprimat aquam in 
regionibus quae 90 gradibus distant a sole, sive elevet eandem in regionibus sub sole 
& soli oppositis, haec summa erit tota solis vis ad mare agitandum ; & eundem habebit 
effectum, ac si tota in regionibus sub sole & soli oppositis mare elevaret, in regionibus 
autem quae 90 gradibus distant a sole nil ageret. 
 Haec est vis solis ad mare ciendum in loco quovis data, ubi sol tam in vertice loci 
versatur quam in mediocri sua distantia a terra. In aliis solis positionibus vis ad mare 
attollendum est ut sinus versus duplae altitudinis solis supra horizontem loci directe & 
cubus distantia: solis a terra inverse. 
 
 Corol. Cum vis centrifuga partium terrae a diurno terrae motu oriunda, quae est ad vim 
gravitatis ut 1 ad 289, efficiat ut altitudo aquae sub aequatore superet eius altitudinem sub 
polis mensura pedum Parisiensium 85472, ut supra in Prop. XIX; vis solaris de qua 
egimus, cum sit ad vim gravitatis ut 1 ad 12868200, atque ideo ad vim illam  
centrifugam ut 289 ad 12868200 seu 1 ad 44527, efficiet ut altitudo aquae in regionibus 
sub sole & soli oppositis superet altitudinem eius in locis, quae 90 gradibus distant a sole, 
mensura tantum pedis unius Parisiensis & digitorum undecim cum tricesima parte digiti. 
Est enim haec mensura ad mensuram pedum 85472 ut 1 ad 44527. 
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PROPOSITIO XXXVII. PROBLEMA XVIII. 
Invenire vim lunae ad mare movendum. 

 
 Vis lunae ad mare movendum colligenda est ex eius proportione ad vim solis, & haec 
proportio colligenda est ex proportione motuum maris, qui ab his viribus oriuntur. Ante 
ostium fluvii Avonae ad lapidem tertium infra Bristolium, tempore verno & autumnali 
totus aquae ascensus in conjunctione & oppositione luminarium, observante Samuele 
Sturmio, est pedum plus minus 45, in quadraturis autem est pedum tantum 25. Altitudo 
prior ex summa virium, posterior ex earundem differentia oritur. Solis igitur & lunae in 
aequatore versantium & mediocriter a terra distantium sunto vires S & L, & erit 

 ad L S L S+ − ut 45 ad 25, seu 9 ad 5. 
 In portu Plymuthi aestus maris ex observatione Samuele Colepressi ad pedes plus 
minus sexdecim altitudine mediocri attollitur, ac tempore verno & autumnali altitudo 
aestus in syzygiis superare potest altitudinem eius in quadraturis pedibus plus septem vel 
octo. Si maxima harum altitudinum differentia sit pedum novem, erit  ad L S L S+ −  
ut 1 1

2 220  ad 11 seu 41 ad 23. Quae proportio satis congruit cum priore. Ob magnitudinem 
aestus in portu Bristoliae, observationibus Sturmii magis fidendum esse videtur, ideoque 
donec aliquid certius constiterit, proportionem 9 ad 5 usurpabimus. 
 Caeterum ob aquarum reciprocos motus, aestus maximi non incidunt in ipsas 
luminarium syzygias, sed sunt tertii a syzygiis ut dictum fuit, seu proxime sequuntur 
tertium lunae post syzygias appulsum ad meridianum loci, vel potius (ut a Sturmio 
notatur) sunt tertii post diem novilunii vel plenilunii, seu post horam a novilunio 
vel plenilunio plus minus duodecimam, ideoque incidunt in horam a novilunio vel 
plenilunio plus minus quadragesimam tertiam. Incidunt vero in hoc portu in horam 
septimam circiter ab appulsu lunae ad meridianum loci; ideoque proxime sequuntur 
appulsum lunae ad meridianum, ubi luna distat a sole vel ab oppositione solis gradibus 
plus minus octodecim vel novemdecim in consequentia. Aestas & hyems maxime vigent, 
non in ipsis solstitiis, sed ubi sol distat a solstitiis decima circiter parte totius circuitus, seu 
gradibus plus minus 36 vel 37. Et similiter maximus aestus maris oritur ab appulsu 
lunae ad meridianum loci, ubi luna distat a sole decima circiter parte motus totius ab aestu 
ad aestum. Sit distantia illa graduum plus minus 1

