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Newton on Sound.

We turn to Book II, Section VIII of Newton's Principia (third edition) to examine the first mathematical
theory of sound, with our own translation, as well as examining the translations available by Cajori and
Cohen. This is a work of  pure genius or quintessential Newton, as he carves out what amounts to a second
order partial differential equation for the differential pressure force exerted on a displaced element of air
executing simple harmonic motion, according to Boyle's Law.  As usual, Newton hides his analytical
techniques, and presents the work in terms of Euclidean geometry in a sparse manner. Initially,  he
considers water waves in a canal as a way of introducing wave motion. The theory of sound wave
transmission has of course been refined and elaborated on to give the present day text book treatment with
which the reader may well be familiar, but this work is more or less where it all started.

 PROPOSITION XLIV.                             THEOREMA XXXV.

Si aqua in canalis cruribus erectis KL, MN vicibus alterius ascendat & descendat; construatur autem
pendulem cuius longitudo inter punctum suspensionis & centrum oscillationis aequetur semissi
longitudines aquae in canali : dico quod aqua ascendet & descendet iisdem temporibus quibus pendulum
oscillatur.

 Longitudinem aquae mensuro secundum axes canalis & crurum, eandem summae horum axium
aequando ; & resistentiam aquae, quae oritur ab attritu canalis, hic non considero. Designent igitur AB, CD
mediocrem altitudinem aquae in crure utroque ; & ubi aqua in crure KL ascendit ad altitudinem EF,
descenderit aqua in crure MN ad altitudinem GH. Sit autem P corpus pendulum, VP filum, V punctum
suspensionis, RPQS cyclois quam pendulum describat, P ejus punctum infimum, PQ arcus altitudini AE
aequalis. Vis, qua motus aquae alternis vicibus acceleratur & retardatur, est excessus ponderis aquae in
alterutro crure supra pondus in altero,ideoque, ubi aqua in crure KL ascendit ad EF, & in crure altero
descendit ad GH, vis illa est pondus duplicatum aquae EABF, & propterea est ad pondus aquae totius ut AE
seu PQ ad VP seu PR. Vis etiam qua pondus P in loco quovis Q acceleratur & retardatur in cycloide (per
corol. prop LI.) est ad eius pondus totum ut eius distantia PQ a loco infimo P, ad cycloidis longitudinem
PR. Quare aquae & penduli, aequalia spatia AE, PQ describentium vires motrices sunt ut pondera movenda;
ideoque, si aqua & pendulum in principio quiescunt, vires illae movebunt eadem aequaliter temporibus
aequalibus, efficientque ut motu reciproco simul eant & redeant.
Q. E. D.

Corol. 1. Igitur aquae ascendentis & descendentis, sive motus intensior sit sive remissior, vices omnes
sunt isochronae.

Corol. 2. Si longitudo aquae totius in canali sit pedum Parisiensium  9
16 : aqua tempore minuti unius

secundi descendet, & tempore minuti alterius secundi ascendet; & sic deinceps vicibus alternis in infinitum
. Nam pendulum pedum 18

13 longitudinis tempore minuti unius secundi oscillatur.
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Corol. 3. Aucta autem vel diminuta longitudine aquae, augetur vel diminuitur tempus reciprocationis in
longitudinis ratione subduplicata.

PROPOSITION 44.                             THEOREM 35.

If water alternately rises and falls in turn in [uniform] pipes with upright legs KL and MN ; and moreover,
if a pendulum is made of which the length between the point of suspension V and the centre of oscillation P
is equal to half the length of the water in the pipe : then I say that the water rises and falls in time with the
oscillations of the pendulum.

I measure the length of the water along the axes of the pipe and legs, with the same equal height of
these ; and I ignore the resistance of the water which arises from the friction with the pipes. AB and CD
designate the mean height of the water in both legs ; and when the water in leg KL has risen to the height
EF, the water in leg MN has fallen to the height GH. Also, let P be the body of the pendulum, VP the
thread, V the point of suspension, RPQS is the cycloid that the pendulum describes, of which P is the
lowest point, and the arc PQ is equal to the height AE. The force, by which the motion of the water is either
accelerated or decelerated in turn, is the excess of the weight of water in the one leg above the weight in the
other; thus, when the water in KL has risen to EF, and in the other leg fallen to GH, that force is twice the
weight of water EABF, and therefore is to the total weight of water as AE is to VP or PQ or PR.  Also, the
force by which the weight P at some place Q is accelerated or decelerated in the cycloid (from the corol. to
prop 51.) is to the total force as this distance PQ from the lowest place P, is to the length of the cycloid PR.
Whereby the equal intervals of the water and the pendulum AE and PQ describing the motive forces are as
the weights to be moved; and thus, if the water and the pendulum are initially at rest, these forces will move
the same equally in the same time, and are effective in order that  the reciprocal motions can go and return
at the same time.  Q. E. D.

Corollary 1. Therefore all the oscillations for the rise and fall of the water in turn are isochronous,
whether they are made stronger or weaker [i. e. the period of oscillation is independent of the amplitude.]

Corollary 2. If the whole length of the water in the pipes is 9
16 Parisien feet, then the water descends in

a time of one second, and rises in the time of one second, and thus henceforth in alternate turns indefinitely.
Likewise,  the pendulum of length 18

13 is oscillating with a time of one second.
Corollary 3. Moreover with the length of the water increased or diminished, the time of reciprocation is

increased or diminished in the ratio of the square root of the length.
[The Manometer as a S. H. M. Oscillator : In modern terms, if A is the cross-sectional area of the pipe, l

the length of water in the pipe, and ρ the density of the water, then if x is the extension AE of one arm of
the manometer from the equilibrium level AB, and - x or DH is the depression of the other level, or vice
versa,  then the mass of water accelerated is Alρ, while the unbalanced force is 2ρAgx; hence, from
Newton's Second Law of motion,

xxg/l-x or AgxxAl 2)2(,2 ωρρ −==−= &&&& . Hence,  the period of the oscillation is given by .2 2/
g

lT π=

In the case where the period of the whole oscillation is 2 seconds, note that Newton has a habit of referring
to half periods - in his example 1 second - then the length of water is approximately 2 m.

The Inverted Cycloidal Pendulum as a S. H. M. Oscillator :
We will save some time by merely quoting the formula for the length of arc s of an inverted cycloid, which
is of course a rectifiable curve - and hence was part of its fascination for early workers - in terms of the

tangent angle ψ  at some point  Q:
,sin4 ψas = where 4a is the length of the thread of

the equivalent simple pendulum VP ( the cycloid can
be considered as generated by a point on a circle of
radius a rolling along a horizontal line at a vertical
distance 2a above the x- axis.)  An equivalent S. H.
M. is a small bead of mass m to slide on a wire in the
shape of the inverted cycloid without friction. Thus,
the unbalanced force on the bead due to gravity
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acting down the slope at Q is ,sinψmg and we can set .sinψmgvm −=&&  That is, .sin 42

2
sg a

g
dt

sd −=−= ψ

Hence, setting 4a = l/2 insures equality of the periods, and both motions are independent of the amplitude,
though Newton has set these or the half periods equal in his experiment as this was presumably more

expedient :  ,1
4

2/
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manometer on setting 4a = l/2.  Note that one does not have to contend with the

factors 2π and g, on taking a ratio in this way, and the whole or half periods can be used with impunity.

PROPOSITION XLIV.                        THEOREMA XXXVI.

Undarum velocitas est in subduplicata ratione latitudinum.
The velocity of waves varies as the square root of the wavelenth.

Consequitur ex constructione propositionis sequentis.
This theorem follows from the construction of the following proposition.

PROPOSITION XLVI.                       PROBLEMA X.

Invenire velocitatem undarum.

Constituatur  pendulum cuius longitudo, inter punctum suspensionis & centrum oscillationis, aequetur
latitudini undarum : & quo tempore pendulum illud oscillationes singulas peragit, eadem undae
progrediendo latitudinem suam propemodum conficient.

