§2.1

Chapter Two

Concerning How the Subtended Chords Are Sought in the Writings of the Ancients.

1. Prop. Ptol.

Ptolemy ${ }^{1}$ showed, First, following Euclid, the way the [lengths of the] sides of particular figure inscribed in a circle could be found, namely the equilateral triangle by Prop. 12. Book 13. The square by Prop. 6. Book 4. The Pentagon, Hexagon, and Decagon by Prop 9. \& 10. Book 13.

$$
\begin{array}{l|l}
& \text { Let the Diameter be } \\
\text { of the Hexagon } & 100000 . \\
\text { of the Square } & 141213562373095 \\
\text { of the Triangle } & 1732050807568877 \\
\text { of the Decagon } & 0618033988749895 \\
\text { of the Pentagon } & 1175570504584946
\end{array}
$$

2. Prop. Ptol.

Secondly, by Prop. 30, Book 3: from Euclid, he teaches, the Square of the Given Subtended Chord, taken from the Square of the given Diameter, leaves the Square of the Complement of the Subtended [Chord] to the Semi-circle. And according to this method the Subtended Chords of $60,90,120,36,72 \&$ of the Complements $144 \& 108$ degrees can be found.
3. Thirdly, this Lemma is proposed as it is required in subsequent proofs. If a quadrilateral [lit. quadrangle] is inscribed in the Circle, the Rectangle comprising the Diagonals is equal to the [the sum of the] Rectangles comprising the opposite sides.

As in circle ABCD, let the diagonals be $\mathrm{DB}, 25$; AC, 20. The Rectangle from the Diagonals 500 is equal to [the sum of] the Rectangles AB, DC, 360. And AD, BC, 140. Indeed, the line BE is drawn such that the angles $\mathrm{ABE}, \mathrm{DBC}$ should be equal. The Triangles $\mathrm{DBC}, \mathrm{ABE}$ are similar; because the Angles CDB, CAB are equal, when they are in the same section, by Prop. 21, Book 3. \& CBD, EBA shall be equal from the construction;

[Figure 2-1] the remaining AEB, DCB therefore are equal by Prop. 31, Book 1 . $\mathrm{BD}, \mathrm{DC}: \mathrm{BA}, \mathrm{AE}$ are therefore in proportion: \& the Rectangles $\mathrm{BD}, \mathrm{AE} ; \mathrm{DC}, \mathrm{BA}$ are equal from Prop.16, Book 6. Likewise, the Triangles BDA, BCE are similar, because the Angles BCE, BDA are on the same section, \& therefore equal. And as ABE, CBD shall be equal from the construction, with the common part DBE taken away, the remaining [angles] CBE, DBA are equal; \& therefore CB, CE : BD, DA, are proportionals, \& the rectangles $\mathrm{CB}, \mathrm{DA} ; \mathrm{CE}, \mathrm{BD}$ are equal; but [the sum of] the rectangles $\mathrm{DB}, \mathrm{EA} ; \mathrm{DB}, \mathrm{CE}$,
is equal to the rectangle DB, CA by Prop. 1, Book 2, Euclid: \& therefore the rectangle with the Diagonals DB, CA is equal to [the sum of] the Rectangles DC, $\mathrm{BA}, \& \mathrm{BC}, \mathrm{DA}$, which had to be shown ${ }^{2}$.

DB 25
Rect.: DB, AE. 360
$\mathrm{AE} 14^{2} / 5$
DB 25
Rect.: DB, CE. 140
CE $53 / 5$
DB 25
Rect.: DB, AC. 500
[Table 2-2]
4. Fourthly, as permitted by the above Lemma, from the two given arcs with unequal Subtended Chords, the Subtended Chord of the difference can be found.