218 . Et vis solis in hac distantia lunae a 
syzygiis & quadraturis, minor erit ad augendum & ad minuendum motum maris a vi lunae 
oriundum, quam in ipsis syzygiis & quadraturis, in ratione radii ad sinum complementi 
distantiae huius duplicatae seu anguli graduum 37, hoc est. in ratione 10000000 ad 
7986355. Ideoque in analogia superiore pro S scribi debet 0,7986355 S. 
 Sed & vis lunae in quadraturis, ob declinationem lunae ab aequatore, diminui debet. 
Nam luna in quadraturis, vel potius in gradu 1

218  post quadraturas, in declinatione 
graduum plus minus 22.13' versatur. Et luminaris ab aequatore declinantis vis ad mare 
movendum vendum diminuitur in duplicata ratione sinus complementi declinationis 
quamproxime. Et propterea vis lunae in his quadraturis est tantum 0,857327 L. Est 
igitur 0 7986355  ad 0 857032 7 L  0 79863558 ut 9 ad 5L , S , . ,+ − . 
 Praeterea diametri orbis, in quo luna sine eccentricitate moveri deberet, sunt ad 
invicem ut 69 ad 70; ideoque distantia lunae a terra in syzygiis est ad distantiam eius in 
quadraturis ut 69 ad 70, caeteris paribus. Et distantiae eius in gradu 1

218  a syzygiis, ubi 
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aestus maximus generatur, & in gradu 1
218  a quadraturis, ubi aestus minimus generatur, 

sunt ad mediocrem eius distantiam ut 69,098747 & 69,897345 ad 1
269 . Vires autem lunae 

ad mare movendum sunt in triplicara ratione distantiarum inverse, ideoque vires in 
maxima & minima harum distantiarum sunt ad vim in mediocri distantia ut 
0,9830427 & 1,017522 ad 1. Unde fit 1 017522  0 7986355, L , S+  
ad 0 9830427 0 8570327 0 7986355, , L , S× − ut 9 ad 5. Et S ad L ut 1 ad 4,4815. Itaque cum 
vis solis sit ad vim gravitatis ut 1 ad 12868200, vis lunae erit ad vim gravitatis ut 1 ad 
2871400. 
 
 Corol. 1. Cum aqua vi solis agitata ascendat ad altitudinem pedis unius & undecim 
digitorum cum tricesima parte digiti, eadem vi lunae ascendet ad altitudinem octo pedum 
& digitorum 5

227  & vi utraque ad altitudinem pedum decem cum semisse, & ubi luna est 
in perigaeo ad altitudinem pedum duodecim cum semisse & ultra, praesertim ubi aestus 
ventis spirantibus adjuvatur. Tanta autem vis ad omnes maris motus excitandos abunde 
sufficit, & quantitati motuum probe respondet. Nam in maribus quae ab oriente in 
occidentem late patent, uti in mari Pacifico, & maris Atlantici & Aethiopici partibus extra 
tropicos, aqua attolli solet ad altitudinem pedum sex, novem, duodecim vel quindecim. In 
mari autem Pacifico, quod profundius est & latius patet, aestus dicuntur esse majores 
quam in Atlantico & Aethiopico. Etenim ut plenus sit aestus, latitudo maris ab oriente in 
occidentem non minor esse debet quam graduum nonaginta. In mari Aethiopico ascensus 
aquae intra tropicos minor est quam in zonis temperatis, propter angustiam maris inter 
Africam & australem partem Americae. In medio mari aqua nequit ascendere nisi ad littus 
utrumque & orientale & occidentale simul descendat: cum tamen vicibus alternis ad 
littora illa in maribus nostris angustis descendere debeat. Ea de causa fluxus & refluxus in 
insulis, quae a littoribus longissime absunt, perexiguus esset solet. In portubus 
quibusdam, ubi aqua cum impetu magno per loca vadosa, ad sinus alternis vicibus 
implendos & evacuandos, influere & effluere cogitur, fluxus & refluxus debent esse solito 
majores, uti ad Plymuthum & pontem Chepstowae in Anglia; ad montes S. Michaelis & 
urbem Abrincatuorum (vulgo Auranchies) in Normannia; ad Cambaiam & 
Pegu in India orientali. His in locis mare, magna cum velocitate accedendo & recedendo, 
littora nunc inundat nunc arida relinquit ad multa millaria. Neque impetus influendi & 
remeandi prius frangi potest, quam aqua attollitur vel deprimitur ad pedes 30, 40, vel 50 
& amplius. Et par est ratio fretorum oblongorum & vadosorum, uti Magellanici & eius 
quo Anglia circundatur. Aestus in huiusmodi portubus & fretis per impetum cursus & 
recursus supra modum augetur. Ad littora vero quae descensu praecipiti ad mare 
profundum & apertum spectant, ubi aqua sine impetu effuendi & remeandi 
attolli & subsidere potest, magnitudo aestus respondet viribus solis & lunae.  
 