Undarum latitudinem voco mensarum transversam, quae vel vallibus imis,vel summis culminibus
interjacet. Designet ABCDEF superficiem aquae stagnantis, undis successivis ascendentem ac
descendentem; sintque A, C, E, &c. undarum culmina, & B, D, F, &c. valles intermedii. Et quoniam motus
undarum sit per aquae successivum ascensum & descensum, sic ut ejus partes A, C, E, &c. quae nunc
altissimae sunt, mox fiant infimae; & vis motrix, qua partes altissimae descendunt & infimae ascendunt, est
pondus aquae elevatae; alternus ille ascensus & descensus analogus erit motui reciproco aquae in canali,
easdemque temporis leges observabit : & propterea (per prop. XLIV) si distantiae inter undarum loca
altissima A, C, E & infima B, D, F aequentur duplae penduli longitudini; partes altissimae A, C, E, tempore
oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent. Igitur inter transitum
undarum singularum tempus erit oscillationum duarum; hoc est, unda describet latitudinem suam, quo
tempore pendulum illud bis oscillatur ; sed eodem tempore pendulum , cuius longitudo quadrupla est,
ideoque aequat undarum latitudinem, oscillabitur semel. Q.E.I.

Corol. 1. Igitur undae, quae pedes Parisienses 18
13 latae sunt, tempore minuti unius secundi

progrediendo latitudinem suam conficient ; ideoque tempore minuti unius primi percurrent pedes ,183 3
1 &

horae spatio pedes 11000 quamproxime.
Corol. 2. Et undarum majorum velocitas augebitur vel diminuetur in subduplicata ratione latitudinis.
Haec ita se habent ex hypothesi quod partes aquae recta ascendunt vel recta descendunt; sed ascensus &

descensus ille verius fit per circulum, ideoque tempus hac propositione non nisi quamproxime definitum
esse affirmo.

PROPOSITION XLVI.                             PROBLEM X.

To find the speed of waves.
A pendulum is set up, the length of which between the point of suspension and the centre of oscillation,

is equal to the length of the waves : and during the time the pendulum performs single oscillations, by
advancing the same amount, the  waves progress to almost their own width.
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The transverse width of the waves measured I call the length of the waves, which lies between either the
deepest valleys or the highest peaks. ABCDEF designates the surface of the still water, with successive
waves rising and falling; A, C, E, &c. are the peaks of the waves, & B, D, F, &c. are the intervening
valleys. And since the motion of the waves is by the water successively ascending and descending,  thus the
parts A, C, E, &c. of this surface which now are the highest, soon will become the lowest; & the driving
force of the motion, by which the highest parts will descend & the lowest parts ascend, is the weight of the
elevated water ; this alternate rising and falling is analogous to the reciprocal motion of the water in the
pipes, and the same laws governing the time will be observed : & therefore (by prop. XLIV) if the
distances between the peaks of the waves A, C, E & and the troughs B, D, F are equal to twice the length of
the pendulum, then  the highest parts A, C, E,  in the time of one oscillation avoid the troughs, & in the time
of another oscillation have ascended again. [Recall that the manometer always has a peak and a trough for
the maximum displacements, and therefore corresponds to half a wavelength.] Therefore between the
passage of individual waves there will be the time of two oscillations; that is, the wave describes its own
width in the time that pendulum oscillates twice ; but the pendulum that oscillates in time with the wave is
four times as long, and thus oscillates once, equal in time with the length of the waves.  Q.E.I.

Corol. 1. Therefore waves which are 18
13 feet long, progress a distance equal to their own width in a

time of one second (around 1 m/s); and thus in a time of one minute from the start run through a distance of

3
1183 feet, & in the space of an hour 11000 ft approximately.

Corol. 2. And the speed of the long waves is increased or diminished in the ratio of the square root of
the width.

From the hypothesis, thus waves are considered to have part or the water either ascending straight up or
descending straight down (as in the manometer) ; but the up and down motion of the water shall more truly
be described in a circle, and likewise I emphasise that the time derived from this proposition can only be
defined approximately.

[ Notes :  There may be some confusion as to what Newton means by the time of an oscillation  - the
word itself just means a swing, of course. However, in the experiment the pendulum bob is released as a
peak of the wave train passes, and reaches the position of the peak of the passing wave again at the end of
its forward swing, which occupies at this instant the position of the preceding peak at the start of the
pendulum's motion. Newton asserts that the pendulum which achieves this synchronous behaviour has the
same length as the distance between the peaks. The previous experiment with the manometer tube, which is
a sort of standing wave generator of water waves with a 'free end', has a wave or pulse that travels a
distance set to some half wavelength by the length l (for small amplitudes) in the time the pendulum
completes its forward motion, as the water in the legs interchange peaks and troughs.  Now, by analysing
the s. h. m. of the pendulum and the manometer, we find the periods are equal when 4a = l/2, or a half-
wavelength l corresponds to a pendulum twice as long as that used at present, and the period needed for a
whole wavelength is thus four times as long as the original pendulum. The original pendulum is l/2 or λ/4,
so that the reasoning is correct : a pendulum of length λ is required to be synchronous with the waves.
However, the period of such a simple pendulum is 2 seconds, and hence we conclude that Newton is talking
about single swings when he considers oscillations of 1 second.

As mentioned in Cor. 2, there is augmentation or diminution of the waves as they proceed, as they do
not all travel with the same speed, and dispersion is taking place. Hence, it is more appropriate to consider
the group velocity of the  pulses of waves, rather than the phase velocity - which cannot be measured in any
case - and the group velocity is responsible for the transfer of energy down the channel. Thus, from his
experimental measurements, Newton had observed that the length of the pendulum λ executed its forward

swing in a time T given by g
λπ , for which smgTv /1~/ 1 λλ π== as λ ~ 1m and g ~10m/s2. This

quantity we would identify as the group velocity . We cannot read much more into Newton's experiments,
as he has not furnished details of the physical dimensions of the channel and pipes apart from the total
length of the axis, factors upon which the rate of transmission depends. Nevertheless, the main ideas are
essentially correct, and at the time, he was a man in a hurry, and he had sown the seeds for further
development.]
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PROP. XLVII.            THEOR. XXXVII.

Pulsibus per fluidum propagatis, singulae fluidi particulae, motu
reciproco brevissimo euntes & reeuntes, accelerantur semper &
retardantur pro lege oscillantis penduli.

Designent AB, BC, CD, &c. pulsuum successivorum aequales
distantias ; ABC plagam motus pulsuum ab A versus B propagati ;
E, F, G puncta tria physica medii quiescentis in recta AC ad
aequales ab invicem distantias sita ; Ee, Ff, Gg spatia aequalia per
brevia per quae puncta illa motu reciproco singulis vibrationibus
eunt & redeunt ; ε, ϕ, γ  loca quaevis intermedia eorundem
punctorum ; & EF, FG lineolas physicas seu medii partes lineolas
punctis illis interjectas, & successive translatas in loca εϕ, ϕγ, &
ef, fg. Rectae Ee aequalis ducatur recta PS. Bisecetur eadem in O,
centroque O & intervallo OP describatur circulus SIPi. Per hujus
circumferentiam totam cum partibus suis exponatur tempus totum
vibrationis unius cum ipsius partibus proportionalibus; sic ut
completo tempore quovis PH vel PHSh, si demittatur ad PS
perpendiculum HL vel hl, & capiatur Eε aequalis PL vel Pl,
punctum physicum E reperiatur in ε. Hac lege punctum quodvis
E, eundo ab E per ε ad e, & inde redeundo per ε ad E, iisdem
accelerationis ac retardationis gradibus vibrationes singulas
peraget cum oscillante pendulo. Probandum est quod singula
medii puncta physica tali motu agitari debeant. Fingamus igitur
medium tali motus a causa quacunque cieri, & videamus quid
inde sequatur.

