The equations of the second canons are deduced from those of the first canons by the removal of some parodic power [i. e. one of the lesser powers in the equation is removed by making its coefficient equal to zerol, by substituting an invariant quantity for the remaining root.

Aequationum canonicarum secundarium a primariis reductio per gradu alicuius parodici sublationem radice supposititia invariata manente.

The reduction of a quadratic canonical equation to one with a single term.

PROBLEM 1.

The binomial equation

$$
\begin{array}{r}
a a-b a \\
+c a
\end{array}=+b c
$$

is reduced to the monomial

$$
a a=b b
$$

That is, by removing the first degree term or step a,
by placing $b=c$,
the binomial equation is reduced by changing c into b.
Thus the equation becomes

$$
\begin{array}{r}
a a-b a \\
+b a
\end{array}=+b b
$$

Therefore by taking away contradictory parts, the excess is . . . $a a=b b$, which is the monomial sought.
Therefore the reduction is accomplished for the proposed binomial equation to the monomial, as ordered.
[Note for Problem 1: in modern notation, the equation $(a-b)(a+c)=0$ is given with equal and opposite roots $\pm b$, in which case it is reduced to $a^{2}-b^{2}=0$. Only the positive root is considered.]

By reducing the order of a cubic canon.

PROBLEM 2.

That is, by removing the second degree or $a a$.
Placing $b+c$ \qquad d

And the trinomial equation is reduced by changing d into $b+c$.
Thus the equation becomes: $\quad a a a-b a a+b c a$

$$
-c a a-b b a
$$

$+b a a-b c a$
$+c a a-b c a$
$-c c a,=-b b c$,

- bcc.

Therefore by rejecting particular contradictory terms, the amount left
is

$$
\begin{array}{rr}
a a a-b b a & \\
-b c a & \\
-c c a & =-b b c \\
& -b c c
\end{array}
$$

which is the binomial equation sought.

Therefore the reduction is accomplished for the proposed trinomial equation to the binomial, as prescribed.
[Note for Problem 2: the equation $(a-b)(a-c)(a+d)=0$ has the square term removed by setting $b+c=d$; in which case the reduced equation becomes $\left.a^{3}-\left(b^{2}+b c+c^{2}\right) a=-(b+c) b c.\right]$

PROBLEM 3.

The trinomial equation $\quad a a a-b a a+b c a$

- caa - bda

$$
+d a a-c d a \quad=-b c d
$$

to be reduced to the binomial $a a a-b b a a$
by removing the first power a.
Placing $\quad b c=b d+c d$
Thus in the proposed equation by the cancellation of parts, the first power is removed.
Thus there remains $a a a-b a a$

- caa
$+d a a=-b c d$,
Therefore the remaining part of the equation becomes, on substituting
$\frac{b c .}{b+c}$ for d,
thus:

$$
\begin{aligned}
& a a a-b a a \\
&-c a a \\
&+\frac{b c a a}{b+c}=-\frac{b b c c}{b+c}
\end{aligned}
$$

The remaining terms baa \& caa are restored with the common divisor $b+c$

$$
\begin{aligned}
& a a a-b b a a \\
&-b c a a \\
&-b c a a \\
&-c c a a \\
&+\frac{b c a a}{b+c}=-\frac{b b c c}{b+c}
\end{aligned}
$$

The contradictory excess is taken away.
So finally

$$
\begin{aligned}
& a a a-b b a a \\
&-b c a a \\
&-\frac{c c a a}{b+c}=-\frac{b b c c}{b+c}
\end{aligned}
$$

is the reduced prescribed binomial equation. Thus the required reduction of the proposed equation to the prescribed form has been effected.
[Note for Problem 3: the equation $(a-b)(a-c)(a+d)=0$ has the linear term removed by setting $d=\frac{b c}{b+c}, b+c=d$; in which case the reduced equation becomes $\left.a^{3}-a^{2}\left(b^{2}+b c+c^{2}\right) /(b+c)=-b^{2} c^{2} /(b+c).\right]$

PROBLEM 4.