 Corol.  2. Cum vis lunae ad mare movendum sit ad vim gravitatis ut 1 ad 2871400, 
perspicuum est quod vis illa sit longe minor quam quae vel in experimentis pendulorum, 
vel in staticis aut hydrostaticis quibuscunque sentiri possit. In aestu solo marino haec vis 
sensibilem edit effectum. 
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 Corol. 3. Quoniam vis lunae ad mare movendum est ad solis vim consimilem ut 4,4815 
ad 1, & vires illae (per corol. 14 Prop. LXVI, Lib. I.) sunt ut densitates corporum lunae & 
solis & cubi diametrorum apparentium conjunctim; densitas lunae erit ad densitatem solis 
ut 4,4815 ad 1 directe, & cubus diametri lunae ad cubum diametri solis inverse: id est 
(cum diametri mediocres apparentes lunae & solis sint 1

231  16''  32 12' . ,& ' . " ) ut 4891 ad 
1000. Densitas autem solis erat ad densitatem terrae ut 1000 ad 4000; & propterea 
densitas lunae est ad densitatem terrae ut 4891 ad 4000 seu 11 ad 9. Est igitur corpus 
lunae densius & magis terrestre quam terra nostra. 
 
 Corol. 4. Et cum vera diameter lunae ex observationibus astronomicis 
sit ad veram diametrum terrae ut 100 ad 365 erit massa lunae ad massam terrae ut 1 ad 
39,788. 
 
 Corol. 5. Et gravitas acceleratrix in superficie lunae erit quasi triplo minor quam 
gravitas acceleratrix in superficie terrae. 
 
 Corol.6. Et distantia centri lunae a centro terrae erit ad distantiam centri lunae a 
communi gravitatis centro terrae & lunae, ut 40,788 ad 39,788. 
 
 Corol. 7. Et mediocris distantia centri lunae a centro terrae in octantibus lunae erit 
semidiametrorum maximarum terrae 2

560  quamproxime. Nam terrae semidiameter 
maxima fuit pedum Parisiensium 19658600, & mediocris distantia centrorum terrae & 
lunae, ex huiusmodi diametris 2

560  constans, aequalis est pedibus 1187379440. 
Et haec distantia (per corollarium superius) est ad distantiam centri lunae a communi 
gravitatis centro terrae & lunae, ut 40,788 ad 39,788: ideoque distantia posterior est 
pedum 1158268534.  Et cum luna revolvatur respectu fixarum, diebus 27, horis 7, & 
minutis primis 4

943 ; sinus versus anguli, quem luna tempore minuti unius primi describit, 
est 12752341, existente radio 1000,000000,000000. Et ut radius est ad hunc sinum 
versum, ita sunt pedes 1158268534 ad pedes 14,7706353. Luna igitur vi illa, qua retinetur 
in orbe, cadendo in terram, tempore minuti unius primi describet pedes 14,7706353. Et 
augendo hanc vim in ratione 29 29

40 40178  ad 177 , habebitur vis tota gravitatis in orbe lunae 
per Corol. Prop. III. Et hac vi luna cadendo tempore minuti unius primi describet pedes  
14,8538067. Et ad sexagesimam partem distantia lunae a centro terrae, id est ad 
distantiam pedum 197896573 a centro terrae, corpus grave tempore minuti unius secundi 
cadendo describet etiam pedes 14,853067. Ideoque ad distantiam pedum 19615800, quae 
sunt terrae semidiameter mediocris, grave cadendo describet pedes 15,11175, seu pedes 
15, dig. 1, & lin. 1

114 . Hic erit descensus corporum in latitudine graduum 45. Et per 
tabulam praecedentem in Prop. XX. descriptam, descensus erit paulo major in latitudine 
Lutetitae Parisiorum existente excessu quasi 2