In circumferentia PHSh capiantur aequales arcus HI, IK vel hi,
ik, eam habentes rationem ad circumferentiam totam quam habent
aequales rectae EF, FG ad pulsuum intervallum totum BC, Et
demissis perpendiculis IM, KN vel im, kn ; quoniam puncta E, F,
G motibus similibus successive agitantur, & vibrationes suas
integras ex itu & reditu compositas interea peragunt dum pulsus
transfertur a B ad C; si PH vel PHSh sit tempus ab initio motus
puncti E, erit PI vel PHSi tempus ab initio motus puncti F, & PK
vel PHSk tempus ab initio motus puncti G; & propterea Eε, Fϕ,
Gγ erunt ipsis PL, PM, PN in itu punctorum, vel ipsis Pl, Pm, Pn
in punctorum reditu, aequales respective. Unde εγ seu EG + Gγ -
Eε aequalis erit EG - LN, in reditu autem aequalis EG + ln. Sed εγ
latitudo est seu expansio partis medii EG in loco εγ ; & propterea
expansio partis illius in itu est ad ejus expansionem mediocrem,
ut EG - LN ad EG ; in reditu autem ut EG + ln seu EG + LN ad
EG. Quare cum sit LN ad KH ut IM ad radium OP, & KH ad
EG ut circumferentia PHShP ad BC, id est, se ponatur V pro
radio circuli circumferentiam habentis aequalem intervallo
pulsuum BC, ut OP ad V ; & ex aequo LN ad EG ut IM ad V :
erit expansio partis EG punctive physici F in loco εγ ad
expansionem mediocrem, quam pars illa habet in loco suo
primo EG, ut V - IM ad V in itu, utque V + im ad V in reditu.
Unde vis elastica puncti F in loco εγ est ad vim ejus
elasticam mediocrem in loco EG, ut IMV −

1 ad V
1 in itu, in

reditu vero ut imV +
1 ad V

1 . Et eodem argumento vires
elasticae punctorum physicorum E & G in itu, sunt ut
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V
111  ad & KNVHLV −− ; & virum differentia ad medii vim elasticam

mediocrem, ut V
1 ad KNHLKNVHLVVV

KNHL
×+×−×−

− . Hoc est, ut

V
1 ad VV

KNHL− , sive ut HL - KN ad V, si modo (ob angustos limites
vibrationum) supponamus HL & KN indefinite minores esse quantitae
V. Quare cum quantitas V detur, differentia virium est ut HL - KN, hoc
est (ob proportionales HL - KN ad HK, & OM ad OI vel OP, dataque
HK & OP) ut OM ; id est, si Ff  bisecetur in Ω, ut Ωϕ. Et eodem
argumento differentia virium elasticarum punctorum physicorum ε &
γ, in reditu lineolae physicae εγ est ut Ωϕ. Sed differentria illa (id est,
excessus vis elasticae puncti ε supra vim elasticam puncti γ) est vis
qua interjecta medii lineola physica εγ acceleratur in itu & retardatur
in reditu ;& propterea vis acceleratrix lineolae physicae εγ, est ut
ipsius distantia a medio vibrationis loco Ω. Poinde tempus (per prop.
XXXVIII. lib. I) recte exponitur, id est, lege oscillantis penduli :
estque par ratio partium omnium linearium ex quibus medium totum
componitur. Q. E.D.

Corol. Hinc patet quod numerus pulsuum propagatorum idem sit
cum numero vibrationum corporis tremuli, neque multiplicatur in
eorum progressu. Nam lineola physica εγ, quamprimum ad locum
suum primum redierit, quiescet; neque deinceps movebitur, nisi vel ab
impetu corporis tremuli, vel ab impetu pulsuum qui a corpore tremulo
propagantur, motu novo cieatur. Quiescet igitur quamprimum pulsus a
corpore tremulo propagari desinunt.

PROP. XLVII.            THEOR. XXXVII.

For pulses propagating through the fluid, the individual particles of
the fluid are oscillating in the shortest reciprocal motion, always
accelerating and decelerating according to the law of the pendulum.

AB, BC, and CD, &c. describe the positions of equally spaced
successive pulses [i. e. such as progressive sound waves of a given
wavelength λ of AB.] ; the motion of the pulses is propagated from A
towards B along a line ABC in the region  ; E, F, G are three physical
points of the quiescent medium on the line AC, situated at equal
distances from each other; Ee, Ff, Gg are equal lengths in turn [of the
maximum amplitudes] through which in short time intervals, by the
individual reciprocal motions, these points E, F, and G move to and
fro ; ε, ϕ, γ  are some intermediate locations of the same points in the
medium;  EF and FG are small physical sections or incremental parts
of the medium placed between these points, & which in succession are
translated into the positions εϕ and ϕγ,  & then ef and fg. The line PS
is drawn equal to the line Ee [in the lower diagram]. PS is
bisected in O, and with centre O & length OP, a small circle
SIPi is described. In this circle, the whole circumference
represents the time of one complete vibration, together with its
proportional intermediate parts. Thus,  in order that some time
such as PH or PHSh can be compared with the time of the
complete oscillation, if a perpendicular HL or hl is dropped on
PS, then Eε is taken to be equal PL or Pl, at this instant the
physical point E is to be found at ε in the moving fluid.
According to the law of the pendulum,  any point E in the fluid
moves from the equilibrium value E to the maximum
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displacement e through ε, & returns to E again through ε, where each vibration has the same degrees of
acceleration and retardation [at intermediate points],  so that the oscillation is completed in step with the
oscillation of a pendulum [i.e. any particle such as E executes s. h. m. from its equilibrium point in the
fluid; the actual words in Newton's explanation have been augmented occasionally to reinforce the reader's
understanding, as Latin is a little skimpy at times]. This must be the case since the individual physical
points of the medium are disturbed in this way by such a motion [as in the analogous case of the water
waves]. Hence we establish a medium in which such a motion is produced in some manner, and we observe
what may then follow.
In the circumference PHSh, the equal arcs HI and IK or hi and ik [of a traveling wave or pulse] are taken in
the same ratio to the total circumference as the equal lines EF and FG have to the total length of the pulse
interval BC, and the perpendiculars IM and KN or im and kn can be dropped, as the points E, F and G are
disturbed in turn by the same motion, & their whole vibrations meanwhile are carried out from the sum of
the oscillations as the pulse is transferred from B to C. Thus, if PH or PHSh is the time of the motion
starting from the initial point E, then similarly PI or PHSi is the time of the motion starting from the initial
point F, and again PK or PHSk is the time of the motion starting from the initial point G [An  extended
pulse passed through the increments E, F, and G in turn, then the angles are in proportion to the times as the
are length s = OP × ∆θ = OP × ω∆t , where ω is the angular frequency]. Hence, Eε, Fϕ and Gγ will be
respectively equal to the lengths PL, PM and PN themselves in the movement away from equilibrium
position , or to Pl, Pm and Pn themselves in the return. From which εγ or EG + Gγ - Eε leads to EG - LN
being equal to the incremental pulse width in the movement away from equilibrium.  But εγ  is the width or
the expansion [contraction really] of the part of the medium EG when it is transferred to the location εγ ; &
therefore the expansion of that part in the outward motion is to the mean expansion as EG - LN is to EG ;
and moreover in the return journey, the ratio is as EG + ln to EG.
[EG - LN  is the contracted length εγ ; and thus (EG - LN)/EG is 1 - ∆V/V, as Newton goes on to
demonstrate. Again, this is needed to make the outgoing contraction into an in going expansion on the
return leg of the journey, taken to be (EG + ln)/EG or 1 + ∆V/V]

Whereby the ratio LN to KH shall be as IM to the radius OP [This involves differentiation : see
following note.], & KH to EG as the circumference PHShP to BC, i. e., if V is put in place for the radius of
another circle with the circumference set equal to the pulse interval BC, then the ratio becomes as [the
amplitude] OP to [the wavelength λ or] V ; & from the equality LN to EG as IM to V : the expansion of the
part EG or of the physical point F at the location εγ to the mean or quiescent expansion, as that part has in
its first position EG, as V - IM to V in going, and as V + im to V on returning. From which the elastic force
of the point F at the position εγ  is to the mean elastic force of this at the position EG, as IMV −

1 to V
1  in

going,  and on returning truly as imV +
1 ad V

1 . And by the same argument the elastic forces of the physical

points E and G on going, are in the ratios V
111   toand KNVHLV −− ; and the difference of the forces to the

mean or quiescent elastic force of the medium, as V
1  toKNHLKNVHLVVV

KNHL
×+×−×−

− . That is, as V
1  toVV

KNHL− ,
or as HL - KN to V,  if  (on account of the narrow limits of the vibrations) we may suppose HL and KN  to
be indefinitely smaller quantities than V. Whereby when the quantity V is given, the difference of the forces
is as HL - KN, that is as OM  (on account of the proportionals HL - KN to HK, & OM to OI or OP, with HK
& OP given) ; i.e. if  Ff  is bisected in Ω, as Ωϕ. And by the same argument the difference of the elastic
forces of the physical points ε & γ, in the return of the small physical line εγ is as Ωϕ. But that difference
(i.e, the excess of the elastic force at the point ε over the elastic force at point γ) is the force of the medium
which is introduced for the small physical line εγ  to be accelerated in returning and retarded in going; &
therefore the acceleration force on the small physical line εγ, is as its distance from the mean position of the
vibrations Ω. Hence the time for the straight line motion PI is explained (by prop. XXXVIII. Book. I) ; &
the part εγ  of the medium is moved according to the prescribed law, that is, by the law for the oscillations
of a pendulum : and the reasoning is the same for all the line increments from which the whole medium is
composed. Q. E.D.