Let the given Diameter [Figure 2-2] be $\mathrm{AB}, 20$.
Of the Inscribed [Chords] AD, 12. AC $5^{3} / 5$. CD is sought. Firstly, DB \& CB can be found by the $2^{\text {nd }}$ Prop. Since the angles ADB, ACB are in the semiCircle, they are right, by Prop. 30, Book 3. \& therefore if the Square AD, 144 , is taken from the Square AB, 400 , there remains the Square DB, 256. By Prop. 47, Book 1. DB is therefore 16. By the same method, by taking the Square AC, $31^{9} / 25$ from the Square $A B$,

[Figure 2-2] 400 , there remains the square CB, $368^{16} / 25$, or 36864 . And CB will be 192 .
Therefore given $\mathrm{AB}, 20 ; \mathrm{AD}, 12$; $\mathrm{AC}, 5 \underline{6}$; \& by finding $\mathrm{DB}, 16 . \mathrm{CB}, 192 . \mathrm{CD}$ is sought by the preceding Lemma. The rectangle ${ }^{\frac{3}{3}} \mathrm{AC}, \mathrm{DB}, 89 \underline{6}$, is taken from the rectangle AD, CB, from the diagonals, $230 \underline{4}$, will leave the rectangle $140 \underline{8}$, comprising the diameter $\mathrm{AB}, 20$ and CD. Therefore with $140 \underline{8}$ divided by 20 , the Quotient $7 \underline{04}$ will be the length of the straight line CD , which is required.
5. By the same Lemma: From two given arcs with Subtended Chords, the Subtended Chord of the sum is found ${ }^{4}$.

Let the given diameter [Figure 2-3] be AB , 20. $\mathrm{AC}, 12$. $\mathrm{AD}, 5 \underline{6}$. DC is sought. In the first place CB, DB are to be found, as before ${ }^{5}$: and this gives CB as $16, \mathrm{DB}$ as $19 \underline{2}$ We have therefore $A B, A C$, and $A D$ given; \& $C B$ and DB have been found. The rectangles AD, CB, $89 \underline{6}, \& A C, B D, 2304$ are taken, the sum of which is $320 . \underline{0}$, which is equal to the rectangle

[Figure 2-3]
comprising the Diameter $\mathrm{AB} \&$ the chord sought DC, by the preceding Lemma, Prop. 3. Therefore given the Diameter AB, 20; let it divide 320.0 - the rectangle taken from the diameter and DC together, then the quotient 16 is the Subtended Chord DC sought ${ }^{6}$.

§2.2
 Notes On Chapter Two

1 The First Lemma looks at the problem of finding the lengths of the sides of some regular figures inscribed in a circle of unit radius. The Second Lemma applies the Theorem of Pythagoras to the sides of the appropriate right angled triangle to determine the ratios for the specified angles.
${ }^{2}$ In more modern terminology, we have $\mathrm{AE} \cdot \mathrm{BD}=\mathrm{AB} \cdot \mathrm{CD}$, and $\mathrm{CE} \cdot \mathrm{BD}=\mathrm{CB} \cdot \mathrm{DA}$; hence, $(\mathrm{AE}+\mathrm{EC}) \cdot \mathrm{BD}=\mathrm{AB} \cdot \mathrm{CD}+\mathrm{CB} \cdot \mathrm{DA}$, or $\mathrm{AC} \cdot \mathrm{BD}=\mathrm{AB} \cdot \mathrm{CD}+\mathrm{CB} \cdot \mathrm{DA}$, as required. See the CRC Handbook of Modern Mathematics, p.84, for the 'whole story' on this theorem from a modern perspective. This theorem is the main 'workhorse' used by Ptolemy in the construction of his Table of Sines alluded to in the first chapter.

3 These are referred as 'oblongs' in the text always.
4 This should be called the $5^{\text {th }}$ Lemma, or the converse of Lemma 4.
5 That is, we find the remaining sides of the cyclic quadrilateral first.
6 This is a rather perfunctory and incomplete look at Ptolemy's method. Ptolemy uses these results to find the lengths of half chords in terms of the known chords of larger angles: in this way he subdivides 12° formed from the difference of 72° from the regular pentagon and 60° from the regular hexagon to find the half chords corresponding to $6^{0}, 3^{0}$, $1 \frac{1}{2} 2^{0}, 3 / 4^{0}$ and eventually for ${ }^{1} / 2^{0}$, which he uses as the unit to build up his table. See his Almagest I for details. Briggs, however, wishes to move on to his own methods.....