3  partium lineae. Gravia igitur per hoc 
computum in latitudine Lutetitae cadendo in vacuo describent tempore unius secundi 
pedes Parisienses 15, dig. 1, & lin. 25

334 circiter. Et si gravitas minuatur auferendo vim 
centrifugam, quae oritur a motu diurno terrae in illa latitudine; gravia ibi cadendo 
describent tempore minuti unius secundi pedes 15, dig. 1, & lin. 1

21 . Et hac velocitate 
gravia cadere in latitudine Lutetitae supra ostensum est ad Prop. IV, & XIX. 
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 Corol.8. Distantia mediocris centrorum terrae & lunae in syzygiis lunae est sexaginta 
semidiametrorum maximarum terrae, dempta tricesima parte semidiametri circiter. Et in 
quadraturis lunae distantia mediocris eorundem centrorum est 5

660  semidiametrorum 
terrae. Nam hae duae distantiae sunt ad distantiam mediocrem lunae in octantibus ut 69 & 
70 ad 1

269 per Prop. XXVIII. 
 
 Corol.9. Distantia mediocris centrorum terrae & lunae in syzygiis, lunae est sexaginta 
semidiametrorum mediocrium terrae cum decima parte semidiametri. Et in quadraturis 
lunae distantia mediocris eorundem centrorum est sexaginta & unius semidiametrorum 
mediocrium terrae, dempta tricesima parte semidiametri. 
 
 Corol.10. In syzygiis lunae parallaxis eius horizontalis mediocris in latitudinibus 
graduum 0  30  38  45  52  60  90, , , , , , , est  
57  20  57 16", 57  14  57  12  57  10  57  8"  57  4' . ", ' . ' . ", ' . ,", ' . ", ' . , ' . " respective. 
In his computationibus attractionem magneticam terrae non consideravi, cuius utique 
quantitas perparva est & ignoratur. Siquando vero haec attractio investigati poterit, & 
mensurae graduum in meridiano, ac longitudines pendulorum isochronorum in diversis 
parallelis, legesque motuum maris, & parallaxis lunae cum diametris apparentibus 
solis & lunae ex phaenomenis accuratius determinare fuerint: licebit calculum hunc 
omnem accuratius repetere. 
 

PROPOSITIO XXXVIII. PROBLEMA XIX. 
Invenire figuram corporis lunae. 

 
 Si corpus lunare fluidum esset ad instar maris nostri, vis terrae ad fluidum illud in 
partibus & citimis & ultimis elevandum esset ad vim lunae, qua mare nostrum in partibus 
& sub luna & lunae oppositis attollitur, ut gravitas acceleratrix lunae in terram ad 
gravitatem acceleratricem terrae in lunam, & diameter lunae ad diametrum terrae 
conjunctim; id est, ut 39,788 ad 1 & 100 ad 365, seu 1081 ad 100. Unde cum mare 
nostrum vi lunae attollatur ad pedes 3

58 , fluidum lunare vi terrae attolli deberet ad pedes 
93. Eaque de causa figura lunae sphaerois esset, cuius maxima diameter producta 
transiret per centrum terrae, & superaret diametros perpendiculares excessu pedum 186. 
Talem igitur figuram luna affectat, eamque sub initio induere debuit. Q.E.I. 
 
 Corol. Inde vero sit ut eadem semper lunae facies in terram obvertatur. In alio enim 
situ corpus lunare quiescere non potest, sed ad hunc situm oscillando semper redibit. 
Attamen oscillationes, ob parvitatem virium agitantium, essent longe tardissimae: adeo ut 
facies illa, quae terram semper respicere deberet, possit alterum orbis lunaris 
umbilicum (ob rationem in Prop. XVII allatam) respicere, neque statim abinde retrahi & 
in terram converti. 
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LEMMA I. 
 Si APEp terram designet uniformiter densam, centroque C & polis P, p  & aequatore 
AE delineatam; & si centro C radio CP describi intelligatur sphaera Pape; sit autem QR 

planum, cui recta a centro solis ad centrum terrae ducta normaliter insistit; & terrae 
totius exterioris PapAPepE, quae sphaera modo descripta altior est, particulae singulae 
conentur recedere hinc inde a plano QR, sitque conatus particulae cuiusque ut eiusdem 
distantia a plano: Dico primo, quod tota particularum omnium in aequatoris circulo A E, 
extra globum uniformiter per totum circuitum in morem annuli dispositarum, vis & 
efficacia ad terram circum centrum eius rotandam, sit ad totam particularum totidem in 
aequatoris puncto A, quod a plano QR maxime distat, consistentium vim & efficaciam, ad 
terram consimili motu circular; circum centrum eius movendam, ut unum ad duo. Et 
motus iste circularis circum axem, in communi sectione atequatoris & plani QR jacentem, 
peragetur.  
 