Corol. Hence it is apparent that the number of pulses propagating is the same as the number of
vibrations of the trembling body, without change in their number in progressing. For the incremental line in
the medium εγ, when first to its original situation returns remains at rest, and henceforth will not move,
except either by the impulse of a trembling or oscillating body, or from the impulse of a pulse which is
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P and S are the positions where the amplitude and pressure gradient are at maximum
values, and the condensation is zero; as the phase angle increases,  the condensation
grows to a maximum at 900, while the amplitude and pressure gradient go to zero,

and subsequently these quantities revert again at S to their P conditions.  The return
stroke sees the dilatation go through the same sequence.

The left-hand sketches show positive density or pressure changes for the outgoing
air, while the right-hand ones show negative changes for the returning air. The

projection of HIK on to the PS axis shows the passage of the condensation along PS,
and the returning dilatation, which are a maximum along the diameter at I and i.
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zero condensation.

zero condensation.

decreasing -ve
condensation.

propagating from such a body, when it sets off a new movement.  The medium will therefore be quiescent
when the starting pulses from the vibrating body cease to be propagated.

Notes on Prop. 48 :

We enlarge on Newton's
ideas a little from a
modern perspective, but
relate to his derivation as
much as possible. First,
we need to explain his
diagram accompanying
the trajectory diagram for
a ray of sound in one
dimension, based on his
ideas. According to the
diagram opposite,  the
points P and S represent
the positions of the
maximum amplitude χ of
the s.h.m. associated with
the point F.  In Newton's
words, the time for the
motion is spread around
the circumference of the
circle; in the course of
the motion, the matter in
the incremental length EFG is physically moved as a whole to some intermediate distance Fϕ relative to the
reference frame of still air, and a wave of  compression passes through the element to give the incremental
length εγ , finally to come to rest again momentarily at f with no compression. The pulse is considered to
move from the positive displacement χ of the s. h. m. to the negative displacement in the diagram.  Thus, R
= OP = χ rotates clockwise.  The times of arrival at e, f, and g can also be recorded, as are the times of the
return of the air to its instantaneous position of maximum displacement : the matter that left first returns
first, so H → h, etc, in the intermediate section. The actual rest position of the air in the absence of  waves
is at Ω,  while P and S are the points of instantaneous rest for a continuous wave.  Newton considers the
projection of the maximum compression HIK on to the line PS as the contraction or expansion of the
element at the same point of its motion to and fro : thus, there is no compression or condensation at P and
S, while the maximum compression/expansion occurs at O, and a wave of compression/ expansion of some
lesser amount but in the same ratio passes along the element PS at other times. In addition, by taking ratios
at the same out and in positions on the cycle, he is able to proceed without using the bulk modulus, that we
now consider as part of the modern theory.

Modern ideas: Initially, we consider the boundary conditions placed on the elemental oscillators.  Each
incremental length acts as an s.h.m. oscillator, each driven by or coupled to the one before, and driving the
next one in a chain of oscillators, which we assume to be in one dimension. Each oscillator has the same
amplitude χ, and all vibrate with the same angular frequency ω as the wave, which we assume to be
continuous and of a single frequency; also, each increment has an in-built constant phase factor ϕ(x)
depending on its location: when t = 0, these phases construct a harmonic wave between the crests of the
wavelength λ.  Thus, the increment associated with the point E has two components of phase that
add/subtract to give the total phase :  There is the time related phase of the form (2π/T).t = ωt, and for a
given quiescent position, there is the constant distance related phase angle for the oscillator,  that we can
call e. g.  φ(E) = (2π/λ).BE = k.BE.  The other equally separated quiescent oscillator points F and G have
similar distance phases φ(F) = (2π/λ).BF and φ(G) = (2π/λ).BG associated with them. The passage of the
wave is the transmission of regions of constant phase from oscillator to oscillator. This region of constant
phase is driven forwards in the mathematical model by an argument of the form kx - ωt = constant, or ω∆t =
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k∆x, resulting in a phase velocity v =  ∆x/∆t =  ω/k. There are some details of Newton's model that are
inconsistent with the modern theory, even at this kinematic level. We have noted already that he describes
the air as being at rest at P and S; although this is true, it is not in its quiescent condition as there is a
maximum pressure difference across the element here in accordance with s. h. m. principles, and the air
element is actually at its true length (i. e. in the absence of the sound wave)when it passes the origin of the
oscillation at its maximum speed at the half-way point Ω, when there is no pressure difference across the
ends of the element. Recall that for s. h. m. the acceleration is proportional to the negative displacement :
hence, there is a maximum acceleration and force at the maximum displacement, and zero acceleration and
force at zero displacement. The model succeeds in producing the s. h. m. equation with the correct ω and
wave speed ω/k.

Before leaving this narrative, we shall briefly give a modern derivation of the wave equation [following
Pain, The Physics of Vibrations and Waves, Ch. 5 (Wiley)]. The motion of an undisturbed infinitesimal
element of air of original thickness ∆x and unit area under the influence of a sound wave in one dimension
is considered. The element as a whole is displaced a distance η, and expanded by an amount (∂η/∂x)dx, as
shown in the diagram :

The increase in the volume is dxx∂
∂η  , while the change in

the volume per unit volume is x∂
∂η  or the dilatation dv/v.

The quantity dρ/ρ inverse to the dilitation is known as the
condensation. Meanwhile, the net force exerted on the
element to the right in the compression or expansion due
to the pressure gradient is dx.x

Px
∂
∂− ; hence, by Newton's

Second Law, 2

2

0
dx.ρ dx .

tx
Px

∂
∂

∂
∂ =− η . There is now a need

to relate the pressure gradient to the changes in the
volume : this is usually done by means of the bulk B modulus for the substance. The change in the volume
per unit volume is proportional to the impressed pressure,
or dp = - B. dv/v, where B is the constant of proportionality, and the negative sign is necessary as an
increase in pressure results in a decrease in the dilatation, or change in volume per unit volume. In the

present case, dv/v = x∂
∂η , and hence 2

2
.

xx
P Bx

∂
∂

∂
∂ −= η . From which it follows that 2

2

02

2
ρ  

tx
B

∂
∂

∂
∂ = ηη  and

2

2

2

2
  2

tx
c

∂
∂

∂
∂ = ηη , where c2 = B/ρ0. This is the conventional wave equation for sound waves in a gas: Newton

does not derive this equaton; instead, he derives the equation for the s. h. m. of an elemental section of air,

resulting in 2

2
  222

t
ck

∂
∂=−=− ηηωη  for a sinusoidal motion. Now, compression or expansion of a gas

results in heating or cooling; Newton was unaware of the adiabatic nature of sound waves, and used
essentially the isothemal form of B or P/ρ0, rather than the correst adiabatic form γP/ρ0 ;  thus his value for
c was out by √ γ, where γ is the ratio of the specific heats of the gas at constant pressure to constant volume,
and depends on the nature of the gas - internal degrees of freedom, etc. It would take us too far away from
Newton's work to consider this matter further, though of course it is developed in books on
thermodynamics.

There are inevitably problems associated with understanding what the words actually mean when
comparing Newton's model with the actual model for sound waves that we have briefly outlined above;
thus, the word 'expansion' can mean either the volume or the change in volume - the various translations
suffer from this ambiguity, and one must proceed with caution. We are not in the business of correcting
Newton's model, which would be a great travesty as well as a meaningless exercise, but are merely trying to
understand what his thoughts might have been as he developed his ideas.

So we return to Newton's argument:
Subsequently, to make further progress with the Proposition, use has to be made of calculus. Initially, two
useful ratios are evaluated. Pressure - modified volumes represented by the lengths OL, OM, ON are
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related to ∆V/V, the dilatation; and the angular phase of the rotating radius OP of the s. h. m. is related to
the linear phase of the wave.
Thus,  OL, OM, and ON are given by : χcosω(t +δt), χcosωt , and χcosω(t - δt),  leading to

LN/KH =  [χcosω(t +δt) -χcosω(t - δt)]/2χωδt → -sinωt,  the limiting value of the ratio;

or equivalently,   ; 0)  as ,sin(
2.

)cos()cos(
χ

ϑϑ
ϑχ

ϑϑχϑϑχ IM
KH

NLorLN
=→−→

+−−
= ∆

∆
∆∆

[This first differentiation gives the rate of change of  LN or ∆V, the decrease in the volume, and LN/EG =
∆V/V, the fractional change in the volume.]

and 
)2/(.