That is, by removing the second degree or $a a$ step.
Placing $b+c$ \qquad d

And the trinomial equation is reduced by changing d into $b+c$.
Thus the equation becomes : $a a a+b a a+b c a$

$$
+c a a-b b a
$$

$$
\text { - } b a a-b c a
$$

$$
-c a a-b c a
$$

$$
\begin{aligned}
&-c c a= \\
&+b b c, \\
&+b c c .
\end{aligned}
$$

$+b c c$.
Therefore by rejecting a particular part with a contradictory [one] , the excess

Which is the binomial equation sought.
So therefore the reduction of the proposed trinomial equation to the binomial is done, as prescribed.
[Note for Problem 4 : the equation $(a+b)(a+c)(a-d)=0$ has the quadratic term removed by setting $b+c=d$; in which case the reduced equation becomes $\left.a^{3}-\left(b^{2}+b c+c^{2}\right) a=(b+c) b c.\right]$

$$
\begin{aligned}
& \text { becomes } a a a-b b a \\
& \text { - bca } \\
& -c c a=+b b c \text {, } \\
& +b c c \text {. }
\end{aligned}
$$

PROBLEM 5.

The trinomial equation $\quad a a a+b a a+b c a$

$$
+c a a-b d a
$$

$$
-d a a-c d a \quad=+b c d
$$

is to be reduced to the binomial : $a a a+b b a a$

$$
\begin{aligned}
& +b c a a \\
& +\frac{c c a a}{b+c}=+\frac{b b c c}{b+c}
\end{aligned}
$$

by removing the first step or power a.
Putting $\quad b c=b d+c d$
Thus in the proposed equation, by a contradiction of parts, the first power a is removed.
Thus there remains

$$
\begin{aligned}
a a a & +b a a \\
& +c a a \\
& -d a a=+b c d, \quad \text { a part of the equation is thus reduced. }
\end{aligned}
$$

By substituting $\quad b c=b d+c d, \quad d=\frac{b c .}{b+c}$
in that part of the equation in which d belongs, by changing d into $\frac{b c \text {. }}{b+c}$

Hence it becomes $a a a+b a a$

$$
+c a a
$$

$$
-\frac{b c a a}{b+c}=+\frac{b b c c}{b+c}
$$

The remainder baa \& caa is reduced to the common divisor $b+c$

$$
\begin{aligned}
& a a a+b b a a \\
&+b c a a \\
&+b c a a \\
&-c c a a \\
&-\frac{b c a a}{b+c}= \\
&=\frac{b b c c}{b+c}
\end{aligned}
$$

The contradictory excess is taken away.
So finally

$$
\begin{aligned}
& a a a+b b a a \\
&+b c a a \\
&+\frac{c c a a}{b+c}= \\
&=\frac{b b c c}{b+c}
\end{aligned}
$$

is reduced to the prescribed binomial equation
And thus the reduction of the prescribed equation is made, as required.
[Note for Problem 5: the equation $(a+b)(a+c)(a-d)=0$ has the linear term removed by setting $d=\frac{b c}{b+c}, b+c=d$; in which case the reduced equation becomes $a^{3}+a^{2}\left(b^{2}+b c+c^{2}\right) /(b+c)=b^{2} c^{2} /(b+c)$.]

PROBLEM 6.

$\begin{array}{lccc}\text { The trinomial equation } & a a a-3 . b a a+3 . b b a & = & b b b-c c c \\ \text { is reduced to the binomial } & a a a+3 . b c a= & =b b b-c c c\end{array}$
That is, by removing the second degree or second power $a a$.
The equation is generated by setting $b-a=c$
$\left.\begin{array}{cc}\begin{array}{cc}\text { Thus . . . } & -a+b \\ 3 . b a\end{array} & =\begin{array}{c}+c \\ 3 . b a\end{array} \\ \text { But } & -a+b \\ 3 . b a\end{array}\right]=\begin{aligned} & -3 . b a a+3 . b b a\end{aligned}$
And $\left.\begin{array}{c}+c \\ 3 . b a\end{array}\right]+3 . b c a$.
Thus $3 . b a a+3 . b b a=+3 . b c a$.
Thus . . . $a a a-3 . b a a+3 . b b a=a a a+3 . b c a$.
But $a a a-3 . b a a+3 . b b a=b b b-c c c$
For this is the binomial equation itself proposed.
Thus $a a a+3 . b c a$. $=b b b-c c c$, which is the binomial sought.
Therefore by placing $b-a=c$,
the prescribed reduction shall be performed for the proposed trinomial equation to the binomial.
[Note for Problem 6: the equation
$(a-b)^{3}=-c^{3}$ is the same as $a^{3}-3 a b(a-b)-b^{3}=-c^{3}$; this has the quadratic term removed by setting $a-b=-c$; in which case the reduced equation becomes $a^{3}+3 a b c=b^{3}-c^{3}$ as required.]

PROBLEM 7.