 Nam centro K diametro IL describatur semicirculus INLK. Dividi intelligatur 
semicircumferentia INL in partes innumeras aequales, & a partibus singulis N ad 
diametrum IL demittantur sinus NM. Et summa quadratorum ex sinibus omnibus NM 
aequalis erit summae quadratorum ex sinibus KM, & summa utraque aequalis erit summae 
quadratorum ex totidem semidiametris KN; ideoque summa quadratorum ex omnibus NM 
erit duplo minor quam summa quadratorum ex totidem semidiametris KN. Jam dividatur 
perimeter circuli AE in particulas totidem aequales, & ab earum unaquaque F ad planum 
QR demittatur perpendiculum FG, ut & a puncta A perpendiculum AH. Et vis, qua 
particula F recedit a plano QR, erit ut perpendiculum illud FG per hypothesin, & haec vis 
ducta in distantiam CG erit efficacia particulae F ad terram circum centrum eius 
convertendam. Ideoque efficacia particulae in loco F, erit ad efficaciam particulae in loco 
A, ut  ad FG GC AH HC× × , hoc est, ut 2 2 ad  FC AC ; & propterea efficacia tota 
particularum omnium in locis suis F erit ad efficaciam particularum totidem in loco A, ut 
summa omnium FC2 ad summam totidem AC2, hoc est (per jam demonstrata) ut unum ad 
duo. 
Q. E. D. 
 Et quoniam particulae agunt recedendo perpendiculariter a plano QR, idque aequaliter 
ab utraque parte huius plani: eaedem convertent circumferentiam circuli aequatoris,  eique 
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inhaerentem terram, circum axem tam in plano illo QR quam in plano aequatoris 
jacentem. 
 

LEMMA II. 
 Iisdem positis: dico secundo quod vis & efficacia tota particularum omnium extra 
globum undique sitarum, ad terram circum axem eundem rotandam, sit ad vim totam 
particularum totidem, in aequatoris circulo AE uniformiter per totum circuitum in morem 
annuli dispositarum, ad terram consimili motu circular; movendam, ut duo ad quinque. 
 
 Sit enim IK circulus quilibet minor aequatori AE parallelus, sintque L, l particulae duae 
quaevis aequales in hoc circulo extra globum Pape sitae. Et si in planum QR, quod radio 
in solem ducto perpendiculare est, demittantur perpendicula LM, lm: vires totae, quibus 
particulae illae fugiunt planum QR, proportionales erunt perpendiculis illis LM, lm. Sit 
autem recta Ll plano Pape parallela  & bisecetur eadem in X & per punctum X agatur Nn, 
quae parallela sit plano QR & perpendiculis LM, lm occurrat in N ac n, & in planum QR 
demittatur perpendiculum XY. Et particularum L & l vires contrariae, ad terram in 

contrarias partes rotandam, sunt ut   LM MC & lm mC× × , hoc est, ut 
LN MC NM MC× + × & ln mC nm mC× − × , seu 

 LN MC NM MC & LN mC NM mC× + × × − × : & harum differentia 
LN Mm NM MC mC× − × +  est vis particularum ambarum simul sumptarum ad terram 
rotandam. Huius differentia: pars affirmativa  seu 2LN Mm LN NX× × est ad particularum 
duarum eiusdem magnitudinis in A consistentium vim 

2 22  ut   ad AH HC, LX AC× .  Et pars negativa NM MC mC× +  
seu 2 XY CY× ad particularum earundem in A consistentium vim 