..
πλ

χ
====

V
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BCcircumwithcircle
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PHSbPcircum

EG
KH  relates the phases.

[Thus, In the time the line OP turns through a certain small angle, the pulse advances a certain amount
along PS. The original circle with radius OP describes the time variation or the phase of the oscillation at
some fixed point,  while the second circle with radius Vr = λ/2π, rather than V that we use for the volume
for a little while. EG describes the displacement variation of the phase of the oscillation at some fixed time.

Hence, 
π
ϑ

πχ
ϑχ

λλ
πχ

2
.2

2.
2or  2. ∆∆

====
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V
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r
 : thus, a path difference of EG corresponds to a phase

difference of 2.∆θ  as required by the coupled oscillators discussed above.
Or, v = ω/k = (2∆θ/∆t)/(2π/λ) = (2∆θ/∆t).Vr; hence EG = v.∆t = 2.∆θ . Vr =  arc HK.Vr/OP]
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follows that the excursion compression of EG at εγ  to the quiescent volume at F is in the ratio

r

r
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− 1εγ∆ , while the return expansion ratio is :

r

r
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+
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[The common reader may wish to refer to the work by S. Chandrasekhar at this point (Newton's Principia
for the Common Reader (1995); Oxford. p. 586) : this author has not attempted, as we have attempted, to
actually link up Newton's derivation with modern theory, but has presented this theory from a Newton -
friendly point of view.  The other authors of interest, Cohen & Whitman: Newton The Principia.
(California), and Cajori  : Newton's Principia (U. Cal.) have not given any explanation of Newton's theory
of sound, and have only presented an English version of the Latin text, with all its vagaries. Cajori in his
translation, even goes to the extent of re-arranging the labels on the phase diagram, thus changing
something which is correct into something which is incorrect !]

Newton now sets out to construct what is essentially the second order differential equation describing
the s. h. m. of an elemental volume of air in the presence of a sound wave of constant frequency.
Now, if the elastic force varies inversely as the expansion or volume, then

IMV
V

Fatforceelquiescent
atforceel

−
=

.
. εγ , essentially Boyle's Law, where we revert to Newton's V = λ/2π rather

than Vr. On the return, 
imV

V
Fatforceel

atforceel
+

=
.
. εγ . A similar argument applies for the ratio of the elastic

forces (or pressures) acting on the volume increments E and G : 
HLV

V
Eatforceel

atforceel
−

=
.
. εφ  and

KNV
V

Gatforceel
atforceel

−
=

.
. φγ  respectively. It follows that the difference of these elastic forces to the mean

elastic force, which is the same at E, F, and G,  is given by :
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Note that second order quantities are ignored, as they vanish in the limit.
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Hence, calling P the pressure or the quiescent elastic force at F, and canceling the ∆x which is synonymous
with εγ, while setting Ωφ = x, we find that

s.h.m.for  required as ,.
)/2.(

2
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22
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xd ω

λπρ
−=−=−= In which case, .ρ

Pv =  Newton did not

pursue his differential equation to this logical conclusion for some reason, and was content to note that the
equation defined the same kind of motion as the cycloidal pendulum, although he immediately proceeds to
use the above formula for the speed. His final proposition is to present an extreme case involving the s. h.
m. of a cycloidal pendulum to corroborate his formula ; one gets the impression he was over-impressed
with this particular kind of s. h. m., rather than seeing it rather as just another example of this kind of
motion, and that he was not entirely convinced with his derivation of this proposition.

PROPOSITIO XLVIII.            THEOREMA XXXVIII.

Pulsuum in fluido elastico propagatorum velocitates sunt in ratione composita ex subduplicata ratione vis
elasticae directe & subduplicata ratione densitatis inverse ; si modo fluidi vis elastica ejusdem
condensationi proportionalis esse supponatur.

Cas. 1. Si media sint homogenea, & pulsuum distantiae in his mediis aequentur inter se, sed motus in uno
medio intensior sit : contractiones & dilationes partium analogarum erunt ut iidem motus. Accurata quidem
non est haec proportio. Veruntamen nisi contractiones & dilatationes sint valde intensae, non errabit
sensibiliter, ideoque pro physice accurata haberi potest. Sunt autem vires elasticae motrices ut contractiones
& dilatationes ; & velocitates partium aequalium simul genitae sunt ut vires. Ideoque aequales &
correspondentes pulsuum correspondentium partes itus & reditus suos per spatia contractionibus &
delatationibus proportionalia, cum velocitatibus quae sunt ut spatia, simul peragent : & propterea pulsus,
qui tempore itus & reditus unius latitudinem suam progrediendo conficiunt, & in loca pulsuum proxime
praecedentium semper succedunt, ob aequalitatem distantiarum, aequali cum velocitate in medio utroque
progredientur.
Cas. 2. Sin pulsuum distantiae seu longitudines sint majores in uno medio quam in altero ; ponamus quod
partes correspondentes spatia latitudinibus pulsuum proportionalia singulis vicibus eundo & redeundo
describant : & aequales erunt earum contractiones & dilatationes. Ideoque si media sint homogenea,
aequales erunt etiam vires illae elasticae motrices quibus reciproco motu agitantur. Materia autem his
viribus movenda est ut pulsuum latitudo ; & in eadem ratione est spatium per quod singulis vicibus eundo
& redeundo moveri debent. Estque tempus itus & reditus unius in ratione composita ex ratione subduplicata
materiae & ratione subduplicata spatii, atque ideo ut spatium. Pulsus autem temporibus itus & reditus unius
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eundo latitudines suas conficiunt, hoc est, spatia temporibus proportionalia percurrunt; & propterea sunt
aequiveloces.
Cas. 3. In mediis igitur densitate & vi elastica paribus, pulsus omnes sunt aequiveloces. Quod si medii vel
densitas vel vis elastica intendatur, quoniam vis motrix in ratione vis elasticae, & materia movenda in
ratione densitatis augetur ; tempus, quo motus iidem peragantur ac prius, augebitur in subduplicata ratione
densitatis, ac diminuetur in subuplicata ratione vis elasticae. Et propterea velocitas pulsuum erit in ratione
composita ex ratione subduplicata densitatis medii inverse & ratione subduplicata vis elasticae directe.
Q.E.D.

Haec propositio ulterius patebit ex constructione sequentis.

PROPOSITION XLVIII.               THEOREM XXXVIII.

The speeds of pulses propagating in an elastic fluid are in the ratio composed from the direct proportion of
the square root of the elastic force or pressure and the inverse proportion of the square root of the density ;
but only if the same elastic force is supposed for the same proportional condensation [ i.e. the gases obey
Boyle's Law].

Case. 1. [ Newton's explanation of why pulses or waves of differing intensities travel at the same speed in a
medium.]

If the media are homogeneous, & the distances between the pulses in these media are equal amongst
themselves,  but the motion [i. e. the sound] is more intense in one medium than in the other,  then the
contractions and expansions of the analogous parts are as the same motions  [i.e. one has a larger amplitude
than the other]. The proportion of these intensities cannot be measured with accuracy.  However,  unless the
contractions and dilatations are of greatly differing intensities, there will be no sensible error, and thus these
can be used [for the measurement of physical quantities] with accuracy. But the elastic motive forces are in
the ratio of the contractions & dilations ; &  the velocities of the equal parts likewise generated are in the
ratio of the forces [as the forces act for the same lengths of time].  Hence equal & corresponding parts of
corresponding pulses are coming and going by contracting and dilating in their proportional intervals, with
velocities which are in the ratio as the intervals, likewise are carried out : & therefore pulses, which in the
time of one oscillation are made to progress a distance of one width, & always follow into the place of the
nearest proceeding pulse, on account of the equality of the distances, with equal velocity can proceed in
either medium.
[We note that the amplitude cancels in the derivation presented in the previous theorem, but see notes
below.]

Cas. 2. [Newton's explanation of why all wavelengths travel at the same speed in the same medium.]
 But if the distances between the pulses or the widths are greater in one medium than the other, then we

can put corresponding parts in place , and the proportional widths of the individual pulses that come and go
can be described [i.e. we can compare the ratio of the wavelengths or pulse widths]: and the contractions
and dilations of [each of] these are equal. Thus if the media are homogeneous, then these elastic motive
forces by which the reciprocating motion is driven are also equal [i.e. the amplitudes of the pressure
fluctuations are the same]. But the masses to be moved by these forces are in the same ratio as the widths of
the pulses; & the corresponding wavelengths of the pulses as they come and go are in the same ratio. But
the time of one complete reciprocal motion is composed from the ratio of the square root of the mass & the
square root of the interval, and thus as the interval. [Thus, the oscillation time T is proportional to the width
of the pulses of wavelength λ, or λ α T or 1/f] . But pulses perform their reciprocal motion or s.h.m in a
time equal to the passing of one width, that is, the space and the time intervals are proportionals that
advance in step, and hence the velocities are equal. [See notes below.]