The trinomial equation

$$
\begin{gathered}
a a a+3 . b a a+3 . b b a=-b b b+c c c \\
a a a+3 . b c a=-b b b+c c c
\end{gathered}
$$

is reduced to the binomial
That is, by removing the second degree or step $a a$.
The root equation is established again, by setting $a+b=c$

Thus . . . $a a a+3 . b a a+3 . b b a=a a a+3 . b c a$.
But $a a a+3 . b a a+3 . b b a=-b b b+c c c$
For this is the binomial equation itself proposed.
Thus $a a a+3 . b c a$. $=-b b b+c c c$, which is the binomial sought.
Therefore by placing $a+b$ \qquad c, the prescribed reduction is accomplished for the proposed trinomial equation to the binomial.
[Note for Problem 7: the equation $(a+b)^{3}=c^{3}$ is the same as $a^{3}+3 a b(a+b)+b^{3}=c^{3}$; this has the quadratic term removed by setting $a+b=-c$; in which case the reduced equation becomes $a^{3}+3 a b c=-b^{3}+c^{3}$ as required.]

PROBLEM 8.

The trinomial

$$
a a a-3 . b a a+3 . b b a=+b b b+c c c
$$

is reduced to the binomial
That is, by removing the second degree or step $a a$.
The radix equation is reconstituted, by setting $a-b=+c$

And | $-c$ |
| :---: |
| $3 . b a$ |$|-3 . b c a$.

Thus $a \mathrm{aa}-3 . b a a+3 . b b a \square a a a-3 . b c a$.
But $a a a-3 . b a a+3 . b b a \square+b b b+c c c$
is indeed the trinomial equation itself proposed.
Thus $a a a-3 . b c a . \square+b b b+c c c$, which is indeed the binomial sought.
Therefore by placing $a-b=c$, the reduction of the proposed trinomial equation to the binomial has been accomplished, as required.
[Note for Problem 8: the equation $(a-b)^{3}=c^{3}$ is the same as $a^{3}-3 a b(a-b)-b^{3}=c^{3}$; this has the quadratic term removed by setting $a-b=c$; in which case the reduced equation becomes $a^{3}-3 a b c=b^{3}+c^{3}$ as required.]

Reducing the order of the biquadratic canon. PROBLEM 9.

```
The quadrinomial equation
aaaa - baaa + bcaa
    - caaa + bdaa
    - daaa + cdaa - bcda
    \(+f a a a-b f a a+b c f a\)
        - cfaa + bdfa
        \(-d f a a+c d f a=+b c d f\)
is to be reduced to the trinomial \(a a a a-b b a a+b b c a\)
- ccaa + bbda
- ddaa + bcca
- bcaa + ccda
- bdaa + bdda
- cdaa + cdda
\(+2 . b c d a=+b b c d\)
\(+b c c d\)
\(+b c d d\)
To wit, by removing the third [degree or] step aaa.
Placing \(b+c+d=f\)
And the quadrinomial equation is reduced by changing \(f\) into \(b+c+d\)
Then the eqn. becomes :
\[
\begin{aligned}
& a a a a-b a a a+b c a a \\
&-c a a a+b d a a \\
&-d a a a+c d a a-b c d a \\
&+b a a a-b b a a+b c b a \\
&+c a a a-b c a a+b c c a \\
&+d a a a-b d a a+b c d a \\
&-c b a a+b d b a \\
&-c c a a+b d c a \\
&-c d a a+b d d a \\
& \\
&-d d a a+c d b a \\
&-d c a a+c d c a \\
& \\
&+b d a a+c d d a= \\
&+b c d c \\
&+b c d d
\end{aligned}
\]
```

Therefore by rejecting particular redundant [parts] by contradiction [cancellation],
hence

$$
\begin{array}{rlr}
a a a a-b b a a & +b b c a & \\
-c c a a+b b d a & \\
-d d a a+b c c a & \\
-b c a a+c c d a & \\
-b d a a+b d d a & & \\
-c d a a+c d d a & & \\
+2 . b c d a & = & +b b c d \\
& & +b c c d \\
& & +b c d d .
\end{array}
$$

which is the trinomial equation sought.
So therefore the reduction has been done for the proposed equation to the required. as prescribed.
[Note for Problem 9: the equation $(a-b)(a-c)(a-d)(a+f)=0$ has the cubic term removed by setting $b+c+d=f$; in which case the reduced equation becomes $a^{4}-\left(b^{2}+c^{2}+d^{2}+b c+b d+c d\right) a^{2}+\left(b^{2} c+b c^{2}+c^{2} d+c d^{2}+b^{2} d+b d^{2}+2 b c d\right) a$ $=(b+c+d) b c d$.