2 22  ut ad AH HC, CX AC× . Ac proinde partium differentia, id est, particularum duarum L 
& l simul sumptarum vis ad terram rotandam est ad vim particularum duarum iisdem 
aequalium & in loco A consistentium ad terram itidem rotandam, ut 2 2 2 ad LX CX AC− . 
Sed si circuli IK circumferentia IK dividatur in particulas innumeras aequales L, erunt 
omnes LX2 ad totidem IX2 ut 1 ad 2. (per lem.1.) atque ad totidem AC2, ut IX2 ad 2AC2; & 
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totidem CX2 ad totidem A est ut 2CX2  ad 2AC2. Quare vires coniunctas particularum 
omnium in circuitu circuli IK sunt ad vires conjunctas particularum totidem in loco A, ut 

2 2 2 2  ad 2IX CX AC− : & propterea (per lem. 1.) ad vires conjunctas particularum 
totidem in circuitu circuli AE, ut 2 2 22  ad IX CX AC− . 
 Jam vero si sphaerae diameter Pp dividatur in partes innumeras aequales, quibus 
insistant circuli totidem IK; materia in perimetros circuli cuiusque IK erit ut IX2: ideoque 
vis materiae illius ad terram rotandam, erit ut IX 2  in 2 22IX CX− . Et vis materiae 
ejusdem, si in circuli AE perimetro consisteret, esset ut IX 2  in AC2. Et propterea vis 
particularum omnium materiae totius, extra globum in perimetris circulorum omnium 
consistentis, est ad vim particularum totidem in perimetro circuli maximi AE consistentis, 
ut omnia IX 2 in 2 22IX CX− ad totidem IX2 in AC2, hoc est, ut omnia 

2 2 2 2 in  3AC CX AC CX− − ad totidem 2 2 2 in  AC CX AC− , id est, ut omnia 
4 2 2 44 3AC AC CX CX− × + ad totidem 4 2 2AC AC CX− × , hoc est, ut tota quantitas 

fluens, cuius fluxio est 4 2 2 4 3AC AC CX CX− × + , ad totam quantitatem fluentem, cuius 
fluxio est 4 2 2AC AC CX− × ; ac proinde per methodum fluxionum, ut  

34
3 5

4 2 3 5AC CX AC CX CX× − × + ad 1
3

4 2 3AC CX AC CX× − × , id est, si pro CX scribatur 

tota Cp vel AC, ut 4 2
15 3

5 5  AC ad AC . hoc est, ut duo ad quinque. Q.E.D. 
 

LEMMA III. 
 Iidem positis: dico tertio quod motus terrae totius circum axem jam ante descriptum, 
ex motibus particularum omnium compositus, erit ad motum annuli praedicti circum 
axem eundem in ratione, quae componiiur ex ratione materiae in terra ad materiam in 
annulo, & ratione trium quadratorum ex arcu quadrantali circuli cuiuscunque ad duo 
quadrata ex diametro; id est, in ratione materiae ad materiam & numeri 925275 ad 
numerum 1000000. 
 
 Est enim motus cylindri circum axem suum immotum revolventis ad motum sphaerae 
inscriptae & simul revolventis, ut quaelibet quatuor aequalia quadrata ad tres ex circulis 
sibi inscriptis; & motus cylindri ad motum annuli tenuissimi, sphaeram & cylindrum ad 
communem eorum contactum ambientis, ut duplum materiae in cylindro ad triplum 
materiae in annulo; & annuli motus iste circum axem cylindri uniformiter continuatus, ad 
eiusdem motum uniformem circum diametrum propriam, eodem tempore periodico 
factum, ut cirumferentia circuli ad duplum diametri. 
 
 
 

HYPOTHESIS II. 
 Si annulus praedictus terra omni reliqua sublata, solus in orbe terrae, motu annuo 
circa solem ferretur, & interea circa axem suum, ad planum eclipticae in angulo graduum 

1
223  inclinatum, motu diurno revolveretur : idem foret motus punctarum aequinoctialium, 

sive annulus iste fluidus esset, sive is ex materia rigida & firma constaret. 
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PROPOSITIO XXXIX. PROBLEMA XX. 
Invenire praecessionem aequinoctiorum. 