Cas. 3. [The ratio of the speeds in differing media.]
Therefore all the pulses travel at the same speed in media with the same density and elastic forces. But

if either the density or the elastic force of the medium is increased, since the motive force is increased in
the ratio of the elastic force, & the matter to be moved is increased in the ratio of the density ; the time, by
which the same motions are driven from the previous situation, will be augmented in the ratio of the square
root of  the density, and diminished in the square root ratio of the elastic force. And therefore the velocity
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of the pulses will be in the ratio composed from the ratio of the inverse of the square root of the density  &
directly in the ratio of the square root of the elastic force.  Q.E.D.

This proposition is more apparent from the following construction.

Notes on Prop. 48 :
Case 1. We are to imagine two media with the same pressure and density, and waves of some wavelength
travel at the same speed in each medium. However, pulses with different intensities in the two media are
considered.  We try to understand why the speeds of the pulses are equal in the two media and independent
of the amplitude of the oscillations, using s.h.m. Using the pendulum analogy of s.h.m,  the ratio of the
elastic motive forces on corresponding elements is the same as the ratio of the amplitudes, and since these
forces act for the same lengths of time on the corresponding elements, during which time the pulses move
forwards a distance equal to the inter-pulse displacement, then the velocity of propagation is the same.
[However, the ratio of the maximum velocities of the elements is proportional to the ratio of the maximum
displacements, as there is a greater pressure associated with the more intense pulses.  There is hence a
distinction to be drawn between the phase velocity and the maximum speed associated with the s.h.m.]
Case 2. We are to imagine two media with the same pressure and density, and thus at least waves of one
wavelength travel at the same speed in each medium. However, pulses with different widths or wavelengths
in the two media are considered, each wavelength of constant width in its medium.  We try to understand
why the speeds of the pulses are nevertheless equal in the two media using s.h.m ideas. The s.h.m motion of
the small incremental widths have the same amplitude in each case, otherwise the waves will have differing
amplitudes and intensities. However, the longer wavelength requires more of the elementary oscillators,
and the pressure differences across each of the incremental widths is thus less for the longer wavelength, as
the total pressure fluctuation is the same for both wavelengths,  which supplies the motive force on the
element. Newton, however, does not consider the individual elements as such at this stage, but focuses his
attention on the ratio of the whole condensed or rarefied pulses at some point, and returns to his pendulum
idea of s.h.m. In this case, he considers the period T of an s.h.m to depend on the mass m to be moved, and

the force constant k to effect the motion, for which k
mT π2= . By simply adding the number of

elementary incremental oscillators, the masses to be moved for the long and short wavelengths λL and λS

are in the ratio 
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λ= . Now, regarding the force constant k, or the spring constant of the air, it can be

taken as proportional to the excess pressure p, and inversely as the wavelength λ; or, λ
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frequencies vary inversely as the ratio of the wavelengths, as required.

 Case 3. The speed of propagation v of a pulse in a medium with elastic force or pressure p and density ρ is

given by ρ
pv = , to be finally proved in the next Proposition. Thus, if the density is increased from ρ1 to

ρ2, for the same pressure, then the associated speeds are in the ratio 
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v ; while if the pressure is

increased from p1 to p2, for the same density, then 
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v = . If both pressure and density increase in the

same ratio, then there is no change in the speed of the pulses. In general, if both pressure and density are
allowed to change, but in different ratios, (as for example, for media such as ideal gases at different

temperatures), then ,..
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PROPOSITIO XLIX.            PROBLEMA XI.

Datis medii densitate & vi elastica, invenire velocitatem  pulsuum.

Fingamus medium ab incumbente pondere promore aeris nostri comprimi; sitque A alitudo medii
homogenei, cuius pondus adaequet pondus incumbens, & cuiis densitas eadem sit cum densitate medii
compressi, in quo pulsus propagantur. Constitui autem intelligatur pendulum, cuius longitudo inter
punctum suspensionis & centrum oscillationis sit A : & quo tempore pendulum illud oscillationem integram
ex itu & reditu compositam peragit eodem pulsus eundo conficiet spatium circumferentiae circuli radio A
descripti aequale.

Nam stantibus quae in propositione XLVII constructa sunt, si linea quaevis physica EF, singulis
vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cuiusque locis P & S, a vi
elastica quae ipsius ponderi aequetur; peraget haec vibrationes singulas quo tempore eadem in cycloide,
cuius perimeter tota longitudini PS aequalis est, oscillari posset : id adeo quia vires aequales aequalia
corpuscula per aequalis spatia simul impellent. Quare cum oscillationum tempora sint in subduplicata
ratione longitudinis pendulorum, & longitudo penduli aequetur dimidio arcui cycloidis totius; foret tempus
vibrationis unius ad tempus oscillationis penduli, cuius longitudo est A, in subduplicata ratione longitudinis

2
1 PS seu PO ad longitudinem A. Sed vis elastica, qua lineola physica EG, in locis suis extremis P, S

existens, urgetur, erat (in demonstratione propositionis XLVII) ad eius vim totam elasticam ut HL - KN ad
V, hoc est (cum punctum K iam incidat in P) ut HK ad V: & vis illa tota, hoc est pondus incumbens, quo
lineola EG comprimitur, est ad pondus lineolae ut ponderis incumbentis altitudo A ad lineolae longitudinem
EG; ideoque ex aequo, vis qua lineola EG in locis suis EG ut PO ad V. Quare cum tempora, quibus aequalia
corpora per aequalia spatia impelluntur, sint reciproce in subduplicata ratione virium, erit tempus
vibrationis unius, urgente vi illa elastica, ad tempus vibrationis, urgente vi ponderis, in subduplicata ratione
VV ad PO × A, atque ideo ad tempus oscillationis penduli cuius longitudo est A in subduplicata ratione BB
ad PO × A. & subduplicata ratone PO ad A conjunctim; id est, in ratione integra V ad A. Sed tempore
vibrationis inius ex itu & reditu compositae, pulsus progrediendo conficit latiudinem suam BC. Ergo
tempus, quo pulsus percurrit spatium BC, est ad tempus oscillatonis unius ex itu & reditu compositiae, ut V
ad A, id est, ut BC ad circumferentiam curculi cuius radius est A. Tempus autem, quo pulsus percurret
spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratone;
ideoque tempore talis oscillationis pulsus percurret longitudinem huic circumferentiae aequalem. Q.E.D.

PROPOSITION XLIX.            PROBLEM XI.

To find the velocity of pulses for a given density and elastic force of medium.

We can imagine the medium to be compressed  by the incumbent weight of the air in the manner of our
air ; and let A be the height of the homogeneous medium which is equal to the incumbent weight [from the
quiescent point], and the density of which is the same as that of the compressed medium, in which the
pulses are propagated. Moreover, a pendulum is considered to be set up, the length of which is A between
the point of suspension and the centre of oscillation [thus, the radius of the generating circle of the cycloid
is A/2, and the whole arc length is 2A.] : and in the time that the pendulum executes a complete to and fro
oscillation, a pulse will travel a distance equal to the circumference of the circle described by the radius A.
[Referring back to Prop. 47, and to the phase diagram; note that PS = λ/2.]