 
 Motus mediocris horarius nodorum lunae in orbe circulari, ubi nodi sunt in quadraturis, 
erat iv v16 35 16 36" . "' . . , & huius dimidium iv v8 17 38 18" . "' . . . (ob rationes supra 
explicatas) est motus medius horarius nodorum in tali orbe; sitque anno toto sidereo 

gr20 11  46. ' . " . Quoniam igitur nodi lunae in tali orbe conficerent annuatim 
gr20 11  46. ' . "  in anticedentia; & si plures essent lunae, motus nodorum cuiusque (per 

Corol. 16. Prop. LXVI. Lib. I.) forent ut tempora periodica; si luna spatio diei siderei 
iuxta superficiem terrae revolveretur, motus annuus nodorum foret ad gr20 11  46. ' . " ut 
dies sidereus horarum 23. 56' ad tempus periodicum lunae dierum 27. 7 hor. 43'; id est, ut 
1436 ad 39343. Et par est ratio nodorum annuli lunarum terram ambientis; sive lunae illae 
se mutuo non contingant, sive liquescant & in annulum continuum formentur,  sive 
denique annulus ille rigescat & inflexibilis reddatur. 
 Fingamus igitur quod annulus iste, quoad quantitatem materiae, aequalis sit terrae omni 
PapAPepE quae globo Pape superior est; (Vid.fig. pag. 474,) & quoniam globus iste est 
ad terram illam superiorem ut aC2 ad 2 2AC aC− , id est (cum terrae semidiameter 
minor PC vel aC sit ad semidiametrum majorem AC ut 229 ad 230) ut 52441 ad 459; si 
annulus iste terram secundum aequatorem cingeret & uterque simul circa diametrum 
annuli revolveretur, motus annuli esset ad motum globi interioris (per huius Lem. III.) ut 
459 ad 51441 & 1000000 ad 925175 conjunctim, hoc est, ut 4590 ad 485223 ; 
ideoque motus annuli esset ad summam motuum annuli ac globi, ut 4590 ad 489813. 
Unde si annulus globo adhaereat, & motum suum, quo ipsius nodi seu puncta 
aequinoctialia regrediuntur, cum globo communicet: motus qui restabit in annulo erit ad 
ipsius motum priorem, ut 4590 ad 489813; & propterea motus punctorum aequinoctialium 
diminuetur in eadem ratione. Erit igitur motus annuus punctorum aequinoctialium 
corporis ex annulo & globo compositi ad motum gr20 11  46. ' . " , ut 1436 ad 39343 & 4590 
ad 489813 coniunctim, id est, ut 100 ad 292369. Vires autem quibus nodi lunarum (ut 
supra explicui) atque ideo quibus puncta aequinoctialia annuli regrediuntur (id est vires  
3IT in fig. pag. 437 & 438) sunt in singulis particulis ut distantiae particularum a plano 
QR, & his viribus particulae illae planum fugiunt; & propterea (per Lem. II.) si 
materia annuli per totam globi superficiem in morem figurae PapAPepE ad superiorem 
illam terrae partem constituendam spargeretur, vis & efficacia tota particularum omnium 
ad terram circa quamvis aequatoris diametrum rotandam, atque ideo ad movenda 
puncta aequinoctialia, evaderet minor quam prius in ratione 2 ad 5. ldeoque annuus 
aequinoctiorum regressus jam esset ad gr20 11  46. ' . " . ut 10 ad 73092 : ac proinde 
fieret iv9  56  50" . ''' . . 
 Caeterum hic motus ob inclinationem plani aequatoris ad planum eclipticae minuendus 
est, idque in ratione sinus 91706 (qui sinus est complementi graduum 1

223 ) ad radium 

100000. Qua ratione motus iste jam fiet iv9  7  20" . ''' . . Haec est annua praecessio 
aequinoctiorum a vi solis oriunda. 
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 Vis autem lunae ad mare movendum erat ad vim solis, ut 4,4815 ad 1 circiter. Et vis 
lunae ad aequinoctia movenda est ad vim solis in eadem proportione. Indeque prodit 
annua aequinoctiorum praecessio a vi luna: oriunda iv40  52  52" . ''' . , ac tota praecessio 
annua a vi utraque oriunda iv50  00  12" . ''' . . Et hic motus cum phaenomenis 
congruit. Nam praecessio aequinoctiorum ex observationibus astronimicis est annuatim 
minutorum secundorum plus minus quinquaginta. 
 Si altitudo terrae ad aequatorem superet altitudinem eius ad polos, milliaribus pluribus 
quam 1

617 , materia eius rarior erit ad circumferentiam quam ad centrum: & praecessio 
aequinoctiorum ob altitudinem illam augeri, ob raritatem diminui debet. 
 Descripsimus jam systema solis, terrae, lunae, & planetarum: superest ut de cometis 
nonnulla adjiciantur. 
 