For in agreement with what has been stated in proposition XLVII, if some physically narrow region EF
is pushed to the limits of the oscillatory motion which are located at P and S, with the vibrations within the
space PS to be described by the single element, [thus, the motion of the single increment occupies the
whole amplitude or is responsible for the entire s. h. m.] then the elastic force [or pressure] is itself equal to
the weight of the air, and  it will perform these individual vibrations in the same time that the oscillations
can be performed on the cycloid,  the whole perimeter of which is equal to the length PS [ = 2A]: since
equal forces can push small bodies [of equal mass] through equal distance in the same time.  Whereby as
the times of oscillations are in the square root ratio of the lengths of pendulums, and the length of the
pendulum is equal to half of the whole arc of the cycloid ; the time of one vibration in the air to the time of
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the oscillation of the pendulum, the length of which is A, is in the ratio of the square root of the length 2
1 PS

(or PO) to the length  A.
But the elastic force, by which the incremental length EG is forced, present in its extreme places P and

S, is (as in the demonstration of proposition XLVII) to the total force of this as HL - KN to V,
that is (as the point K thus falls in P) as HK to V: and that total force, that is the incumbent weight by
which the incremental line EG is compressed, is to the weight of the elemental line as the altitude A for the
weight of the incumbent air to the incremental line of length EG; and thus from the equality, the force by
which the incremental line EG is pushed in its locations P and S,  is to the weight of the incremental line as
HK × A to V × EG, or as PO × A to VV, for HK is to EG as PO to V. Whereby with the times, for which
equal bodies are pushed through equal distances, are reciprocally in the square root ratio of the forces
[Essentially at2 is constant, or Ft2/m is constant, giving t α 1/√F.], the time of one vibration will be, from
the force exerted by the pressure, to the time of the vibration, for the force due to the weight [in the
pendulum case], in the square root ratio VV to PO × A, and thus to the time of the oscillation of the
pendulum of which the length is A in the square root ratio VV to PO × A and the square root ratio PO to A
jointly; that is, in the ratio all together as V to A. [The starting point P or S of the motion is chosen; there is
no difference for other points in the motion as the displacement cancels; see the note.] But in the time of
one vibration composed from the to and fro motion, the pulse by proceeding makes its own length BC [for
λ = 2 × PS. Therefore the time, in which the pulse travels through the distance BC, is to the time of one
oscillation composed from the to and fro motion of the  pendulum, as V to A, that is, as BC to the
circumference of the circle of which the radius is A. Moreover the time, in which the pulse travels through
the distance BC, is to the time by which it travels the length of this equal circumference, in the same ratio;
and thus for the time of such an oscillation the pulse travels a distance equal to the circumference of this
circle.  Q.E.D.

Notes on Proposition 49 :
Newton initially

considers the height of an
atmosphere of uniform
density that results in the
pressure observed at
ground level. We note in
passing that this height h
is related to the height k
of mercury in a barometer
according to the
elementary rule

kh Hgair ρρ = , or

kh airHg )/( ρρ= , or the
ratio of the specific

gravity of mercury to air times by the length of the mercury column, as you would expect if you is not too
concerned about finer details. Newton calls this height A.

Let us set up the oscillating atmosphere envisaged :
The height of the homogeneous atmosphere is A, and O  is taken as the half-way point. A relatively small
segment of air of quiescent length EG is part of the oscillating air mass of amplitude OS = OP. The
situation at some intermediate stage ascending is shown at on the left-hand side of the diagram L. The
explanation relies on Prop. 47 :

V
KNHL

pressurequiescent
EGelementonforceunbalanced

Fatforceelquiescent
atforceelatforceel −

==
−
.

.. φγεφ . In the present case, the

element is at an extreme position, in which case KN is zero, and the length HL is approximately equal to

the arc length HK; hence, 
V

HK
pressurequiescent

EGelementonforceUnbalanced
→ . Also, the ratio
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Thus, the period of oscillation of the air 
gA

VTair .
2

2
π= , while the period of the cycloidal pendulum is

given by : 
g
ATpen π2. = . Hence. .

2
/

2

2

. AA
V

A
VTT penair π

λ
===  Note that Newton always uses ratios,

so there is no need to worry about constant factors such as g and 2π that have to be inserted in absolute
measurements and calculations; indeed the use of π as a ratio had not been introduced at this time.

Corol. 1. Velocitas pulsuum ea est, quam acquirunt gravia aequaliter accelerato motu cadendo, & casu
suo describendo dimidium altitudinis A. Nam tempore casus huius, cum velocitate cadendo acquisita,
pulsus percurret spatium quod erit aequale toti altitudini A; ideoque tempore oscillationis unius ex itu &
reditu compositae percurret spatium aequale circumferentiae circuli radio A descripti : est enim tempus
casus ad tempus oscillationis ut radius circuli ad ejusdem circumferentiam.

Corol. 2 Unde cum altitudino illa A sit ut fluidi vis elastica directe & densitas eiusdem inverse ;
velocitas pulsuum erit in ratione composita ex subduplicata ratio densitatis inverse & subduplicata ratione
vis elasticae directe.

Corollary 1. The velocity of the pulses is the same as that which weighty bodies acquire by falling under
the acceleration of gravity, and in their case through half the height A. For the time in this case, for the
velocity to be acquired by falling, the pulse travels through the space equal to the whole interval A; and
thus the time of the oscillation composed from one coming and going the space traveled through is equal to
the circumference of the circle A described. Indeed the ratio of the time to fall to the time of the oscillation
is as the radius of the circle to the circumference of the same.

Note on Cor. 1 : For the time for a body to fall a vertical distance A/2 is given by 
g
ATbody = , while

the time for the pulse to perform half an oscillation and travel from P to S is given by 
gA

VTair .
2/

2
π= ;

hence, .1
2/.

:2/:
2

====
λπ

π A
V
A

gA
V

g
ATT airbody  Also, the pendulum bob in these times traverses a

space in the ratio .1.
2
2

2
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. ncecircumfere
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Corollary 2 :  Hence since that height A shall be directly proportional to the elastic force and in inverse
proportion to the density of the fluid; the velocity of the pulse will be in the ratio composed from the square
root of the inverse of the density and in direct proportion to the square root of the elastic force.
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Note on Cor. 2 :  If the periodic time T for a complete oscillation is inversely proportional to √A, and
P = ρgA , then the velocity is proportional to 1/T or √(P/ρ). As Chandrasekhar points out, this theorem was
probably added by Newton as he was not entirely satisfied with Prop. 47, which he did not work through to
its conclusion. However, this author makes claims for what Newton has done which bear little resemblance
to reality - there is a distinct lack of sophisticated mathematical machinery in Newton's work, although the
intuitive ideas are there. The mathematical structure describing phase velocity was not in place at the time,
and Newton's work presumably set this theory in motion. We may note in passing its use of an extreme
amplitude of around 8000m for the height of the isotropic atmosphere to give a known pressure, as Newton
sought known numbers to use in his equation as a check, with which one could associate a wave with a
period of some 25 seconds, more in the realms of internal gravitational waves in the atmosphere than sound
waves.

PROPOSITIO L.            PROBLEMA XII.

Invenire pulsuum distantias.

Corporis, cuius tremore pulsus excitantur, inveniatur numerus vibrationibus dato tempore. Per numerum
illum dividatur spatium quod pulsus eodem tempore percurrere possit, & pars inventa erit pulsus unius
latituto. Q. E. I.

PROPOSITION L.            PROBLEM XII.

To find the lengths of the pulses.
The number of vibrations in a given time need to be found for the body which is exciting the pulses.

The distance which the pulses are able to traverse in this time is divided by this number, and the fraction of
the length found is the width of one pulse. Q. E. I.

Note : Thus the well-known result for the phase velocity  v = fλ comes into being.

Scholium.
Spectant propositiones novissimae ad motum lucis & sonorum. Lux enim cum propagatur secundum

lineas rectas, in actione sola (per prop. XL & XLII.) consistere nequit. Soni vero propterea quod a corporibus
tremulis oriantur, nihil aliud sunt quam aëris pulsus propagati, per prop. XLIII. Confirmatur id ex tremoribus
quos excitant in corporibus objectis, si modo vehementes sint & graves, quales sunt soni tympanorum. Nam
tremores celeriores & breviores difficilius excitantur. Sed & sonos quosvis, in chordas corporibus sonoris
unisonas impactos, excitare tremores notissimum est. Confirmatur etiam ex velocitate sonorum. Nam cum
pondera specifica aquae pluvialis & argenti vivi sint ad invicem ut 1 ad 3

213 circiter, & ubi mercurius in
Barometro altitudinem attingit digitorum Anglicorum 30, pondus specificum aëris & aequae pluvialis sint
ad vicem ut 1 ad 870 circiter; erunt pondera specifica aëris & argenti vivi ut 1 ad 11890. Proinde cum
altitudo argenti vivi sit 30 digitorum, altitudo aëris uniformis, cuius pondus aërem nostrum subjectum
comprimere posset, erit 356700 digitorum, seu pedum Anglicorum 29725. Estque haec altitudo illa ipsa
quam in constructione superioris problematis nominavimus A. Circuli radio 29725 pedum descripti
circumferentia est pedum 186768. Et cum pendulum digitos 5

139 longum oscillationem ex itu & reditu
compositam tempore minutorum duorum secundorum, uti notum est, absolvat; pendulum pedes 29725 seu
digitos 356700 longum oscillationem consimilem tempore minutorum secundorum 4

3190 absolvere debebit.
Eo igitur tempore sonus progrediendo conficiet pedes 186768, ideoque tempore minuti unius secundi pedes
979.

Caeterum in hic computo nulla habetur ratio crassitudinis solidarum particularum aëris, per quam sonus
utique propagatur in instanti. Cum pondus aëris sit ad pondus aquae ut 1 ad 870. & sales sint fere duplo
densiores quam aqua; si particulae aëris ponantur esse ejusdem circiter densitatis cum particulis vel aquae
vel salium, & raritas aëris oriatur ab intervallis particularum : diameter particulae aëris erit ad intervallum
inter centra particularum, ut 1 ad 9 vel 10 circiter, & ad intervallum inter particulas ut 1 ad 8 vel 9. Proinde
ad pedes 979, quos sonus tempore minuti unius secundi juxta calculum superiorem conficiet, addere licet
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pedes 9
979  vel 109 circiter, ob crassitudinem particularum aëris : & sic sonus tempore minuti unius secundi

conficiet pedes 1088 circiter.
His adde quod vapores in aëre latentes, cum sint alterius elateris & alterius toni, vix aut ne vix quidem

participant motum aëris veri quo soni propagantur. His autem quiescentibus, motus ille celerius
propagibitur per solum aërem verum, idque in subduplicata ratione minoris materiae. Ut si atmosphaera
constet ex decem partibus aëris veri &  una parte vaporum, motum sonorum celerior erit in subduplicata
ratione 11 as 10, vel in integra circiter ratione 21 ad 20, quam si propagaretur per undecim partes aëris veri
: ideoque motus sonorum supra inventus , augendus erit in hac ratione. Quo pacto sonus, tempore minuti
unius secundi, conficiet pedes 1142.

Haec ita se habere debent tempore verno & autumnali, ubi aër per ca;orem temperatum rarescit & ejus
vis elastica nonnihil intenditur. At hyberno tempore, ubi aër per frigus condensatur, & ejus vis elastica
remittitur, motus sonurum tardior esse debet in subduplicata ratione densitatis; & vicissim aestivo tempore
debet esse velocior.

Constat autem per experimenta quod soni tempore minuti unius secundi eundo conficiunt pedes
Londinenses plus minus 1142, Parisienses vero 1070.

Cognita sonorum velocitate innotescunt etiam intervalla pulsuum. Invenit utique D. Sauveur, factis a se
experimentis, quod fistula aperta, cujus longitudo est pedum Parisiensium plus minus quinque, sonum edit
ejusdem toni cum sono chordae quae tempore minuti unius secundi centies recurrit. Sunt igitur pulsus plus
minus centum in spatio pedum Parisiensium 1070, quo sonus tempore minuti unius secundi percurrit;
ideoque pulsus unus occupat spatium pedum Parisiensium 10

710 , id est, duplam circiter longitudinem
fistulae. Unde versimile est quod latitudines pulsuum, in omnium apertarum fistularum sonis, aequentur
duplis longitudinibus fistularum.

Porro cur soni cessante motu corporis statim cessant, neque diutius audiuntur ubi longissime distamus a
corporibus sonoris, quam cum proxime absumus, patet ex corollario propositionis XLVII libri huius. Sed &
cur soni in tubis stentorophonicis valde augentur ex allatis principiis manifestum est. Motus enim omnis
reciprocus singulis recuribus a causa generante augeri solet. Motus autem in tubis dilatationem sonorum
impedientibus, tardius amittitur & fortius recurrit, & propterea a motu novo singulis recursibus impresso
magis augetur. Et haec sunt praecipua phaenomena sonorum.

Scholium.

The most recent propositions consider the motion of light and of sound. Indeed light is propagated in
straight lines, without interaction (by prop. XL & XLII.). Hence, since sounds arise from the vibrations of
bodies, they are nothing other than pulses propagated in the air, by prop. XLIII.  This is confirmed from the
vibrations which they cause in bodies presented to them, but only if they are strong and deep, such as the
sounds of small drums. For quicker and shorter vibrations are more difficult to be excited. But it is well
known also that any sounds can interact with the strings of  musical instruments and excite vibrations.  This
is also confirmed from the velocity of sound. For since the specific gravity of rainwater and quicksilver are
in turn as 1 to 3

213 roughly, and where the height of mercury in a Barometer reaches a height of 30 English
inches, the specific gravity of air and of rainwater are in the ratio 1 to 870 roughly;  the specific gravithy of
air and quicksilver are as 1 to11890. Then since the height of quicksilver is 30 inches, the height of the air
in a uniform atmosphere, which our air is subject to in compression,  is 356700 inches, or 29725 English
feet. This is the height that we have called A in the construction of the above problems.  The circumference
of  the circle described by a radius of 29725 feet is 186768 feet. And since it is well-known that a
pendulum 5

139 inches long  results in a complete oscillation in a time of two seconds,  then a pendulum

29725 feet long or 356700 inches ought to complete a similar oscillation in a time of 4
3190 seconds.

Therefore in that time the sound should progress a distance of 186768, and thus in a time of of one second
sound should travel 979 feet.

In the computation presented here, no account is made for other effects, such as the density of solid
particles in the air, through which the sound certainly is propagated.  Since the weight of air is to the weight
of water as 1 to 870, and  salts are nearly twice as dense as water ; if the particles of air are put to be
roughly the same density as the particles of water or salt, and the rareness of air arises from the intervals
between the particles: then the diameter of the air particles will be as the interval between the centres of the
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particles, as 1 to 9 or 10 roughly, and to the interval between the particles as 1 to 8 or 9. Hence to the 979
feet in the above calculation, one may add 9

979  or 109 feet roughly, to the distance that sound travels in a
time of one second, on account of the density of particles in the air : & thus the distance that sound travels
in a time of one second is made to be roughly 1088 feet.

To these you may add the effect of vapours hidden in the air,  since they are of a different tone and
elastic nature they may or may not participate in the motion of sound that is propagated through the air. But
from these quiet sources, the motion is propagated more quickly than by the air alone, and that in the ratio
of the square root of the lesser matter.  For if the atmosphere is made up from ten parts air and one part of
vapour, the speed of sound is faster in the ratio of the square root of 11 to 10, or altogether around the ratio
21 ad 20, than if the sound is propagated by eleven parts of pure air : and thus the motion of the air found
above is increased in this ratio.  From which the speed of sound is agreed upon to be 1142 feet in one
second.

Thus these ought to have an effect in springtime and autumn, when the air is rarefied by the temperate
heat and the pressure is increased. In wintertime, when the air is condensed by the cold, and its pressure is
lowered, the speed of sound should be less in the square root ratio of the densities, while in summertime in
turn, the speed should be increased.

Moreover, it is agreed upon by experiment that the distance gone in a time of one second is more or less
London feet 1142,  and truly 1070 Parisien feet.

With the speed of sound recognised, the intervals between the pulses can also become known. Certainly
Sauveur has found from measurements made in his experiments, that an open pipe, the length of which is
more or less five Parisien feet, send forth a sound of the same tone as the sound of strings which are
vibrating at a rate of a hundred times in one second.  Thus, there are more or less one hundred pulses in a
space of 1070 Parisien feet, which sound travels through in a time of one second ; hence a single  pulse
takes up a space of 10

710  Parisien feet, that is, around twice the length of the tube. Thus, it is the same for
pulses of all lengths from the sounds produced by tubes, for they are equal to twice the lengths of the open
ended tubes.

Again since sounds stop with the motion of the vibrating body when we stand nearby, but not for a long
time when we stand a long way from the source of the sound,  which is apparent from the corollary to
proposition XLVII of this book. Moreover why sounds are greatly increased in volume by deep sounding
trumpets is apparent from these principles. Indeed the reciprocal motion of all recurring individual pulses is
usually increased by the source of the vibration. Moreover,  the motion of sound is impeded in trumpets, to
be emitted later and louder, and therefore a new individual motion is returned later more loudly. And these
are the main phenomena associated with sound.

End of Section VIII, Book II.
[Thus, Newton remained unaware of the true source of the error in his analysis; this was eventually

corrected by Laplace when the effect of heat on a gas was much better understood, and the adiabatic form
of the gas law was applied, rather than Boyle's Law.]


